<u>CS255</u>: Winter 2009

PRPs and PRFs

- 1. Abstract ciphers: PRPs and PRFs,
- 2. Security models for encryption,
- 3. Analysis of CBC and counter mode

PRPs and PRFs

Pseudo Random Function (PRF) defined over (K,X,Y):

$$F: K \times X \rightarrow Y$$

such that exists "efficient" algorithm to evaluate F(k,x)

Pseudo Random Permutation (PRP) defined over (K,X):

E:
$$K \times X \rightarrow X$$

such that:

- 1. Exists "efficient" algorithm to evaluate E(k,x)
- 2. The function $E(k, \cdot)$ is one-to-one
- 3. Exists "efficient" inversion algorithm D(k,x)

Running example

• Example PRPs: 3DES, AES, ...

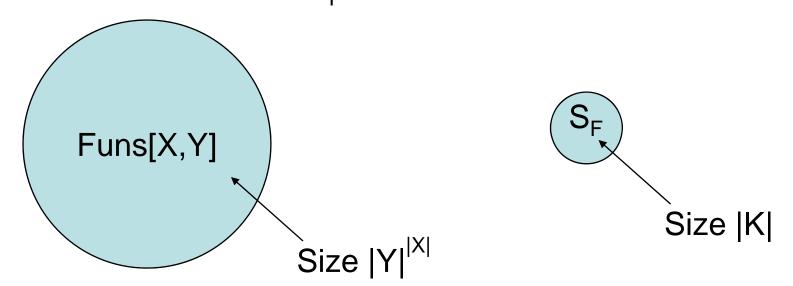
AES: $K \times X \to X$ where $K = X = \{0,1\}^{128}$

- Functionally, any PRP is also a PRF.
 - A PRP is a PRF where X=Y and is efficiently invertible.

Secure PRFs

• Let $F: K \times X \to Y$ be a PRF $\begin{cases} \text{Funs}[X,Y]: & \text{the set of } \underline{\textbf{all}} \text{ functions from } X \text{ to } Y \\ \\ S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y] \end{cases}$

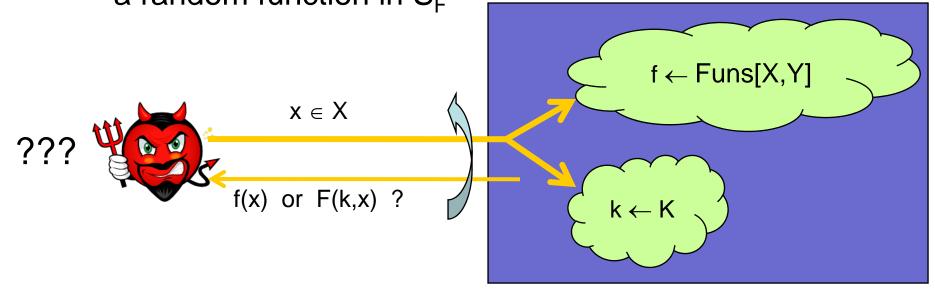
Intuition: a PRF is secure if
 a random function in Funs[X,Y] is indistinguishable from
 a random function in S_F



Secure PRFs

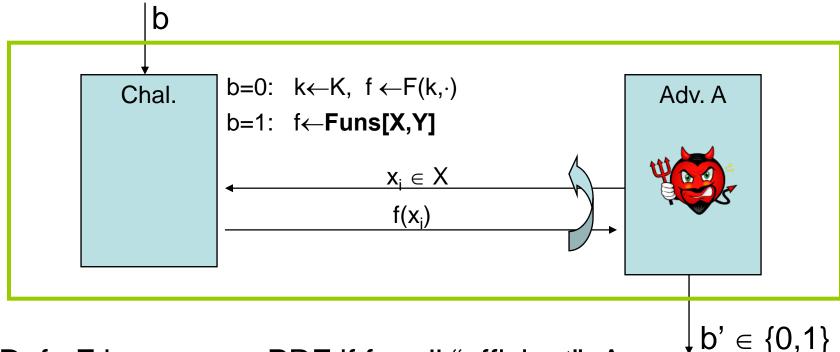
• Let $F: K \times X \to Y$ be a PRF $\begin{cases} \text{Funs}[X,Y]: & \text{the set of } \underline{\textbf{all}} \text{ functions from } X \text{ to } Y \\ \\ S_F = \{ F(k,\cdot) \text{ s.t. } k \in K \} \subseteq \text{Funs}[X,Y] \end{cases}$

