
CS255: Cryptography and Computer Security Winter 2002

Assignment #3
Due: Friday, March 8th, 2002 at 5pm.

Problem 1 Parties A1, . . . , An and B wish to generate a secret conference key. All parties
should know the conference key, but an eavesdropper should not be able to obtain any
information about the key. They decide to use the following variant of Diffie-Hellman:
there is a public prime p and a public element g ∈ Z

∗

p of order q for some large prime q

dividing p−1. User B picks a secret random b ∈ [1, q−1] and computes y = gb mod p.
Each party Ai picks a secret random ai ∈ [1, q− 1] and computes xi = gai mod p. User
Ai sends xi to B. User B responds to party i by sending zi = xb

i mod p.

a. Show that party i given zi (and ai) can determine y.

b. Explain why (a hash of) y can be securely used as the conference key. Namely,
explain why at the end of the protocol all parties A1, . . . , An and B know y and
give a brief informal explanation why an eavesdropper cannot determine y.

c. Formally prove part (b). Namely, show that if there exists an efficient algorithm A
that given the public values in the above protocol, outputs y, then there also exists
an efficient algorithm B that breaks the Computational Diffie-Hellman assumption
(using p and g as the public values). Use algorithm A as a subroutine in your
algorithm B. Note that algorithm B takes ga mod p and gb mod p as input and
should output gab mod p.

Problem 2 Let N = pq be an RSA composite. Let g ∈ [0, N 2] be an integer satisfying
g = aN + 1 mod N for some a ∈ Z

∗

N . Consider the following encryption scheme. The
public key is 〈N, g〉. To encrypt a message m ∈ ZN do: (1) pick a random h ∈ Z

∗

N2 ,
and (2) compute C = gm · hN mod N2. Our goal is to develop a decryption algorithm.

a. Show that the discrete log problem base g is easy. That is, show that given g and
B = gx mod N2 there is an efficient algorithm to recover x mod N . Use the fact
that g = aN + 1 for some integer a ∈ Z

∗

N .

b. Show that given g and the factorization of N , decrypting C = gm · hN mod N2 can
be done efficiently.
Hint: consider Cϕ(N) mod N2. Use the fact that by Euler’s theorem xϕ(N2) =
1 mod N 2 for any x ∈ Z

∗

N2 .

c. Show that this encryption scheme enables limited computation on ciphertexts. Let
a, b, c be integers in [1, N ]. Show that given N and c, and the encryption of
a and b it is possible to construct the encryption of a + b and the encryption
of c · a. More precisely, show that given N and an integer c, and ciphertexts
C1 = E[a], C2 = E[b], it is possible to construct the ciphertexts C3 = E[a + b]
and C4 = E[c · a].
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Problem 3 Rabin suggested a signature scheme very similar to RSA signatures. In its
simplest form, the public key is a product of two large primes N = pq and the private
key is p and q. The signature S of a message M ∈ ZN is the square root of M modulo
N . For simplicity, assume that the messages M being signed are always quadratic
residues modulo N . To verify the signature, simply check that S2 = M mod N . Note
that we did not include any hashing of M prior to signing. Show that a chosen message
attack on the scheme can result in a total break. More precisely, if an attacker can get
Alice to sign messages chosen by the attacker then the attacker can factor N .
Hint: recall that a quadratic residue modulo N = pq has four square roots in ZN .
First show that there are two square roots of M that enable the attacker to factor N

(use the fact that gcd’s are easy to compute). Then show how using a chosen message
attack the attacker can get a hold of such a pair of square roots with high probability.
Note that proper hashing prior to signing prevents this attack.

Problem 4 Let’s explore why in the RSA public key system each person has to be assigned
a different modulus N = pq. Suppose we try to use the same modulus N = pq for
everyone. Each person is assigned a public exponent ei and a private exponent di such
that ei · di = 1 mod ϕ(N). At first this appears to work fine: to encrypt a message
to Bob, Alice computes C = M ebob and sends C to Bob. An eavesdropper Eve, not
knowing dbob appears to be unable to decrypt C. Let’s show that using eeve and deve

Eve can very easily decrypt C.

a. Show that given eeve and deve Eve can obtain a multiple of ϕ(N).

b. Show that given an integer K which is a multiple of ϕ(N) Eve can factor the
modulus N .
Hint: Consider the sequence gK , gK/2, gK/4, . . . gK/τ(N) mod N where g is random
in ZN and τ(N) is the largest power of 2 dividing K. Use the the left most element
in this sequence which is not equal to 1 mod N .

c. Deduce that Eve can decrypt any RSA ciphertext encrypted using the modulus N

intended for Alice or Bob (at this point this should be obvious).

Problem 5 Recall that a simple RSA signature S = H(M)d mod N is computed by first
computing S1 = H(M)d mod p and S2 = H(M)d mod q. The signature S is then
found by combining S1 and S2 using the Chinese Remainder Theorem (CRT). Now,
suppose a CA is about to sign a certain certificate C. While the CA is computing
S1 = H(C)d mod p, a glitch on the CA’s machine causes it to produce the wrong
value S̃1 which is not equal to S1. The CA computes S2 = H(C)d mod q correctly.
Clearly the resulting signature S̃ is invalid. The CA then proceeds to publish the newly
generated certificate with the invalid signature S̃.

a. Show that any person who obtains the certificate C along with the invalid signature
S̃ is able to factor the CA’s modulus.
Hint: Use the fact that S̃e = H(C) mod q. Here e is the public verification
exponent.

b. Suggest some method by which the CA can defend itself against this danger.
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Extra credit: In the lecture we defined the Decision Diffie-Hellman problem (DDH) as
follows: let G be a group of prime order q. An algorithm A ε-solves the DDH problem
in G if:

∣

∣Pr[A(g, ga, gb, gab) = “yes′′] − Pr[A(g, ga, gb, gc) = “yes′′]
∣

∣ ≥ ε

where g 6= 1 is uniform in G and a, b, c are uniform in Z
∗

q. In other words, A is able
to distinguish between a distribution of Diffie-Hellman tuples and a distribution of
random tuples.

We also said that an algorithm B ε-breaks the semantic security of a public-key
encryption scheme E if B wins the following game with probability at least 1

2
+ ε:

(1) B is given a public-key generated by the key generation algorithm of E ,
(2) B outputs two messages M0,M1,
(3) B is given the public key encryption of Mb under the public key from step (1) where
b is random in {0, 1},
(4) B returns a b′ ∈ {0, 1} and wins the game if b = b′.

Consider the original ElGamal encryption scheme where the encryption of a message
M ∈ G is C = [gr, M · yr] where 〈g, y〉 ∈ G is the public key and r is random in Zq.
Show that this ElGamal encryption scheme is semantically secure assuming DDH in
G is hard. In other words, show that if an algorithm B ε-breaks semantic security of
ElGamal in G then there is an algorithm A with approximately the same running time
as B that ε-breaks DDH in G. (your goal is to design algorithm A for DDH in G that
uses B as a subroutine).
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