
CS255: Cryptography and Computer Security Winter 2006

Programming Project #1
Due: Friday, February 10th, 2006.

1 Overview

For the first programming assignment you will be adding security to a content distribution system.
The provider (Stanford University) has some content (video of the CS255 lectures) that he would
like to distribute widely yet securely. Only those clients who have an account with the provider
(registered students) should be able to recover the plaintext. The server provides account manage-
ment on behalf of the provider.

Conceptually, system works in two phases:

• In the setup phase, provider protects the content with a new random key, the key itself is
stored in the header protected with a key derived from the master password known only to
the provider and the server. Provider also generates a file containing the client username to
client password mapping. Password file is protected with a key generated from the master
password. We assume that the protected content is automatically transferred to the client,
while the protected password file is transferred to the server.

• In the communication phase client authenticates to the server using his password. The server
will obtain the username/password pairs from the protected password file generated by the
provider. After successful authentication, the server will decrypt the header for the client,
and the client will proceed to decrypt the protected content. All network communication
happens in this phase.

The required security features are :

• Secure storage (password-protected) on the server of passwords corresponding to each client.

• Encryption of all communication and protected content with a block cipher in the counter
mode (CTR).

• Integrity check for all communication and protected content using Message Authentication
Codes (MACs).

• Authentication of the clients by the server.

• Resistance to replay attacks (on the server) by eavesdroppers.

We will examine each of these features in detail in the following section.

1

2 Security Features

2.1 Secure storage of client passwords

Provider maintains a list of clients who may gain access to the content. A client is identified by a
username. Provider has a mapping from the username to the client password. This information is
pre-generated (before running the system) and should be read in by the provider during the setup
phase. The provider will store the client username to client password mapping in an encrypted file.
The key to this file is generated using the master password (held by the provider and the server
alone).

When a client connects to the server, the client username is passed as part of the client’s mes-
sage. The server looks up client username and gets the password for that client. The server will
then be able to encrypt/decrypt client messages and generate/verify integrity of same using keys
derived from that password. Effectively, the client password becomes the shared secret between
the client and the server. Note that the client’s password is never sent on the network.

2.2 Message Encryption

Each message transmitted by any party (client, server, provider) must be encrypted using a block
cipher. You may use any standard block cipher you like, but all the messages must be encrypted
using CTR mode. The cipher keys and MAC keys should be generated from the appropriate shared
password. The CTR IV is generated at random for each message and sent along with the ciphertext.

2.2.1 Counter Mode (CTR)

Counter mode of encryption effectively turns a block cipher into a stream cipher. Pseudorandom
sequence is generated by encrypting successive values of a counter. Formally, encryption of a
message (m0,m1, . . . ,mn) is (IV,E(k, IV)⊕m0, E(k, IV +1)⊕m1, . . . , E(k, IV +n)⊕mn). Similarly
as in other modes of encryption, new IV should be chosen randomly each time.

2.3 Integrity Check using MACs

Every message going over the network should have a MAC to enable detection of a malicious
attacker tampering with the messages en route. Again the key for the MAC you decide to use
should be derived from the appropriate shared password.

2.4 Authentication

The client will authenticate himself to the server via providing his username, the MAC of some
random value under the key generated from the client’s password, and that random value.

2.5 Resistance to Replay Attacks

Even after you secure all the transmitted messages with encryption and MACs, there is still a replay
attack possible. An eavesdropper can capture a message en route to the server. He/she can then
repeatedly send the message — which is still a valid encrypted and MAC’d message — flooding

2

the intended recipient. In your solution, the server should efficiently detect if a replay occurs and
not respond to replayed messages.

3 Components

3.1 ProviderGUI

The ProviderGUI takes a password, hereafter called ”masterPwd,” which he shares with the Au-
thorityServer. This program takes the name of the file containing the information to be encrypted
as well as the name of the output file for the protected content. For the purposes of this assignment,
you may assume that the input file contains text. ProviderGUI also takes the name of the plaintext
password file and the name of the output file for the protected username/password mapping.

• The ProviderGUI will generate a block key, K-BC, and a MAC key, K-MAC, from the master
password he shares with the AuthorityServer.

• The ProviderGUI will also generate new, random key material, K, which he will use to create
a new block cipher key, K-temp, and a new MAC key, K-MAC-temp.

• Then the ProviderGUI will encrypt and MAC the contents of the input file:

E [K-temp, file contents] ||MAC [K-MAC-temp, E [K-temp, file contents]]

• Then the provider will encrypt and MAC the new, random key material, K:

E [K-BC, K] || MAC [K-MAC, E [K-BC, K]]

• Then the provider will protect the password file using a similar method and a pair of keys
derived from the master password.

• Then the provider will write all of this to the given output files and exit.

3.2 AuthorityServer

The AuthorityServer acts on behalf of the provider in an account management role. The Authori-
tyServer takes the same masterPwd as above and the name of the encrypted password file. He uses
the master password to decrypt and verify the protected username/password file. The program
also takes a port to listen on.

3.3 ClientGUI

The ClientGUI takes as an argument the ciphertext file written by the ProviderGUI (conceptually,
this file is publicly available). Other arguments are: the host the server is running on (e.g. ”lo-
calhost” or ”elaine39”), the port number the server is listening on, and the client’s username and
password. The ClientGUI will then read in the ciphertext file provided by the provider and, with
that, generate a message for the server proving his (the client’s) identity.

