
Programming Project # 2

CS255
Due: Wednesday, 3/9,

11:59pm Pacific
Elizabeth Stinson

The players…

• CertificateAuthority: everyone trusts him

– He signs the pub keys of valid entities
(Brokers, BrokerClients)

– Entities with signed pub keys are able to
communicate with one another via a two-way-
authenticated SSL socket (where by
“authenticated” we mean via PKI)

Broker

• He will have a pub key which has been
signed by the CA

– You will write the program to do this signing

• He takes BUY/SELL orders from
BrokerClients

BrokerClient(s)

• First, connect to CA in order to get pub
key signed (resulting in a certificate)

• Then connect to Broker
• Then issue trades
• Idea: instead of contacting CA for every

Broker-BrokerClient interaction (as in proj
#1), just contact once, get cert, then
amortize cost of that over many
transactions

First-order stuff – I

• Key generation via keytool
– Generate a public/private key pair for the CA,

the Broker, each BrokerClient
• Each pub key is initially self-signed

– Export the CA’s certificate into a file
– Import the CA’s pub-key certificate into every

other keystore (“all entities trust the CA”)

All done via keytool
Done once

First-order stuff – II

• Secure password protection
• The only part that is carry over from proj # 1
• Write a command-line utility that:

– Reads in a plaintext username/password file
– Takes an adminPwd
– Performs for every password p_i:

• Generate salt_bytes_i (deterministically via adminPwd so can
be duplicated – you remember this game)

• hash(p_i || salt_bytes_i)
– Then encrypts, MACs, and writes to a single file all:

• username_i || hash(p_i || salt_bytes_i)

First-order stuff – III

• CA signs Broker pubkey
• Write a command-line utility that:

– Takes the broker’s keystore (generated via
keytool) and the broker’s keystore pwd

– Takes the CA’s keystore and keystore pwd
– Then signs the broker’s pub key using the

CA’s private key
– Then outputs the signed broker keystore

Support for first-order stuff

• See: “keytool_hints” in the proj2 directory
– Walks through cert (pub / priv key) generation
– Exporting a cert to a file
– Importing that cert into other keystores
– Link to more keytool info in that same file

• X509CertificateGenerator class: static
method generateCertificate(…)
does much of heavy lifting as regards
actually generating the signed cert

The system at work – a transcript

• The CA starts up and reads in the encrypted /
MAC’d username/pwd file

• Verifies its MAC
• Decrypts it
• Stores each: < user_i, hash(pwd_i || salt_i) >
• Generates (in the same way your utility did) the

salt bytes used for each pwd_i (and stores these
– will need them for client auth)

CA startup …

• So the CA needs:
– The file to which the encrypted + MAC’d

usernames/hashed, salted pwds were written
– adminPwd (to verify and decrypt that file and

generate salt bytes)
– The name of his keystore; e.g. “caKeys”
– The password for that keystore; e.g.

“capassword”
– A port to listen on (for BrokerClient

connections)

More CA startup…

• Then the CA spawns a thread, passing its
keystore info to that thread

• The CA also passes the mappings:
< username_i, hash(pwd_i || salt_bytes_i)>

…and the salt_bytes[]
…or else makes this available to that

CertificateAuthorityThread (CAT) via getter
functions (your choice)

More CA stuff

• Then the CAT sets up stuff for the SSL
connection … this setup requires the CA’s
keystore name and password

• Setting up SSL here:
– KeyManagerFactory
– TrustManagerFactory
– SSLContext: takes the KeyManager & TrustManager
– Finally, create an SSLServerSocketFactory…
… all part of javax.net.ssl.*

Even more CA stuff…

• Then the CA creates a listening socket
using that socket factory and waits for
client connections…

In the meantime

• At any point we can start the Broker

• The Broker takes:
– A port to listen on (different from the CA’s!)
– The signed keystore generated by your utility

(from earlier) and that keystore password

• More on what the Broker does later…

BrokerClient

• Then we start up a BrokerClient
• Takes:

– Username + password (shared with CA)
– Keystore name + keystore password
– CA: host + port
– Broker: host + port
– A boolean value representing whether this is the first

time this client has ever connected to the Broker
• Measured relative to Broker’s lifetime

– True if first time connecting to Broker for as long as Broker has
been up; False otherwise

What does the client do?