Intuition: a PRF is secure if
 a random function in Funs[X,Y] is indistinguishable from
 a random function in S_F



Secure PRF: defintion

For b=0,1 define experiment EXP(b) as:



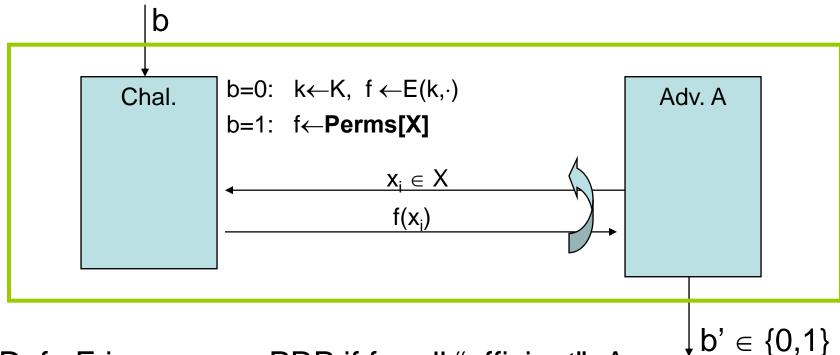
Def: F is a secure PRF if for all "efficient" A:

$$PRF Adv[A,F] = Pr[EXP(0)=1] - Pr[EXP(1)=1]$$

is "negligible."

Secure PRP

For b=0,1 define experiment EXP(b) as:



• Def: E is a secure PRP if for all "efficient" A:

$$PRP Adv[A,E] = \left| Pr[EXP(0)=1] - Pr[EXP(1)=1] \right|$$

is "negligible."

Example secure PRPs

• Example secure PRPs: 3DES, AES, ...

AES: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$

AES PRP Assumption (example):

All 2^{80} —time algs A have PRP Adv[A, **AES**] $< 2^{-40}$

PRF Switching Lemma

- Any secure PRP is also a secure PRF.
- <u>Lemma</u>: Let E be a PRP over (K,X)
 Then for any q-query adversary A:

 $|PRF Adv[A,E] - PRP Adv[A,E]| < q^2 / 2|X|$

 \Rightarrow Suppose |X| is large so that $q^2 / 2|X|$ is "negligible"

Then

PRP Adv[A,E] "negligible" \Rightarrow PRF Adv[A,E] "negligible"

Using PRPs and PRFs

- Goal: build "secure" encryption from a PRP.
- Security is always defined using two parameters:
 - 1. What "**power**" does adversary have? examples:
 - Adv sees only one ciphertext (one-time key)
 - Adv sees many PT/CT pairs (many-time key, CPA)
 - 2. What "**goal**" is adversary trying to achieve? examples:
 - Fully decrypt a challenge ciphertext.
 - Learn info about PT from CT (semantic security)

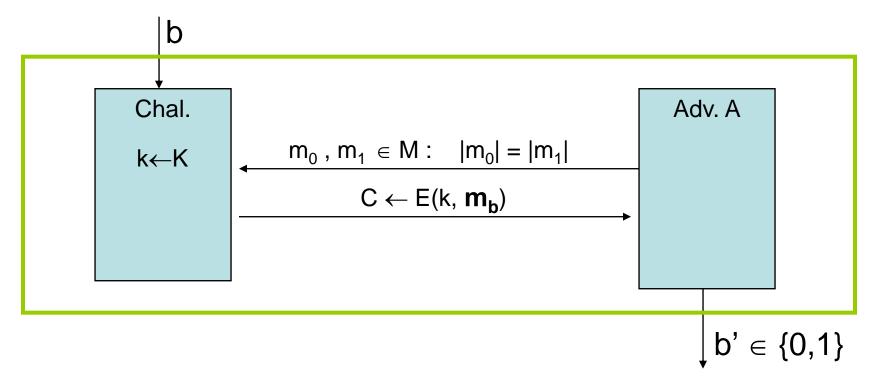
Modes of Operation for One-time Use Key

Example application:

Encrypted email. New key for every message.

