
CS255: Cryptography and Computer Security Winter 2001

Assignment #1
Due: Wednesday, January 31st, 2001.

Problem 1 Let p be a 128-bit prime and let Zp be the set of integers f0; : : : ; p� 1g. Consider the
following encryption scheme. The secret key is a pair of integers a; b 2 Zp where a 6= 0. An
encryption of a message M 2 Zp is de�ned as:

Ea;b[M ] = aM + b (mod p)

a. Show that when E is used to encrypt a message M 2 Zp the system has perfect secrecy
in the sense of Shannon.

b. Show that if the system is used to encrypt messages M1;M2 then the system does not
have perfect secrecy. Hence, although the system has perfect secrecy for one message it
is not very useful as is.
Hint: consider the case M1 =M2.

c. Show that given two random plaintext/ciphertext pairs Ci = Ea;b[Mi] for i = 1; 2 it is
possible to recover the key a; b with high probability.

Problem 2 Let E;D be the encryption/decryption algorithms of a certain block cipher. Consider
the following chaining method for double DES like encryption:
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The secret key is a triple (k; k1; k2) where k is as long as E's block size (64 bits for DES) and
k1; k2 are as long as E's key size (56 bits for DES). For example, when E is DES the total key
size is 64+56+56 = 176 bits.

a. Describe the decryption circuit for this system.

b. Show that using two short chosen ciphertext decryption queries an attacker can recover
the full key (k; k1; k2) in approximately the time it takes to run algorithm D 2` times
(i.e. the attack running time should be O(2`time(D)). Here ` is the block cipher's key-
length (56 bits for DES). Your attack shows that this system can be broken much faster
than exhaustive search.
Hint: Consider the two decryption queries hC1; C2; C3; C4i and hC 0
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are random ciphertext blocks.
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Problem 3 Before DESX was invented, the researchers at RSA Labs came up with DESV and
DESW, de�ned by

DESVkk1(M) = DESk(M)� k1 and

DESWkk1(M) = DESk(M � k1)

As with DESX, jkj = 56 and jk1j = 64. Show that both these proposals do not increase the
work needed to break the cryptosystem using brute-force key search. That is, show how to
break these schemes using on the order of 256 DES encryptions/decryptions. You may assume
that you have a moderate number of plaintext-ciphertext pairs, Ci = DESfV=Wgkk1(Mi).

Problem 4 KQIM (Internet Music Station) wishes to broadcast streamed music to its subscribers.
Non-subscribers should not be able to listen in. When a person subscribes she is given a
software player with a number of secret keys embedded in it. KQIM encrypts the broadcast
using a 128-bit AES key K. The secret keys in each legitimate player can be used to derive
K and enable legitimate subscribers to tune in. When a subscriber cancels her subscription,
KQIM will encrypt future broadcasts using a new key K 0. All valid players should be able to
derive K 0, however the canceled subscriber should not.

a. Suppose the total number of potential subscribers is less than n = 105. Let R1; R2; : : : ; Rn

be 128-bit random values. The player shipped to subscriber number u contains all the
Ri's except for Ru (i.e. the player contains 99999 keys). Let S be the set of currently
subscribed users. Show that KQIM can construct a key K used to encrypt the broadcast
so that any subscriber in S can derive K (from the Ri's in her player) while any single
subscriber outside of S cannot derive K. You may assume that the set S is known to
everyone (e.g. it is part of the broadcast). Brie
y explain why your construction satis�es
the required properties.

b. Is your construction in part (a) collusion resistant? That is, can two canceled subscribers
combine the secrets embedded in their player to build a new operational player?

Remark: much better solutions to this problem exist.

Problem 5 Given a cryptosystem Ek, de�ne the randomized cryptosystem Fk by

Fk(M) = (Ek(R); R�M);

where R is a random bit string of the same size as the message. That is, the output of Fk(M)
is the encryption of a random one-time pad along with the original message XORed with the
random pad. A new independent random pad R is chosen for every encryption.

We consider two attack models. The goal of both models is to reconstruct the actual secret
key k.1

� In the key-reconstruction chosen plaintext attack (KR-CPA), the adversary is allowed to
generate strings M1;M2; : : : and for each Mi learn a corresponding ciphertext.

� In the key-reconstruction random plaintext attack (KR-RPA), the adversary is given
random plaintext/ciphertext pairs.

1This is a very strong goal - one might be able to decrypt messages without ever learning k.
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Note that for the case of Fk the opponent has no control over the random pad R used in the
creation of the given plaintext/ciphertext pairs. Clearly a KR-CPA attack gives the attacker
more power than a KR-RPA attack. Consequently, it is harder to build cryptosystems that
are secure against KR-CPA.

Prove that if Ek is secure against KR-RPA attacks then Fk is secure against KR� CPA attacks.

Hint: It is easiest to show the contrapositive. Given an algorithm A that executes a successful
KR� CPA attack against Fk, construct an algorithm B (using A as a \subroutine") that
executes a successful KR� RPA attack against Ek. First, de�ne precisely what algorithm A
takes as input, what queries it makes, and what it produced as output. Do the same for B.
Then construct an algorithm B that runs A on a certain input and properly answers all of A's
queries. Show that the output produced by A enables B to complete the KR� RPA attack
against Ek.

Problem 6 We study a variant of the Linear Congruential Generator. This class of Pseudo Ran-
dom Number Generators (PRNG) is insecure for cryptographic purposes, and yet it keeps
appearing in security systems. Consider the following generator. The �xed public parameters
of the generator are a 128-bit prime p, and three integers a; b; c. Let Zp = f0; 1; : : : ; p � 1g.
The seed for the generator is a pair (s1; s2) 2 Z

2
p. The generator works as follows:

1. Let (x1; x2) be the current state of the generator (initially the state is equal to the
seed). Output cx1 + x2 mod p as the current random block.

2. Set the new state to be the pair (ax1 + x2; bx2 + x1) mod p and goto Step 1.

Show that no matter what parameters a; b; c are used, after observing a few consecutive
outputs of the generator it is easy to predict all future outputs.
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