CS255: Cryptography and Computer Security Winter 2001

Assignment #1

Due: Wednesday, January 31st, 2001.

Problem 1 Let p be a 128-bit prime and let Z, be the set of integers {0,...,p —1}. Consider the
following encryption scheme. The secret key is a pair of integers a,b € Z, where a # 0. An
encryption of a message M € Z, is defined as:

Eqp[M]=aM +b (mod p)

a. Show that when F is used to encrypt a message M € Z, the system has perfect secrecy
in the sense of Shannon.

b. Show that if the system is used to encrypt messages M, My then the system does not
have perfect secrecy. Hence, although the system has perfect secrecy for one message it
is not very useful as is.

Hint: consider the case My = Ms.

c. Show that given two random plaintext/ciphertext pairs C; = E,3[M;] for i = 1,2 it is
possible to recover the key a,b with high probability.

Problem 2 Let E, D be the encryption/decryption algorithms of a certain block cipher. Consider
the following chaining method for double DES like encryption:
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The secret key is a triple (k, k1, k2) where k is as long as E’s block size (64 bits for DES) and
k1, ko are as long as E’s key size (56 bits for DES). For example, when E is DES the total key
size is 64+56+56 = 176 bits.
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a. Describe the decryption circuit for this system.

b. Show that using two short chosen ciphertext decryption queries an attacker can recover
the full key (k, k1, ko) in approximately the time it takes to run algorithm D 2¢ times
(i.e. the attack running time should be O(2¢time(D)). Here £ is the block cipher’s key-
length (56 bits for DES). Your attack shows that this system can be broken much faster
than exhaustive search.
Hint: Consider the two decryption queries (C}, C2,Cs, Cy) and (C], Ca, C5, Cy) where
C1,...,Cy and Cf, C} are random ciphertext blocks.



Problem 3 Before DESX was invented, the researchers at RSA Labs came up with DESV and
DESW, defined by

DESVi,, (M) = DESy(M)® k; and
DESWy,, (M) = DESy(M & ki)

As with DESX, |k| = 56 and |k;| = 64. Show that both these proposals do not increase the
work needed to break the cryptosystem using brute-force key search. That is, show how to
break these schemes using on the order of 256 DES encryptions/decryptions. You may assume
that you have a moderate number of plaintext-ciphertext pairs, C; = DES{V/W }ik, (M;).

Problem 4 KQIM (Internet Music Station) wishes to broadcast streamed music to its subscribers.
Non-subscribers should not be able to listen in. When a person subscribes she is given a
software player with a number of secret keys embedded in it. KQIM encrypts the broadcast
using a 128-bit AES key K. The secret keys in each legitimate player can be used to derive
K and enable legitimate subscribers to tune in. When a subscriber cancels her subscription,
KQIM will encrypt future broadcasts using a new key K'. All valid players should be able to
derive K', however the canceled subscriber should not.

a. Suppose the total number of potential subscribers is less than n = 10°. Let Ry, Ra, ..., R,
be 128-bit random values. The player shipped to subscriber number « contains all the
R;’s except for R, (i.e. the player contains 99999 keys). Let S be the set of currently
subscribed users. Show that KQIM can construct a key K used to encrypt the broadcast
so that any subscriber in S can derive K (from the R;’s in her player) while any single
subscriber outside of S cannot derive K. You may assume that the set S is known to
everyone (e.g. it is part of the broadcast). Briefly explain why your construction satisfies
the required properties.

b. Is your construction in part (a) collusion resistant? That is, can two canceled subscribers
combine the secrets embedded in their player to build a new operational player?

Remark: much better solutions to this problem exist.

Problem 5 Given a cryptosystem FEj, define the randomized cryptosystem Fj by
Fp(M) = (Ex(R), R® M),

where R is a random bit string of the same size as the message. That is, the output of Fj (M)
is the encryption of a random one-time pad along with the original message XORed with the
random pad. A new independent random pad R is chosen for every encryption.

We consider two attack models. The goal of both models is to reconstruct the actual secret
key k.!
e In the key-reconstruction chosen plaintext attack (KR-CPA), the adversary is allowed to
generate strings My, Mo, ... and for each M; learn a corresponding ciphertext.

e In the key-reconstruction random plaintext attack (KR-RPA), the adversary is given
random plaintext/ciphertext pairs.

!This is a very strong goal - one might be able to decrypt messages without ever learning k.



Note that for the case of Fj the opponent has no control over the random pad R used in the
creation of the given plaintext/ciphertext pairs. Clearly a KR-CPA attack gives the attacker
more power than a KR-RPA attack. Consequently, it is harder to build cryptosystems that
are secure against KR-CPA.

Prove that if Ey, is secure against KR-RPA attacks then F}, is secure against KR — CPA attacks.

Hint: It is easiest to show the contrapositive. Given an algorithm A that executes a successful
KR — CPA attack against FJ, construct an algorithm B (using A as a “subroutine”) that
executes a successful KR — RPA attack against Ej. First, define precisely what algorithm A
takes as input, what queries it makes, and what it produced as output. Do the same for B.
Then construct an algorithm B that runs A on a certain input and properly answers all of A’s
queries. Show that the output produced by A enables B to complete the KR — RPA attack
against Fj.

Problem 6 We study a variant of the Linear Congruential Generator. This class of Pseudo Ran-
dom Number Generators (PRNG) is insecure for cryptographic purposes, and yet it keeps
appearing in security systems. Consider the following generator. The fixed public parameters
of the generator are a 128-bit prime p, and three integers a,b,c. Let Z, = {0,1,...,p — 1}.
The seed for the generator is a pair (s1, s2) € Zg. The generator works as follows:

1. Let (z1,z2) be the current state of the generator (initially the state is equal to the
seed). Output ¢z 4+ 22 mod p as the current random block.
2. Set the new state to be the pair (azy + z2, bzre + z1) mod p and goto Step 1.

Show that no matter what parameters a,b,c are used, after observing a few consecutive
outputs of the generator it is easy to predict all future outputs.