Semantic Security for one-time key

- $\mathbb{E} = (E,D)$ a cipher defined over (K,M,C)
- For b=0,1 define EXP(b) as:



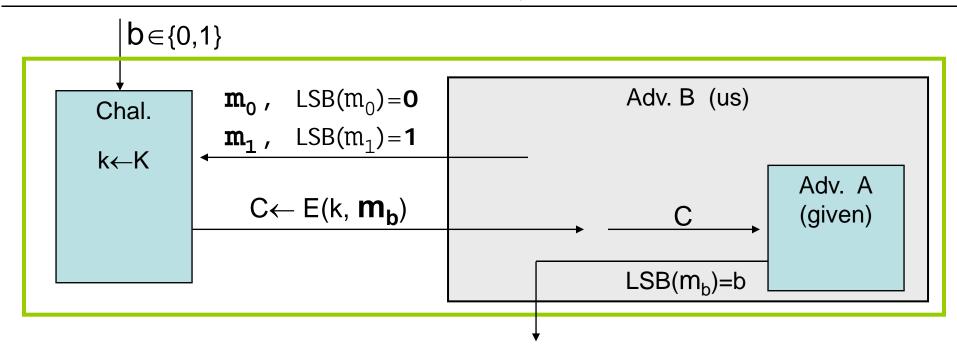
Def: E is sem. sec. for one-time key if for all "efficient" A:

SS Adv[A,
$$\mathbb{E}$$
] = $Pr[EXP(0)=1] - Pr[EXP(1)=1]$

is "negligible."

Semantic security (cont.)

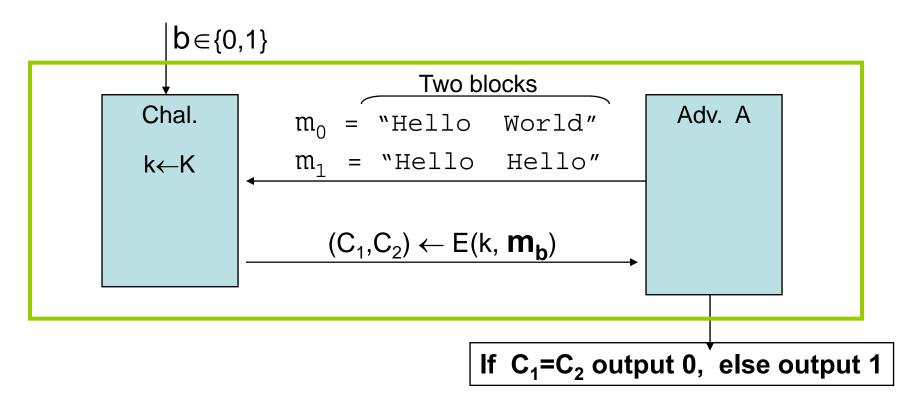
- Sem. Sec. ⇒ no "efficient" adversary learns info about PT from a <u>single</u> CT.
- Example: suppose efficient A can deduce LSB of PT from CT. Then $\mathbb{E} = (E,D)$ is not semantically secure.



• Then SS Adv[B, \mathbb{E}] = 1 \Rightarrow \mathbb{E} is not sem. sec.

Note: ECB is not Sem. Sec.

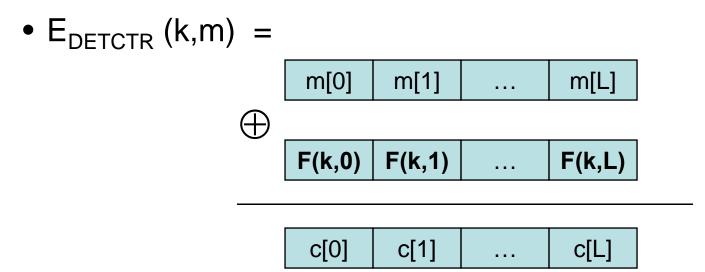
- Electronic Code Book (ECB):
 - Not semantically secure for messages that contain more than one block.



