Due: Wednesday, February 5th, 2003. In class.

Problem 1 Let E, D be the encryption/decryption algorithms of a certain block cipher. Consider the following chaining method for double DES like encryption:

The secret key is a triple (k, k_{1}, k_{2}) where k is as long as E 's block size (64 bits for DES) and k_{1}, k_{2} are as long as E 's key size (56 bits for DES). For example, when E is DES the total key size is $64+56+56=176$ bits.
a. Describe the decryption circuit for this system.
b. Show that using two short chosen ciphertext decryption queries an attacker can recover the full key $\left(k, k_{1}, k_{2}\right)$ in approximately the time it takes to run algorithm $D \quad 2^{\ell}$ times (i.e. the attack running time should be $O\left(2^{\ell} \operatorname{time}(D)\right)$. Here ℓ is the block cipher's keylength (56 bits for DES). Your attack shows that this system can be broken much faster than exhaustive search.
Hint: Consider the two decryption queries $\left\langle C_{1}, C_{2}, C_{3}, C_{4}\right\rangle$ and $\left\langle C_{1}^{\prime}, C_{2}, C_{3}^{\prime}, C_{4}\right\rangle$ where C_{1}, \ldots, C_{4} and $C_{1}^{\prime}, C_{3}^{\prime}$ are random ciphertext blocks.

Problem 2: Show that any symmetric cipher that has perfect secrecy is also (t, ϵ) semantically secure for any $t>0$ and $\epsilon \in[0,1]$.

Problem 3 Before DESX was invented, the researchers at RSA Labs came up with DESV and DESW, defined by

$$
\begin{aligned}
D E S V_{k k_{1}}(M) & =D E S_{k}(M) \oplus k_{1} \text { and } \\
D E S W_{k k_{1}}(M) & =D E S_{k}\left(M \oplus k_{1}\right)
\end{aligned}
$$

As with DESX, $|k|=56$ and $\left|k_{1}\right|=64$. Show that both these proposals do not increase the work needed to break the cryptosystem using brute-force key search. That is, show how to break these schemes using on the order of 2^{56} DES encryptions/decryptions. You may assume that you have a moderate number of plaintext-ciphertext pairs, $C_{i}=D E S\{V / W\}_{k k_{1}}\left(M_{i}\right)$.

Problem 4 The movie industry wants to protect digital content distributed on DVD's. We study one possible approach. Suppose there are at most a total of n DVD players in the world (e.g. $n=2^{32}$). We view these n players as the leaves of a binary tree of height $\log _{2} n$. Each node v_{i} in this binary tree contains an AES key K_{i}. These keys are kept secret from consumers and are fixed for all time. At manufacturing time each DVD player is assigned a serial number $i \in[0, n-1]$. Consider the set S_{i} of $\log _{2} n$ nodes along the path from the root to leaf number i in the binary tree. The manufacturer of the DVD player embeds in player number i the $\log _{2} n$ keys associated with the nodes in S_{i}. In this way each DVD player ships with $\log _{2} n$ keys embedded in it (these keys are supposedly inaccessible to consumers). A DVD movie M is encrypted as

$$
D V D=\underbrace{E_{K_{\text {root }}}(K)}_{\text {header }} \| \underbrace{E_{K}(M)}_{\text {body }}
$$

where K is some random AES key called a content-key. Since all DVD players have the key $K_{\text {root }}$ all players can decrypt the movie M. We refer to $E_{K_{\text {root }}}(K)$ as the header and $E_{K}(M)$ as the body. In what follows the DVD header may contain multiple ciphertexts where each ciphertext is the encryption of the content-key K under some key K_{i} in the binary tree.
a. Suppose the $\log _{2} n$ keys embedded in DVD player number r are exposed by hackers and published on the Internet (say in a program like DeCSS). Show that when the movie industry is about to distribute a new DVD movie they can encrypt the contents of the DVD using a header of size $\log _{2} n$ so that all DVD players can decrypt the movie except for player number r. In effect, the movie industry disables player number r.
Hint: the header will contain $\log _{2} n$ ciphertexts where each ciphertext is the encryption of the content-key K under certain $\log _{2} n$ keys from the binary tree.
b. Suppose the keys embedded in k DVD players $R=\left\{r_{1}, \ldots, r_{k}\right\}$ are exposed by hackers. Show that the movie industry can encrypt the contents of a new DVD using a header of size $O(k \log n)$ so that all players can decrypt the movie except for the players in R. You have just shown that all hacked players can be disabled without affecting other consumers.

Problem 5 Given a cryptosystem E_{k}, define the randomized cryptosystem F_{k} by

$$
F_{k}(M)=\left(E_{k}(R), R \oplus M\right),
$$

where R is a random bit string of the same size as the message. That is, the output of $F_{k}(M)$ is the encryption of a random one-time pad along with the original message XORed with the random pad. A new independent random pad R is chosen for every encryption.
We consider two attack models. The goal of both models is to reconstruct the actual secret key k (this is a very strong goal - one might be able to decrypt messages without ever learning $k)$.

- In the key-reconstruction chosen plaintext attack (KR-CPA), the adversary is allowed to generate q strings $M_{1}, M_{2}, \ldots, M_{q}$ and for each M_{i} learn a corresponding ciphertext.
- In the key-reconstruction random plaintext attack (KR-RPA), the adversary is given q random plaintext/ciphertext pairs.

Note that for the case of F_{k} the opponent has no control over the random pad R used in the creation of the given plaintext/ciphertext pairs. Clearly a KR-CPA attack gives the attacker
more power than a KR-RPA attack. Consequently, it is harder to build cryptosystems that are secure against KR-CPA.
Prove that if E_{k} is secure against KR-RPA attacks then F_{k} is secure against KR - CPA attacks.
Hint: It is easiest to show the contrapositive. Given an algorithm A that executes a successful KR - CPA attack against F_{k}, construct an algorithm B (using A as a "subroutine") that executes a successful KR - RPA attack against E_{k}. First, define precisely what algorithm A takes as input, what queries it makes, and what it produces as output. Do the same for B. Then construct an algorithm B that runs A on a certain input and properly answers all of A 's queries. Show that the output produced by A enables B to complete the KR - RPA attack against E_{k}.

Problem 6 Recall that in a block cipher built as a Feistel network the round function $F\left(X, K_{i}\right)$ takes an input X and a round key K_{i}. Suppose that X is 32 -bits and the Feistel network has 16 rounds as in DES. Furthermore, suppose that all round keys are 32 bits and the round function is defined as $F\left(X, K_{i}\right)=X \oplus K_{i}$. We assume that the key for the entire cipher is a concatenation of the 16 round keys, i.e. the cipher key is $16 * 32=512$ bits long. Show that the resulting cipher is completely insecure. In other words, describe an efficient algorithm that outputs the entire 512-bit cipher key given a modest number of plaintext/ciphertext pairs.

