

For the programming projects in this course, you will be working in groups of two. Your
goal is to increase the security of the provided Chat system. Right now, the Chat system
is totally insecure: all messages from the client to the server and from the server to the
client are transmitted in the clear.

For project 1, the required security features are:

• A key exchange between the chat client and the chat server when the
client connects.

• All chat messages need to be encrypted using a block cipher in CBC mode
• A MAC must be appended to all chat messages.
• You must devise and implement a measure to combat replay attacks.

We will examine each of these features in detail below.

Key Exchange

You may use any of the key exchanges discussed in class, including the Diffie-Hellman
key exchange protocol or any scheme that uses public key encryption (we showed in
class that a secure public key system implies a key exchange algorithm). Please no
Merkle Puzzles. Note that we have not yet discussed a method to prevent the “person-in-
the-middle” attack on key exchange protocols. Consequently, in this project you are only
required to secure the key exchange protocol against a passive eavesdropper. We will
deal with active attacks on the key exchange protocol in project 2.

You should use the secret obtained during key exchange to generate your block cipher
key, your CBC IV and your MAC key. To do this, you should use a hash of the secret as
input to a PRNG, and use the output of the generator as your keys and IV.

Message Encryption

Each message transmitted by either a client or the server must be encrypted using a block
cipher. You may use any standard block cipher you like, but all messages must be
encrypted using CBC mode. As mentioned above, you should generate both the cipher
key and the CBC IV from the secret obtained during key exchange.

CS255: Cryptography and Computer Security Winter 2000

Programming Project #1
Due: Monday, February 21st 2000, 11:59pm

 2

MACs

Every message that goes over the network should have a MAC to enable the detection of
a malicious attacker tampering with messages en route. You should generate the key for
this MAC from the secret obtained during key exchange as described above.

Preventing Replay Attacks

Even after you secure chat messages with encryption and MACs, there is still an obvious
replay attack. Marvin captures a chat message en route to either the server or a particular
client. He then repeatedly sends that message – which is still a valid chat message –
flooding the intended recipient and making the chat room unusable for the participants.
Your solution should prevent an attacker from replaying a user’s message.

Security Holes

Even with these four security features, it should be clear that there are still holes in the
Chat system. Aside from the “person-in-the-middle” attack on the key exchange
protocol, the biggest remaining problem is authentication. The easiest way for an
attacker to see the messages in the chat room is simply to join. Another problem (at least
for the .com world) is that there is no way to charge people for using our chat system.
We will address some or all of these problems in programming project 2.

Implementation

As mentioned in class, you will be programming this project in Java. We have provided a
substantial amount of starter code. Here is a description of the files we provide for you
(files you need to change are in bold):

File Purpose
Makefile Makefile for the project – modify this to build any

classes you add to the project

java.policy Policy file granting network/file permissions

Chat/ChatClient.java Chat Client

Chat/ChatConsumer.java Chat Consumer remote interface – defines
methods that may be called over the network by
the server

Chat/ChatConsumerImpl.java Implementation of the ChatConsumer interface

 3

Chat/ChatLoginPanel.java GUI class for the login screen

Chat/ChatRoomPanel.java GUI class for the chat room screen

Chat/ChatServer.java Chat Server remote interface – defines server

methods that may be called over the network by
clients

Chat/ChatServerImpl.java Implementation of the ChatServer interface

Chat/SkipConstants.java Contains constants for the 1024 bit prime p and
generator g used for Skip. Use these if you don’t
have the patience to generate your own.

You should spend some time getting familiar with the provided framework. You will
need to copy the /usr/class/cs255/proj1 directory to your account. You will also need to
source /usr/class/cs255/setup.csh to set your path, classpath and java alias correctly. If
you are an advanced user, you may want to do this manually. To build the project,
c`hange into the proj1 directory and type make. To run the Chat system, follow these four
easy steps:

1. Pick a unique port number for your group to use. We recommend using
the last four digits of your phone number. Note this won’t work if your
last four digits are less than 1024 or your roommate is taking the class.

2. Start the RMI registry. This is part of the networking infrastructure we

have set up for you. To start the registry, type

elaine21:~/proj1> rmiregistry portNum &

 If you omit the port number, the registry will start on port 1099, so be

careful.

