CS255: Cryptography and Computer Security Winter 2001

Assignment #2

Due: Friday, February 22nd, 2002.

Problem 1 Merkle hash trees.
Merkle suggested a parallelizable method for constructing hash functions out of com-
pression functions. Let f be a compression function that takes two 512 bit blocks
and outputs one 512 bit block. To hash a message M one uses the following tree

construction:
¢ Hash
f
f msg-len
f f
f f f
Message | giock 1| |Block 2| |Block 3| |Block 4] " Block 15| | Block 16

Prove that if one can find a collision for the resulting hash function then one can find
collisions for the compression function.

Problem 2 In this problem we explore the different ways of constructing a MAC out of
a non-keyed hash function. Let h : {0,1}* — {0,1}° be a hash function constructed
by iterating a collision resistant compression function using the Merkle-Damgard con-
struction.

1. Show that defining M ACy(M) = h(k || M) results in an insecure MAC. That
is, show that given a valid msg/MAC pair (M, H) one can efficiently construct
another valid msg/MAC pair (M’', H') without knowing the key k.

2. Consider the MAC defined by MACy(M) = h(M || k). Show that in expected
time O(2%/?) it is possible to construct two messages M and M’ such that given
MAC(M) it is possible to construct M ACy(M') without knowing the key k.

Problem 3 Suppose Alice and Bob share a key k. A simple proposal for a MAC algorithm
is as follows: given a message M do: (1) compute 128 different parity bits of M (i.e.
compute the parity of 128 different subsets of the bits of M), and (2) AES encrypt the
resulting 128-bit checksum using k. Naively, one could argue that without knowing
k an attacker cannot compute the MAC of a message M. Show that this proposal is
flawed. Note that the algorithm for computing the 128-bit checksums is public.

Hint: show that an attacker can carry out an existential forgery given one valid mes-
sage/MAC pair.

Problem 4 In this problem, we see why it is a really bad idea to choose a prime p = 2F 41
for discrete-log based protocols: the discrete logarithm can be efficiently computed for
such p.

a. Show how one can compute the least significant bit of the discrete log. That is,
given y = ¢* (with unknown), show how to determine whether z is even or odd
by computing y®~5/2 mod p.

b. If z is even, show how to compute the 2nd least significant bit of x.
Hint: consider y®~5/* mod p.

c. Generalize part (b) and show how to compute all of z.
d. Briefly explain why your algorithm does not work for a random prime p.

The fact that p = 2¥ 4+ 1 is inappropriate for crypto is unfortunate since arithmetic
modulo such p can be done very fast.