3

• The client’s password will be used to generate a block cipher key, K-BC-user1, as well as a
MAC key, K-MAC-user1.

• The client will supply to the server (as obtained from the provider):

E [K-BC, K] || MAC [K-MAC, E [K-BC, K]]

• The client will also supply to the server an authentication token:

R || user1 || MAC [K-MAC-user1, R || user1]

Where R is a new, random number generated by the client and ”user1” is that user’s username.

Then the client transmits all of this information to the server. The server in response will decrypt
the key material encrypted by the provider, confirm its integrity, check the client’s username and
confirm the integrity of the authentication token. Once the server is satisfied that the client is who
he says he is, the server will return the encryption of the key material (K) under the client’s block
cipher key:

E [K-BC-user1, K] || MAC [K-MAC-user1, E [K-BC-user1, K]]

Now, the client will be able to decrypt that key material, generate the block cipher and MAC keys
(K-temp and K-MAC-temp), and, finally, decrypt and verify the provider’s original ciphertext file.

4 Implementation

You will be using the JCE (Java Cryptographic Extensions) while programming for this assignment.
You should spend some time getting familiar with the provided framework.

4.1 Getting the code

Download the pp1.tar.gz file linked on site to a directory in your account. Untar and unzip using
the following command:

gunzip < pp1.tar.gz | tar xvf -

This should create the source tree for the project under the pp1/ directory.

4.2 Description of the code

Here is a brief description of the files we provide. The files you need to change are in bold

4

Makefile Makefile for the project

eLecture/ProviderGUI.java The Provider program (a GUI)

eLecture/ClientGUI.java The Client program (a GUI)

eLecture/AuthorityServer.java The Server program (a GUI)

eLecture/AuthorityServerThread.java The thread spawned to communicate with the
client socket.

4.3 Running the code

To build the project, enter the pp1 directory and type make. To run the system, follow these steps:

1. Generate a plaintext file containing the content to be protected. Generate a plaintext file
containing the usernames and passwords of authorized clients.

2. Run the provider; you will be asked for the masterPwd, the plaintext file containing the
content, the protected file name to write the output to, plaintext password file and the name
for the protected password file.

elaine21:∼/pp1> java eLecture/ProviderGUI &

3. Pick a unique port number for your group to use. We recommend using the last four digits
of your phone number. Note this wont work if your last four digits are less than 1024 or your
roommate is taking the class.

4. Start the server; you will be asked for the masterPwd, name of the protected password file,
and the port to listen on:

elaine21:∼/pp1> java eLecture/AuthorityServer &

5. Start one or more clients. Note that the client does not necessarily need to be running on
the same machine as the server. You will, however, be asked for the host and port on which
the server is running as well as the provider-generated ciphertext file name and the client’s
username and password.

elaine21:∼/pp1> java eLecture/ClientGUI &

5

4.4 Crypto Libraries and Documentation

Javas security and cryptography classes are divided into two main packages: java.security.* and
javax.crypto.*. They have been integrated into Java 2 Platform Standard Edition v 1.4. Classes for
cryptographic hashing and digital signatures (not required for project 1) can be found in security,
whereas ciphers and MACs are located in the JCE.

The following are some links to useful documentation :

• Java API
http://java.sun.com/j2se/1.4.1/docs/api

• JCE Reference Guide
http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCERefGuide.html

• Java Tutorial
http://java.sun.com/docs/books/tutorial/

• Chapter 6 from Java Cryptography by Jonathon Knudsen
http://www.oreilly.com/catalog/javacrypt/chapter/ch06.html

Some classes/interfaces you may want to take a look at:

- javax.crypto.KeyGenerator

- javax.crypto.SecretKey

- javax.crypto.IvParameterSpec

- javax.crypto.Mac

- javax.crypto.Cipher

- javax.crypto.CipherInputStream

- javax.crypto.CipherOutputStream

- javax.crypto.SecretKeyFactory

- java.security.MessageDigest

- java.security.SecureRandom

- java.math.BigInteger

6

4.5 A Word About Networking

The AuthorityServer program runs for the duration: listening on the port specified. Every time a
new client connects, the AuthorityServer spawns a new thread to communicate with that client. So
multiple clients may be interacting with the server at once. The bulk of the work can be done in
the AuthorityServerThread program. The client and server communicate over Java sockets. The
code sets up these connections and examples are provided therein of writing to and reading from
these sockets.

5 Miscellaneous

5.1 Questions

• We strongly encourage you to use the class newsgroup (su.class.cs255) as your first line of
defense for the programming projects. TAs will be monitoring the newsgroup daily and, who
knows, maybe someone else has already answered your question.

• As a last resort, you can email the staff at cs255ta@cs.stanford.edu

5.2 Deliverables

In addition to your well-decomposed, well-commented solution to the assignment, you should sub-
mit a README containing the names, leland usernames and SUIDs of the people in your group as
well as a description of the design choices you made in implementing each of the required security
features.

When you are ready to submit, make sure you are in your pp1 directory and type:
/usr/class/cs255/bin/submit.

7