3. Start the Chat Server. Note that the server does not necessarily need to be
running on the same machine as the registry. You do, however, have to
specify the host and port on which the registry is running. For example:

elaine21:~/proj1> java Chat.ChatServerImpl elaine21

portNum &
4. Start one or more Chat Clients.

elaine21:~/proj1> java Chat.ChatClient &

 4

Important note: In the past, the Sweet Hall people have been grumpy with CS255
students leaving the rmiregistry and ChatServer processes running after they logout. You
need to explicitly kill these processes.

Crypto Libraries and Documentation

Java’s security and cryptography classes are divided into two main packages:
java.security.* and javax.crypto.*. The reason for this division is U.S. export restrictions.
Everything in java.security.* is exportable, most everything in javax.crypto.* is not. The
javax.crypto.* package is collectively referred to as the Java Crypto Extensions or the
JCE. Classes for cryptographic hashing and digital signatures (not required for project
#1) can be found in security, whereas ciphers and MACs are located in the JCE. There is
an API users guide for the JCE that is not published on Sun’s site because it contains
source code examples of how to encrypt. Under current U.S. export law, this file is
classified as munitions. We have reproduced this document for educational purposes
only, and we hope you do not choose to violate any laws. That being said, you should
probably read through the guide first. It can be found at:

http://crypto.stanford.edu/~dabo/cs255/API_users_guide.html

Other good documentation sites are:

Description URL
Java API http://java.sun.com/products/jdk/1.2/docs/api/
JCE API http://java.sun.com/security/JCE1.2/spec/apidoc/
Java Tutorial http://java.sun.com/docs/books/tutorial/
Chapter 6 from Java
Cryptography by
Jonathon Knudsen

http://www.oreilly.com/catalog/javacrypt/chapter/ch06.html

Some classes you may want to take a look at:

javax.crypto.KeyAgreement
javax.crypto.KeyGenerator
javax.crypto.IvParameterSpec
javax.crypto.Mac
javax.crypto.Cipher
javax.crypto.SecretKeyFactory

java.security.MessageDigest
java.security.KeyPairGenerator
java.security.SecureRandom

java.math.BigInteger

 5

A Word About Networking

The Chat system would be rather boring if it didn’t run over the network. The problem
for us is that we cannot expect everyone interested in cryptography to have network
programming experience. For that reason, we will be using Java RMI for all network
communications in our programming projects.

What is Java RMI?

RMI stands for Remote Method Invocation and it is a standard part of the Java library.
RMI enables you to declare objects as “remote”, making the methods of that object
accessible to Java programs running on different machines.

All of the RMI setup has already been done for you. For instance, in
ChatClient.connect, you will find the following code:

 _server = (ChatServer)Naming.lookup(“//” + host + “:” +

port + “/ChatServer”);

This simply sets the variable _server to a reference to an object called “ChatServer”
which has been registered with the rmiregistry running on the designated host and port.
In ChatClient.sendMessage , you see the code:

 _server.postMessage(msg, _clientID);

This has the effect of sending msg and _clientID over the wire to the machine where the
ChatServer is running and calling the server’s postMessage method with msg and
_clientID as parameters.

If you want to change the parameters to postMessage (we hope you do!) or add a new
remote method, you need to do so in two places. You need to modify the ChatServer’s
remote interface in ChatServer.java and the actual method definition in
ChatServerImpl.java. The same is true for the ChatConsumer.

Help

• We strongly encourage you to use the class newsgroup (su.class.cs255) as
your first line of defense for the programming projects. TAs will be
monitoring the newsgroup daily and, who knows, maybe someone else has
already answered your question.

• In addition to the newsgroup, we will also be maintaining a Programming

Assignment FAQ on the course web page, be sure to check it frequently.

 6

• We will be moving some of our office hours to Sweet Hall to help you
with programming questions, check the web page for up to the minute
office hour locations.

• As a last resort, you can email the staff at cs255ta@cs.stanford.edu.

Submission

In addition to your well-decomposed, well-commented solution to the assignment, you
should submit a README containing the names, leland usernames and SUIDs of the
people in your group as well as a description of the design choices you made in
implementing each of the required security features.

When you are ready to submit, make sure you are in your proj1 directory and type
/usr/class/cs255/bin/submit.

