CS255 Programming Project 1



Programming Project 1

e Due: Friday Feb 9t"(11:59pm)
— Can use extension days

e Can work in pairs

— One solution per pair

e Test and submit on Leland machines
— SCPD students: get SUNet ID!

sunetid.stanford.edu



Overview

Build an AACS (HD-DVD) like DRM system
Modeled after problem 2 in PS 1

Three main components

— Generate keys and issue to players

— Encrypt content, accounting for revocation
— Content “playback” (decryption)

Written in Java using JCE



Review of Problem 2

e How to encrypt content so players can be
efficiently revoked?

— Place keys in a binary tree
— Each player is associated with a leaf of the tree

keys -

BS54RS AAAASAY



Issuing Keys

e Each player of the 2" players issued the n+1
keys on the path from the root to its leaf
@

ARSAARAAARAAARS



Encrypting Content

 Need to encrypt content so that active players
can decrypt, revoked ones cannot

 For each new title, choose a random title key

KtitIe
* Encrypt content with K,,,,., then encrypt K.,
with keys from the tree

E[Kiz, Kiiiel 11 o [TE[Kim) Kiige] 11 E[Kyer cOntent ]



Which Keys to Encrypt K,.?

* Need a set of keys which form an exact cover
of the non-revoked players

— Non-revoked players can decrypt
— Revoked players cannot decrypt

A A S A



Security Features

Secure generation and storage (password
protected) of player keys

Encryption of all content with AES in counter
mode

Revocation of compromised players
Integrity checking using MACs



What is provided?

e KeyTlree API

— KeyTree.java
— Computes player key set and covering set

e Skeleton Code
— PlayerKeys.java (issues a player’s keyfile)
— DVDManufacturer.java (encrypts content)
— DVDPlayer.java (verifies and decrypts content)



KeyTree API

 Tree never explicitly represented

e Actual keys derived from a master Key, K
and a unique node ID (you implement
derivation)

aacs,

e Two types of data

— Player IDs (serial number)
— Node IDs

— Both represented as long



KeyTree API

« long[] getPathNodes(long playerliD)

— Returns Node IDs associated with a given player

ARSAARAAARAAARS



KeyTree API

« long[] getCoverSet(long[] excludedPlayers)

— Returns a list of Node IDs that represents a “cover
set”, that covers all players EXCEPT those whose
player ID is listed in excludedPlayers

A A S A



Skeleton Code

Provides a basis for each program you must
implement

Reads and parses command line arguments

Reads revocation list (newline separated integer
olayer IDs)

Example file 10

— You must change to add encryption, fit your format,
etc

You may add any additional classes, files needed

to facilitate a well decomposed implementation




Components: PlayerKeys

 For agiven player ID, generates a password
encrypted keyfile

— Can use the given APIs to
e Get a list of nodelDs associated with a player
e Get key bytes from a password

— You need to

e Generate keys from a master AACS key (password)
e Choose a file format

e Encrypt using a player specific password (CTR mode)
e Provide integrity of file (use a MAC)



Components: DVDManufacturer

e Takes content, content title (metadata), and a
revocation list and encrypts the content

e Can use given APl for computing “cover set”

* You must
— Generate random title key
— Generate keys for cover set and encrypt title key
— Encrypt content
— Provide integrity for the entire file



Components: DVDPlayer

* For a given player, reads an encrypted content
file and tries to decrypt it.

e YOUu must

— Detect revocation (no associated keys in the
header) — O(player_keys + header_keys) time

— Detect integrity (MAC) failure
— Decrypt the content, otherwise



Security

e Don’t use the same key to encrypt and MAC
11

e Use a common key, K, and derive encryption
and MAC keys, K., K_.. using a PRF
— K,,. = HMAC(K, “encrypt”);
— K. .. = HMAC(K, "integrity”);



Counter Mode

 You must implement it.

e To get a “plain” cipher use ECB mode with no
padding

— Warning! CBC mode used by default
— Need to specify “AES/ECB/NoPadding”

 Need a counter (try Biginteger)



Java Cryptography Extension

* Implementations of crypto primitives

Cipher Cipher

Pseudo-random Generator SecureRandom

Message Authentication Code | Mac

Cryptographic Hash MessageDigest




JCE: Generating Random Keys

1. Start the PRG (random seed set by
default)

2. Initialize KeyGenerator with the PRG
3. Generate the key

/I Generate a random encryption key

SecureRandom prng = SecureRandom.getlnstance("'SHA1PRNG");
KeyGenerator enckeygen = KeyGenerator.getlnstance("'AES");
enckeygen.init(prng);

SecretKey enckey = enckeygen.generateKey();



JCE: Keys From Byte Data

e Use SecretKeySpec
— Extends SecretKey

Il Use KeyTree API to get key bytes from password
byte[] keyBytes = KeyTree.createAESKeyMaterial (passwd);

/I Use the bytes to create a new SecretKey
SecretKeySpec keySpec = new SecretKeySpec(keyBytes, “AES™);



JCE: Using Ciphers

1. Select the algorithm
2. Initialize with desired mode and key
3. Encrypt/Decrypt

/l Create and initialize the cipher
Cipher cipher = Cipher.getlnstance("'AES/ECB/NoPadding™);
cipher._.init(Cipher.ENCRYPT_MODE, enckey);

/I Encrypt the message
byte[] msg = "Content i1s here."_.getBytes();
byte[] enc = cipher.doFinal(msg);

. Mac class has a similar API



Grading

e Security comes first
— Design choices
— Correctness of the implementation
* Did you implement all required parts?

e Secondary
— Cosmetics
— Coding style
— Efficiency



Submitting

e README file

— Names, student IDs
— Describe your design choices
— Answer to discussion question

e Your sources

e Use Zusr/class/cs255/bin/submit from a
Leland machine



Stuck?

e Use the newsgroup (su.class.cs255)

— Best way to have your questions answered quickly

* TAs cannot:
— Debug your code
— Troubleshoot your local Java installation



	CS255 Programming Project 1
	Programming Project 1
	Overview
	Review of Problem 2
	Issuing Keys
	Encrypting Content
	Which Keys to Encrypt Ktitle?
	Security Features
	What is provided?
	KeyTree API
	KeyTree API
	KeyTree API
	Skeleton Code
	Components: PlayerKeys
	Components: DVDManufacturer
	Components: DVDPlayer
	Security
	Counter Mode
	Java Cryptography Extension
	JCE: Generating Random Keys
	JCE: Keys From Byte Data
	JCE: Using Ciphers
	Grading
	Submitting
	Stuck?