Then SS Adv[A, ECB] = 1

Secure Constructions

- Examples of sem. sec. systems:
 - 1. SS Adv[A, OTP] = 0 for $\underline{\mathbf{all}}$ A
 - 2. Deterministic counter mode from a PRF F:



Stream cipher built from PRF (e.g. AES, 3DES)

Det. counter-mode security

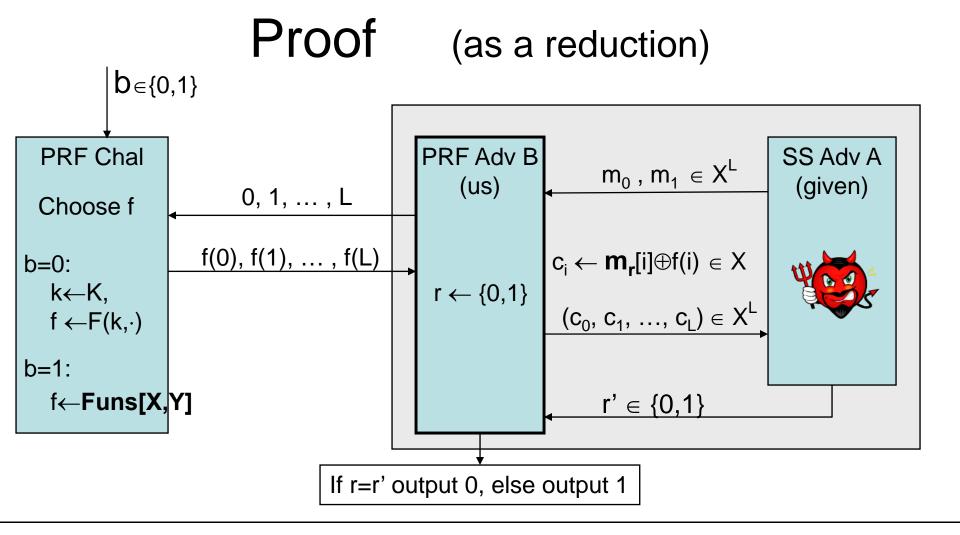
• Theorem: For any L>0.

If F is a secure PRF over (K,X,X) then E_{DFTCTR} is sem. sec. cipher over (K,X^L,X^L) .

In particular, for any adversary A attacking E_{DETCTR} there exists a PRF adversary B s.t.:

SS $Adv[A, E_{DETCTR}] = 2 \cdot PRF Adv[B, F]$

PRF Adv[B, F] is negligible (since F is a secure PRF) Hence, SS Adv[A, E_{DETCTR}] must be negligible.



b=1:
$$f \leftarrow Funs[X,X] \Rightarrow Pr[EXP(1)=0] = Pr[r=r'] = \frac{1}{2}$$

b=0:
$$f \leftarrow F(k,\cdot) \Rightarrow Pr[EXP(0)=0] = \frac{1}{2} \pm \frac{1}{2} \cdot SS Adv[A, E_{DETCTR}]$$

Hence, PRF Adv[F, B] = $\frac{1}{2}$ ·SS Adv[A, DETCTR]

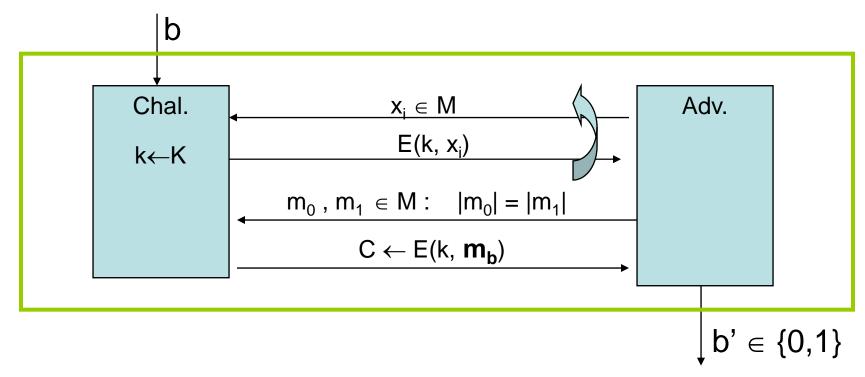
Modes of Operation for Many-time Key

Example applications:

- 1. File systems: Same AES key used to encrypt many files.
- 2. IPsec: Same AES key used to encrypt many packets.

