

For programming project 2 you will implement a chat room system with anonymity as
well as authentication using SSL (Secure Socket Layer). The project 2 code is completely
independent from that of project 1 (except for the GUI part). This project is a bit
bigger than project 1, so please start early.

For project 2, you will learn

• keytool (command line utility) to generate and manage keys and
certificates.

• IAIK (JCE Extension) to create and sign certificates.
• JSSE (Java Secure Socket Extension) to do secure networking.

We will examine each project feature in detail below.

General Description

In this project, you will implement a chat room system which provides anonymity as well
as authentication. By anonymity we mean that a client can join the chat room without
revealing its real identity to the chat server. By authentication we mean that only clients
presenting valid certificates will be allowed to enter the chat room. This can be realized
as follows. First, all online parties should obtain long-term certificates from a
Registration Certificate Authority (CA). Before contacting the chat server for chat room
entrance, each client must obtain a chat-certificate (short- lived certificate) from an online
Privacy-CA. Only clients presenting a valid chat-certificate will be allowed to enter the
chat room. The chat-certificate anonymizes the client: the subject-name in the chat-
certificate is a random pseudonym (a random number). This hat-certificate, issued by the
Privacy-CA and sent to the chat-server, should reveal no information about the real
identity of the client. The Privacy-CA will issue a chat-certificate only to those clients
who present a valid long-term certificate from the Registration-CA.

To prevent misuse, the chat room system has a revocation mechanism. Imagine that a
client posts the word “bomb”. The chat server will immediately kick out this client.
However, that client could contact the Privacy-CA to obtain a new chat-certificate under
using a new random pseudonym and then log back in to the chat server. To prevent this,
when revoking chat privileges, the chat-server will contact the Privacy-CA and ask it to
stop issuing chat-certificates to the offending client. Consequently, both the chat-server
and the Privacy-CA should respectively maintain a CRL (certificate revocation list) and
refuse connection requests from clients whose certificates are in the corresponding CRL.
Note that the chat-server never learns the real identity of the offending client.

CS255: Introduction to Cryptography Winter 2003

Programming Project 2
Due: Monday, March 10th 2003, 11:59pm

 2

Obtain Long-Term Certificates

In this project, there are four entities: client, chat-server, Registration-CA, and Privacy-
CA. Client, chat-server and Privacy-CA are online entities. You may assume that these
online entities have the public-key of the Registration-CA, which you can generate once
and for all using keytool. Communication between online entities in the Chat system
should be protected using SSL. We require mutual authentication of both parties
establishing a secure connection. Therefore, each party should have a certificate and
corresponding private key that it will use to setup the SSL channel. These certificates
are generated by the Registration-CA or the Privacy-CA.

The Registration-CA is an offline tool that issues certificates to the online entities. The
first thing to do is generate the Registration-CA’s private key and self signed certificate
using keytool and store both in the CA’s keystore. The Registration-CA’s self signed
certificate should be made available to all parties. The CA’s private key remains secret
(password protected) and is only accessible to the Registration-CA tool.

Next, you will need to use the Registration-CA tool to generate a private-key and a
certificate for each of the online entities. Each party’s certificate and private key are
stored in that party’s keystore. Upon startup, the entity (chat-server, client, or Privacy-
CA) will read their certificate and private key from their own key store). You need to
implement the Registration-CA. The code for generating and signing certificates has been
provided for you (See class X509CertificateGenerator).

Obtain Chat Certificates

In this project, the chat server only accepts certificates issued by the Privacy-CA when
granting clients the permission to enter the chat room. So each client should first request
a chat certificate from the Privacy-CA. The Privacy-CA should issue an ephemeral
certificate to a client upon request provided the client is not on its CRL. In the chat
certificate, the name of the client should be replaced by a pseudonym (a random number).
Hence the server won’t know the real identities of clients, and so chat certificates provide
anonymity to the chat room system. However, the Privacy-CA should maintain an
internal map between pseudonyms and real names to enable certificate revocation (See
below).

To obtain chat certificates, the following steps are needed:

• A client establishes a secure connection to the Privacy-CA. Here the client
uses its long-term certificate from the Registration-CA.

• The client sends a chat certificate request to the Privacy-CA.
• The Privacy-CA verifies client certificate (issued by the Registration-CA).

If the certificate is valid and it is not on the CRL, then the Privacy-CA

 3

creates a random pseudonym, and creates a new certificate where the
subject name is this pseudonym.

• The Privacy-CA records the association between the real identity and the
pseudonym in a table. It sends the new certificate back to the client.

Revoke Certificates

The chat room system has a censorship policy. Upon receiving a message from a client,
the server will check if the message is offensive (You decide what is offensive). If a
client violates the policy, the corresponding message won’t be posted in the chat room
and server will immediately terminate the connection with this client. Moreover the
server will add the chat-certificate of this client to its CRL and inform this violation to the
Privacy-CA. Correspondingly, the Privacy-CA will identify the real name corresponding
to the pseudonym sent by the chat-server, and add the long-term client certificate to its
CRL. As a consequence, the Privacy-CA won’t issue any chat certificate to the client.
Note that the Privacy-CA should only accept revocation requests from the chat-server.

