
CS255: Cryptography and Computer Security Winter 2002

Final Exam

Instructions

− Answer four of the following five problems. Do not answer more than four.
− The exam is open book and open notes.
− You have two hours.

Problem 1 Questions from all over.

a. Explain why reusing a stream cipher key for multiple messages is a bad idea.

b. Is the RSA permutation modulo a prime a one-way permutation? In other words, how hard
is computing an e’th root in the group Z

∗

p when gcd(e, ϕ(p)) = 1? Either give an algorithm
for computing e’th roots in Z

∗

p or briefly explain why the problem is hard.

c. Should the IV in the Merkle-Damgard construction for collision resistant hash functions be
randomized on every application of the hash function? Very briefly explain why it should
or should not. (there is no need to reprove the Merkle-Damgard lemma).

d. Recall that CRC is a linear checksum. That is, when M, ∆ ∈ {0, 1}n we have that CRC(M ⊕
∆) = CRC(M)⊕F (∆) for some easy to compute function F . Consider the following MAC
defined by MACk(M) = [R, AESk(R) ⊕ CRC(M)] where a fresh R is chosen at random
in {0, 1}n for every message. Show that given one Msg/MAC pair an attacker can create
the MAC on any message M ′ of her choice.

e. Give the best upper bound you can on the effective key length of double-DES, Triple-
DES, and quadruple-DES. That is, given a small number of plaintext/ciphertext pairs
state the running time of the best algorithm you can think of for recovering the se-
cret key (no need to describe the algorithm). Also write down the space requirements
for each of your algorithms. Note that quadruple-DES is the cipher defined by C =
DESk1(DESk2(DESk3(DESk4(M)))).

Problem 2 Let g be an element of prime order q in Z
∗

p. Suppose there exists an efficient algorithm
that computes the Diffie-Hellman function base g. More precisely, there is an efficient algorithm
A such that A(gx, gy) = gxy for all x, y ∈ {1, . . . , q}. Let h = gα for some α ∈ {1, . . . , q−1}. Our
goal is to show that there is an efficient algorithm D that is able to compute the Diffie-Hellman
function base h, i.e. D(h, hx, hy) = hxy.

a. Show that there is an efficient algorithm B that given α is able to compute the Diffie-Hellman
function base h, i.e. B(h, α, hx, hy) = hxy.
Algorithm B may use algorithm A as a subroutine.

b. Show that there is an efficient algorithm C such that C(g, gα) = g(α−1) for all α ∈ {1, . . . , q−1}.
Hint: Recall that αq−2 = α−1 mod q. Algorithm C uses algorithm A as a subroutine.

c. Show that there is an efficient algorithm D that given h is able to compute the Diffie-Hellman
function base h, i.e. D(h, hx, hy) = hxy. Use part (b).
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Problem 3 Recall that the UNIX crypt function is a hash function that only looks at the first
eight bytes of the input message. For example, crypt(helloworld) returns the same value as
crypt(hellowor).

Some web sites use the following authentication method to authenticate users: (1) the user types
in a user-id and a password P into his web browser, (2) the site, upon verification of the password
P , computes T = crypt(userid‖K) where ‖ denotes string concatenation, and K is a k-byte
site secret key (k ≤ 8), (3) the site sends a cookie back to the user containing T , (4) the user
can use T to authenticate himself to the site in future connections.

Show that by choosing clever user-id’s (of varying length) an attacker can expose the site’s secret
key K in time approximately 128k after k+1 successful authentication requests. More concretely,
the attacker types in a valid user-id and password and receives the corresponding T . He then
types in another valid user-id and password and receives another T . Show that by collecting at
most k +1 such T ’s the attacker is able to deduce the site’s secret key K (we are assuming there
are 128 possible values for each character in a string).

Problem 4 Birthday paradox
Let x1, . . . , xn be randomly sampled integers in the range [1, B]. The birthday paradox says that
when n = b

√
Bc the probability that there is a collision (i.e. exists i 6= j such that xi = xj)

is constant (greater than 1/10). How many samples x1, . . . , xn do we need until the probability
that we get k collisions is some non-zero constant?
Hint: define the indicator random variable Ij,k to be 1 if xj = xk and zero otherwise. Then the
expected number of collisions is

∑n
j,k=1 E[Ij,k].

Problem 5 Access control and file sharing using RSA. In this problem N = pq is some RSA modulus.
All arithmetic operations are done modulo N .

a. Suppose we have a file system containing n files. Let e1, . . . , en be relatively prime integers
that are also relatively prime to ϕ(N), i.e. gcd(ei, ej) = gcd(ei, ϕ(N)) = 1 for all i 6= j.
The integers e1, . . . , en are public. Let R ∈ Z

∗

N and suppose each file Fi is encrypted using
the key keyi = R1/ei .

Now, let S ⊆ {1, . . . , n} and set b =
∏

i∈S ei. Suppose user u is given Ku = R1/b. Show
that user u can decrypt any file i ∈ S. That is, show how user u using Ku can compute
any key keyi for i ∈ S.

This way, each user uj can be given a key Kuj
enabling it to access those files to which it

has access permission.

b. Next we need to show that using Ku user u cannot compute any key keyi for i 6∈ S. To
do so we first consider a simpler problem. Let d1, d2 be two integers relatively prime
to ϕ(N) and relatively prime to each other. Suppose there is an efficient algorithm A
such that A(R, R1/d1) = R1/d2 for all R ∈ Z

∗

N . In other words, given the d1’th root of
R ∈ Z

∗

N algorithm A is able to compute the d2’th root of R. Show that there is an efficient
algorithm B to compute d2’th roots in Z

∗

N . That is, B(X) = X1/d2 for all X ∈ Z
∗

N .
Algorithm B uses A as a subroutine.

c. Show using part (b) that user u cannot obtain the key keyi for any i 6∈ S assuming that
computing e’th roots modulo N is hard for any e such that gcd(e, ϕ(N)) = 1. (the contra-
positive of this statement should follow from (b) directly).
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