Semantic Security for many-time key

- $\mathbb{E} = (E,D)$ a cipher defined over (K,M,C)
- For b=0,1 define EXP(b) as: (simplified CPA)

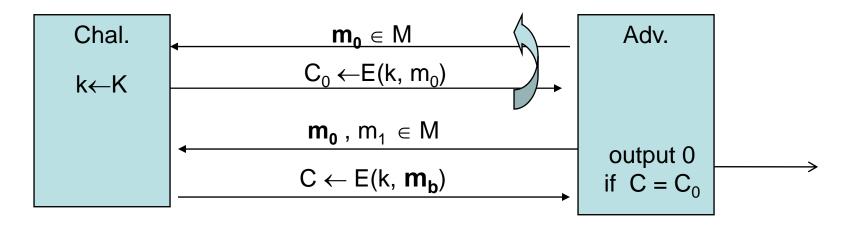


Def: E is sem. sec. under CPA if for all "efficient" A:

$$SS^{CPA}$$
 Adv[A,E] = $Pr[EXP(0)=1] - Pr[EXP(1)=1]$ is "negligible."

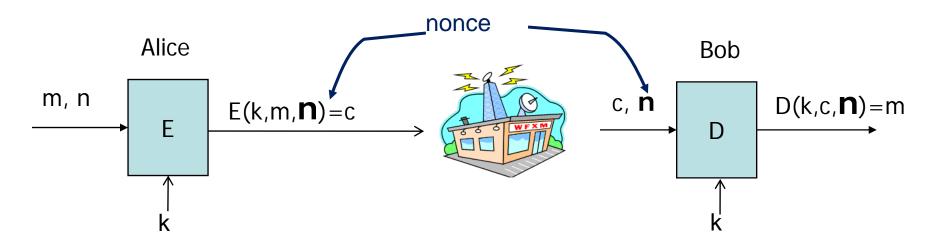
Security for many-time key

- Fact: stream ciphers are insecure under CPA.
 - More generally: if E(k,m) always produces same ciphertext, then cipher is insecure under CPA.



If secret key is to be used multiple times ⇒
given the same plaintext message twice,
the encryption alg. must produce different outputs.

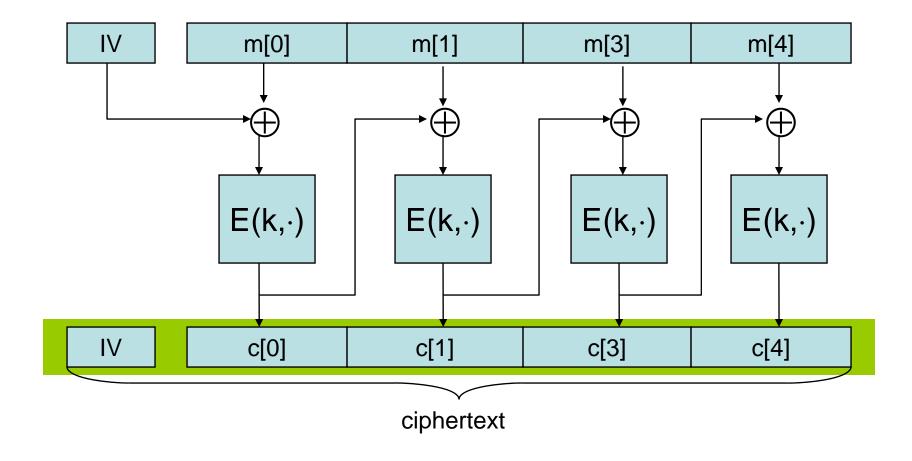
Nonce-based Encryption



- nonce n: a value that changes from msg to msg
 (k,n) pair never used more than once
- method 1: encryptor picks a random nonce, $n \leftarrow N$
- method 2: nonce is a counter (e.g. packet counter)
 - used when encryptor keeps state from msg to msg
 - if decryptor has same state, need not send nonce with CT

Construction 1: CBC with random nonce

Cipher block chaining with a <u>random</u> IV (IV = nonce)



CBC: CPA Analysis

<u>CBC Theorem</u>: For any L>0,
 If E is a secure PRP over (K,X) then
 E_{CBC} is a sem. sec. under CPA over (K, X^L, X^{L+1}).

