
CS255: Cryptography and Computer Security Winter 2004

Assignment #3
Due: Monday, March 1st, 2004.

Problem 1. Repeated squaring Algorithm.

a. The number p = 521 is prime. Use Euler’s theorem to decide whether 2 is a
quadratic residue modulo this p. Show all intermediate steps in your calculation.

b. The number N = 1517 factors as N = 37 ∗ 41. Is 2 a quadratic residue modulo this
N? Show all intermediate steps in your calculation.

Problem 2 Parties A1, . . . , An and B wish to generate a secret conference key. All parties
should know the conference key, but an eavesdropper should not be able to obtain any
information about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z∗

p of order q for some large prime q
dividing p−1. User B picks a secret random b ∈ [1, q−1] and computes y = gb mod p.
Each party Ai picks a secret random ai ∈ [1, q− 1] and computes xi = gai mod p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i mod p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Formally prove part (b). Namely, show that if there exists an efficient algorithm A
that given the public values in the above protocol, outputs y, then there also exists
an efficient algorithm B that breaks the Computational Diffie-Hellman assumption
(using p and g as the public values). Use algorithm A as a subroutine in your
algorithm B. Note that algorithm B takes ga mod p and gb mod p as input and
should output gab mod p.

Problem 3 Commitment schemes. A commitment scheme enables Alice to commit a value
x to Bob. The scheme is secure if the commitment does not reveal to Bob any infor-
mation about the committed value x. At a later time Alice may open the commitment
and convince Bob that the committed value is x. The commitment is binding if Alice
cannot convince Bob that the committed value is some x′ 6= x. Here is an example
commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two elements g and h of Z∗
p of prime

order q.

Commitment: To commit to an integer x ∈ [0, q − 1] Alice does the following: (1)
she picks a random r ∈ [0, q − 1], (2) she computes b = gx · hr mod p, and (3) she
sends b to Bob as her commitment to x.
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Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that
b = gx · hr mod p.

Show that this scheme is secure and binding.

a. To prove security show that b does not reveal any information to Bob about x. In
other words, show that given b, the committed value can be any integer x′ in
[0, q − 1].
Hint: show that for any x′ there exists a unique r′ ∈ [0, q − 1] so that b = gx′

hr′
.

b. To prove the binding property show that if Alice can open the commitment as
(x′, r′) where x 6= x′ then Alice can compute the discrete log of h base g. In other
words, show that if Alice can find an (x′, r′) such that b = gx′

hr′
mod p then she

can find the discrete log of h base g. Recall that Alice also knows the (x, r) used
to create b.

Problem 4 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let’s show that using eeve and deve

Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer K which is a multiple of ϕ(N) Eve can factor the
modulus N .
Hint: Consider the sequence gK , gK/2, gK/4, . . . gK/τ(N) mod N where g is random
in ZN and τ(N) is the largest power of 2 dividing K. Use the the left most element
in this sequence which is not equal to 1 mod N .

c. Deduce that Eve can decrypt any RSA ciphertext encrypted using the modulus N
intended for Alice or Bob (at this point this should be obvious).

Problem 5 Let N be a 1024 bit RSA modulus, and d a secret signing exponent. To protect
the private key d one may wish to split it into three pieces and store each piece on
a different server. An attacker who breaks into one of the servers should learn no
information about d. Consider the following scheme: pick three random numbers
d1, d2, d3 in [0, ϕ(N)] so that d1 + d2 + d3 = d mod ϕ(N). Store di on server i.

a. Suppose Alice wants to sign a message M . Show that Alice can do the following: (1)
she sends M to the three servers, (2) each server i performs a local computation
(using di) and responds with Si to Alice, and (3) given S1, S2, S3 Alice can easily
construct the signature S. Explain how server i computes Si and how Alice
combines S1, S2, S3 to obtain S. You have just shown that a digital signing key
can be broken into three pieces and used without ever reconstructing the key.
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b. To provide fault tolerance, show how the key d can be shared among the three
servers so that any two of the three can be used to sign a message M as in part
(a). You may store multiple di’s on each server. An attacker who breaks into one
of the servers should learn no information about d. As in part (a), your solution
should not reconstruct the key d and there should be no interaction between the
servers.

c. Briefly explain how your solution for part (b) can be generalized to provide a t-out-
of-k solution in the same settings. Namely, explain how the key can be shared
among k servers so that any t of them can be used to sign M while an attack on
t− 1 servers reveals no information about d.

Problem 6 Recall that a simple RSA signature S = H(M)d mod N is computed by first
computing S1 = H(M)d mod p and S2 = H(M)d mod q. The signature S is then found
by combining S1 and S2 using the Chinese Remainder Theorem (CRT). Now, suppose
a Certificate Authority (CA) is about to sign a certain certificate C. While the CA
is computing S1 = H(C)d mod p, a glitch on the CA’s machine causes it to produce
the wrong value S̃1 which is not equal to S1. The CA computes S2 = H(C)d mod q
correctly. Clearly the resulting signature S̃ is invalid. The CA then proceeds to publish
the newly generated certificate with the invalid signature S̃.

a. Show that any person who obtains the certificate C along with the invalid signature
S̃ is able to factor the CA’s modulus.
Hint: Use the fact that S̃e = H(C) mod q. Here e is the public verification
exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Extra credit: In the lecture we defined the Decision Diffie-Hellman problem (DDH) as
follows: let G be a group of prime order q. An algorithm A ε-solves the DDH problem
in G if: ∣∣Pr[A(g, ga, gb, gab) = “yes′′]− Pr[A(g, ga, gb, gc) = “yes′′]

∣∣ ≥ ε

where g 6= 1 is uniform in G and a, b, c are uniform in Z∗
q. In other words, A is able

to distinguish between a distribution of Diffie-Hellman tuples and a distribution of
random tuples in G.

We also said that an algorithm B ε-breaks the semantic security of a public-key
encryption scheme E if B wins the following game with probability at least 1

2
+ ε:

(1) B is given a public-key generated by the key generation algorithm of E ,
(2) B outputs two messages M0, M1,
(3) B is given the public key encryption of Mb under the public key from step (1) where
b is random in {0, 1},
(4) B returns a b′ ∈ {0, 1} and wins the game if b = b′.

Consider the original ElGamal encryption scheme where the encryption of a message
M ∈ G is C = [gr, M · yr] where 〈g, y〉 ∈ G is the public key and r is random in Zq.
Show that this ElGamal encryption scheme is semantically secure assuming DDH in
G is hard. In other words, show that if an algorithm B ε-breaks semantic security of
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ElGamal in G then there is an algorithm A with approximately the same running time
as B that ε-breaks DDH in G. (your goal is to design algorithm A for DDH in G that
uses B as a subroutine).
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