To complete the “certificate revocation” mechanism, the following steps are needed:

• When a policy violation happens the server adds the relevant certificate to
its CRL and sends the violator’s pseudonym to the Privacy-CA.

• When receiving a revocation request from the server, the Privacy-CA finds
the corresponding real name of the client and adds the client’s general
purpose certificate to its CRL.

• The server should set up a customized TrustManager to initialize
SSLContext (See JSSE APIs for details). Upon each SSL handshake, the
customized trust manager should check if the certificate presented by the
peer client is in its CRL. If so, the server will refuse the connection request
from this client.

• The Privacy-CA should also use a customized TrustManager to initialize its
SSLContext. Upon each SSL handshake, the customized trust manager
should check if the certificate presented by the peer client is in its CRL. If
so, the Privacy-CA will refuse the connection request from this client and
hence a bad client won’t be able to get a chat-certificate.

Implementation

As with the first programming project, we have provided you with starter code. The
starter code illustrates the basic socket and thread programming. See the following
section for links of tutorials on socket and thread programming. In addition to Sun Java
JCE library, you need IAIK JCE extension library to create and sign X509 certificates.
The library is in the directory /usr/class/cs255/lib and it is also included in the starter
code. You will need to modify the ChatClient and ChatServer classes to add the features

 4

required for project 2. Here is a description of files we provide for you (files you need to
change are in bold):

File Purpose
Makefile Makefile for the project – modify this to build

any classes you add to the project.
Java.policy Policy file granting network/file permissions.
Chat/ChatLoginPanel.java GUI class for the login screen.
Chat/ChatRoomPanel.java GUI class for the chat room screen.
Chat/ChatServer.java Accept secure connection from clients.
Chat/ChatServerThread.java Receive messages from clients and post

messages to the chat room.
Chat/ChatClient.java Request chat certificates from the Privacy-CA

and send messages to the chat server.
Chat/ChatClientThread.java Receive posted message from the chat server.
Chat/ClientRecord.java Store client information.
Chat/
X509CertificateGenerator.java

Generate X509 certificates

You should spend some time getting familiar with the provided framework and reading
the comments in the starter code. You will need to copy the /usr/class/cs255/project2
directory to your account. As with project 1, you will also need to source
/usr/class/cs255/setup.csh to set your path, classpath and java alias correctly. Building
and running the Chat system is much the same as it was for project 1.

Security Libraries and Documentation

In addition to java.security.* and javax.crypto.*, some classes in iaik.x509.* and
iaik.asn1.structures.* are also needed to do certificate management.

The following are related documentations.

Description URL
Java1.4 APIs http://java.sun.com/j2se/1.4.1/docs/api/
IAIK JCE Extension
API

http://jce.iaik.tugraz.at/products/01_jce/documentation/ja
vadoc/index.html

Java keytool manual http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.h
tml

JCE Reference Guide http://java.sun.com/j2se/1.4/docs/guide/security/jce/JCER
efGuide.html

JSSE Reference
Guide

http://java.sun.com/j2se/1.4/docs/guide/security/jsse/JSSE
RefGuide.html

SUN Tutorial of Java
Socket Programming

http://java.sun.com/docs/books/tutorial/networking/socke
ts/

 5

SUN Tutorial of Java
Thread Programming

http://java.sun.com/docs/books/tutorial/essential/threads/

IBM Tutorial of JSSE
(Basic)

http://www-
900.ibm.com/developerWorks/cn/education/java/j-
jsse/tutorial_eng/j-jsse-5-1.html

IBM Java Tutorial of
JSSE (Advanced)

http://www-106.ibm.com/developerworks/java/library/j-
customssl/?dwzone=java#3

Some classes you may want to take a look at:

java.security.SecureRandom

java.security.KeyStore
javax.net.ssl.KeyManagerFactory
javax.net.ssl.KeyManager
javax.net.ssl.TrustManagerFactory
javax.net.ssl.TrustManager

java.net.ServerSocket
java.net.Socket
javax.net.ssl.SSLSocket
javax.net.ssl.SSLServerSocket
javax.net.ssl.SSLSocketFactory
javax.net.ssl.SSLContext
javax.net.ssl.SLSessionContext

java.security.cert.Certificate
java.security.cert.X509Certificate
javax.security.auth.x500.X500Principal
iaik.asn1.structures.AlgorithmID
iaik.x509.X509Certificate
iaik.asn1.structures.Name

Help

• The class newsgroup will again be the primary place to look for answers
and ask questions.

• At the session on March 4, TA will review APIs for SSL and certificate
management. That session only helps if you are familiar with the starter
code and the to-do list. We encourage you start as early as possible.

• As a last resort, you can email the staff at cs255ta@cs.stanford.edu.

Submission

 6

In addition to your well-decomposed, well-commented solution to the assignment, you
should submit a README containing the names, leland usernames and SUIDs of the
people in your group as well as a description of the design choices you made in
implementing each of the required features. In particular, you need to point out primary
code locations (class names) for each required feature.

When you are ready to submit, make sure you are in your project2 directory and type
/usr/class/cs255/bin/submit.

