Final Exam

Instructions

- Answer **four** of the following six problems. Do not answer more than four.
- The exam is open book.
- You have two hours.

Problem 1 Questions from all over.

- a. In his book "The road ahead" Bill Gates writes that the security of RSA is based on the "difficulty of factoring large primes". Is the problem of factoring large primes difficult?
- **b.** Both a CA and a Key Distribution Center (KDC) are trusted entities that are needed for secure key exchange. Briefly explain the differences between the two in terms of scalability and trust.
- c. One of SSL's key exchange modes supports "forward secrecy". Briefly explain the term forward secrecy.
- **d.** Consider the following combination of encryption and MAC on a plaintext M

$$C = E_{k_1}(M) \parallel MAC_{k_2}(M)$$

Is this secure? Justify your answer.

Problem 2 A certain organization tried to modify the Merkle-Damgard construction in two ways.

Method 1:

Method 2:

In the first construction + is a bit-by-bit Xor. In the second construction \wedge is a bit-by-bit and. The IV is fixed and public in both constructions. Suppose f is a collision resistant compression

function that takes a 512 bit message block, and a 512 bit chaining value. The function outputs a 512 bit result. Show that one of the constructions above is a collision resistant hash function while the other isn't.

- a. Show how to construct collisions for the one that is not collision resistant.
- **b.** Prove that the other construction is collision resistant.
- **Problem 3** Commitment schemes. A commitment scheme enables Alice to commit a value x to Bob. The scheme is *secure* if the commitment does not reveal to Bob any information about the committed value x. At a later time Alice may *open* the commitment and convince Bob that the committed value is x. The commitment is *binding* if Alice cannot convince Bob that the committed value is some $x' \neq x$. Here is an example commitment scheme:

Public values: (1) a 1024 bit prime p, and (2) two generators g and h of \mathbb{Z}_p^* .

Commitment: To commit to an integer $x \in [1, p-1]$ Alice does the following: (1) she picks a random $r \in [1, p-1]$, (2) she computes $b = g^x \cdot h^r \mod p$, and (3) she sends b to Bob as her commitment to x.

Open: To open the commitment Alice sends (x, r) to Bob. Bob verifies that $b = g^x \cdot h^r \mod p$.

Show that this scheme is secure and binding.

- **a.** To prove security show that b does not reveal any information to Bob about x. In other words, show that given b, the committed value can be any value x' in [1, p-1]. Hint: show that for any x' there exists a unique $r' \in [1, p-1]$ so that $b = g^{x'}h^{r'}$.
- **b.** To prove the binding property show that if Alice can open the commitment as (x', r') where $x \neq x'$ then Alice can compute the discrete log of h base g. In other words, show that if Alice can find an (x', r') such that $b = g^{x'}h^{r'} \mod p$ then she can find the discrete log of h base g. Recall that Alice also knows the (x, r) used to create b.
- **Problem 4** In class we mentioned various security notions for MACs. Here we consider two notions:
 - (1) MACs that are secure against existential forgery under a chosen message attack (CMA), and
 - (2) MACs that are secure against existential forgery under a random message attack (RMA). Clearly MACs that are secure under CMA are also secure under RMA. What about the converse? Show that the converse is false.

Hint: Suppose $F_k(M)$ is a MAC secure under RMA. Construct a new MAC $G_k(M)$ (using $F_k(M)$) that is still secure under RMA but is obviously insecure against CMA.

- **Problem 5** Recall that a simple RSA signature $S = H(M)^d \mod N$ is computed by first computing $S_1 = H(M)^d \mod p$ and $S_2 = H(M)^d \mod q$. The signature S is then found by combining S_1 and S_2 using the Chinese Remainder Theorem (CRT). Now, suppose a CA is about to sign a certain certificate C. While the CA is computing $S_1 = H(C)^d \mod p$, a glitch on the CA's machine causes it to produce the wrong value \tilde{S}_1 which is not equal to S_1 . The CA computes $S_2 = H(C)^d \mod q$ correctly. Clearly the resulting signature \tilde{S} is invalid. The CA then proceeds to publish the newly generated certificate with the invalid signature \tilde{S} .
 - **a.** Show that any person who obtains the certificate C along with the invalid signature \tilde{S} is able to factor the CA's modulus.

Hint: Use the fact that $\tilde{S}^e = H(C) \mod q$. Here e is the public verification exponent.

b. Suggest some method by which the CA can defend itself against this danger.

Problem 6 Let E(M, k) be a block cipher using 56-bit keys. Suppose Alice sends the ciphertext $C_1 = E(M_1, k_1)$ to Bob and sends the ciphertext $C_2 = E(M_2, k_2)$ to Charlie. An eavesdropper, Eve, intercepts the two ciphertexts C_1 and C_2 . Suppose Eve knows $\Delta = M_1 \oplus M_2$.

Eve's goal is to find k_1 and k_2 . Assume the messages M_1 and M_2 are sufficiently long that given C_1, C_2 and Δ the pair of keys (k_1, k_2) is uniquely determined. By trying all possible pairs of keys Eve can find (k_1, k_2) using 2^{112} applications of the decryption function (simply try all k'_1, k'_2 until a pair satisfying $D(C_1, k'_1) \oplus D(C_2, k'_2) = \Delta$ is found).

Show that given C_1 , C_2 and Δ Eve can find (k_1, k_2) using only 2^{57} application of the decryption function. Your algorithm may use as much memory space as you wish.