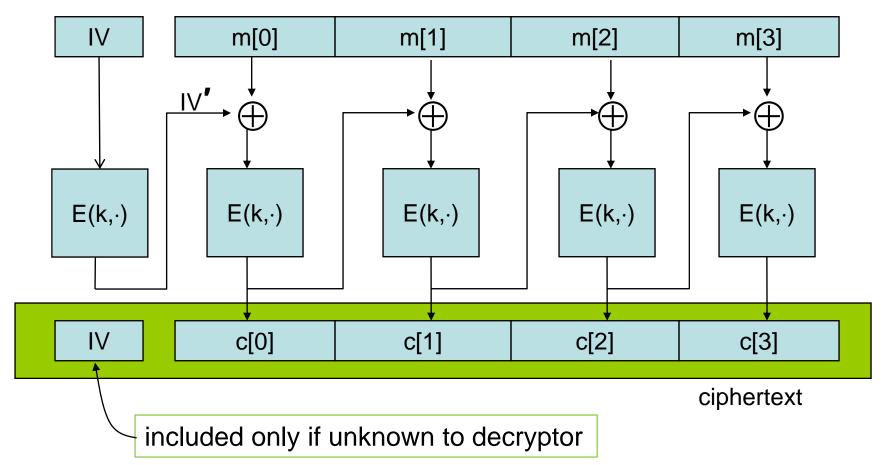
In particular, for a q-query adversary A attacking E_{CBC} there exists a PRP adversary B s.t.:

 SS_{CPA} Adv[A, E_{CBC}] $\leq 2 \cdot PRP$ Adv[B, E] + 2 q² L² / |X|

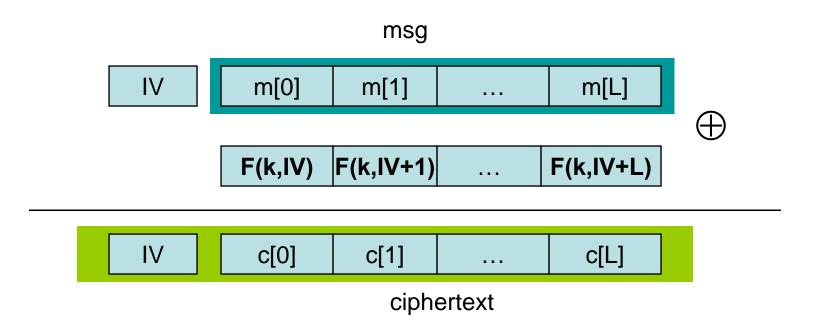
Note: CBC is only secure as long as q²L² << |X|

Construction 1': CBC with unique nonce

Cipher block chaining with <u>unique</u> IV (IV = nonce)
 unique IV means: (k,IV) pair is used for only one message



Construction 2: rand ctr-mode



IV - chosen at random for every message

rand ctr-mode: CPA analysis

- Randomized counter mode: random IV.
- <u>Counter-mode Theorem</u>: For any L>0,
 If F is a secure PRF over (K,X,X) then
 E_{CTR} is a sem. sec. under CPA over (K,X^L,X^{L+1}).

In particular, for a q-query adversary A attacking E_{CTR} there exists a PRF adversary B s.t.:

 SS_{CPA} Adv[A, E_{CTR}] $\leq 2 \cdot PRF$ Adv[B, F] + 2 q² L / |X|

Note: ctr-mode only secure as long as q²L << |X|
 Better then CBC!

Summary

- PRPs and PRFs: a useful abstraction of block ciphers.
- We examined two security notions:
 - 1. Semantic security against one-time CPA.
 - 2. Semantic security against many-time CPA.

Note: neither mode ensures data integrity.

Stated security results summarized in the following table:

Power	one-time key	Many-time key (CPA)	CPA and CT integrity
Sem. Sec.	steam-ciphers det. ctr-mode	rand CBC rand ctr-mode	later