• The client:
– Gets his cert from the client keystore
– Creates SSL connection to the CA

• One-way authenticated
• CA is the party authenticating self via this conn

– Sends his username to the CA over this conn
– Sends his password to the CA over this conn
– Then waits…

Then…

• The CA accepts that incoming connection and
reads in the client username and password

• Then the CA salts the provided password with
the salt bytes he generated earlier (for this user),
hashes this, then makes sure that value
matches the one he read in from the file
– If so, the client is authenticated
– If not, the client is not authenticated

The client is authenticated

• So the CA sends to the client “OK”
• Then the client receives this and sends the

CA his (the client’s) certificate (this is easy
to do with socket streams)

• Then the CA signs the client’s pub key
(using the same function that he used to
sign the Broker’s pub key earlier – albeit
with different args) and sends that back to
the client over the socket

Then the CA

• Updates his “outputArea” – will make
sense later; basically it’s just a text field in
a GUI that the CA updates with progress
(e.g. “issued signed cert for user blah”)

Then the client

• Adds this signed cert to his keystore
• Then does his SSL setup stuff (in

preparation for two-way auth’d connection
with Broker)
– Similar to what CA did earlier in prep for client

connections
– But different in that you will need to write a

TrustManager class that both the broker and
client will use…

A TrustManager class?

• Yes.

• Implements:
javax.net.ssl.X509TrustManager

More on the TrustManager

• When two parties attempt to make an SSL
connection using java.net.ssl sockets,
methods within the TM class will be called
– On the client side, checkServerTrusted()

will be called (not by you directly but by the
SSL socket setup code); on the server side,
checkClientTrusted() will be called

– So you’ll need to implement these methods

One more slide on TM

• Some of the functionality of the TM class can be
leeched via keeping a
javax.net.ssl.X509TrustManager around
as part of your TrustManager object:

TrustManagerFactory tmf =
TrustManagerFactory.getInstance(

"SunX509", "SunJSSE");

…and using its check{Server,Client}Trusted()

However…

• You will need to add functionality to these
methods

• Since we want to:
– Prevent Brokers from posing as BrokerClients (to

other Brokers, e.g.)
– Prevent BrokerClients from posing as Brokers

• To do this we’ll use an X509 Certificate
extension (BrokerType or ClientType)

• So as part of your check{Client,Server}Trusted,
you’ll need to make sure that the “Server” is
really a Broker (has a BrokerType extension)
and not merely another Client chump!

Broker-Client SSL connection

• Setup for the SSL connection is identical
on both sides and was described earlier
– Excepting type of SSLSocketFactory created

• Once the two have successfully
established an SSL connection, the client
will send BUY or SELL orders (this will
make sense when you launch the app)

• Multiple clients can communicate with the
Broker simultaneously of course

Just one other detail…

• We need to have a way of knowing when
a certificate has been obtained by a
malicious party and used for trades

• The way that we do that is have the Broker
maintain a mapping from a client serial #
(from the client cert) to a random nonce

More on the nonces…

• The first time that a client connects to the Broker
(relative to Broker’s lifetime), the client must
request a nonce for use in his first trade

• Subsequently, the Broker will return a new
nonce after receiving any trade request from a
client – think of the nonce as a ticket of sorts.

• Then, before logging off, the client must save the
last received nonce from the Broker to a file (and
MAC that).

• If the Broker ever detects that a client uses
the wrong nonce or that a client requests a
new nonce when in fact a nonce has
already been issued to him, the Broker
should terminate the connection

• Revocation of that client’s certificate is
extra credit (worth up to 20% of the grade)

Running the program
[download the code]

> gunzip < proj2.tar.gz | tar xvf -
> source setup.csh

> make

> java hotTip.CertificateAuthority &

> java hotTip.Broker &

> java hotTip.BrokerClient &

These all work now but have no security!

(No fields have any effect except for host name and
port # fields)

Playing with the app
• So when you start the Broker, a new window will open

• Then as clients log in and execute trades, the trades
they executed will be written to that window

• You’ll need to add writing a client’s name to that window
to identify him as the executor of a particular trade
(client name can be obtained during the SSL handshake
when the client examines the broker’s cert & vice versa)

• Similarly, when the CA signs a pub key for a client, the
CA’s window should be updated to reflect this activity

Closing remarks

• There’s a lot to do here so please get
started early.

• Links to relevant APIs in the handout

• newsgroup: first line of defense

• cs255ta@cs thereafter

