Final Exam

Instructions:

- Answer all five questions.

- The exam is open book and open notes. Wireless devices are not allowed.
- Students are bound by the Stanford honor code.
- You have two hours.

Problem 1. Questions from all over.
a. Can a symmetric cipher that uses deterministic encryption (with no nonce) be semantically secure under a chosen plaintext attack? If so, explain why. If not, describe a chosen plaintext attack.
b. When building a CBC-MAC from AES one has to properly handle messages whose length is not a multiple of 16 bytes. Describe one method to do so that results in a secure MAC.
c. Suppose Alice bought a certificate from certificate authority X. Alice intends to use the certificate to issue signatures in her name (e.g. to sign code that Alice develops). If X is malicious, can it forge Alice's signature on rogue malware? More precisely, can X fool a verifier into believing that a certain rogue malware was written by Alice? If so explain how, if not explain why not. You may assume the verifier has not seen signatures from Alice before.
d. Describe a concrete attack that is prevented by challenge-response authentication, but is not prevented by authentication based on one-time passwords. Please be specific when describing how an attacker defeats the one-time password scheme.

Problem 2. Let F be a secure PRF defined over $\left(\mathcal{K}, \mathcal{X},\{0,1\}^{n}\right)$. Which of the following is a secure PRF? Justify your answer.
a. $F_{1}\left(\left(k_{1}, k_{2}\right), x\right):=F\left(k_{1}, x\right) \oplus F\left(k_{2}, x\right)$.
b. $F_{2}\left(\left(k_{1}, k_{2}\right), x\right):=F\left(k_{1}, x\right) \wedge F\left(k_{2}, x\right)$. Here $u \wedge v$ is the bit-wise and of u and v.
c. $F_{3}(k, x):=\left.F(k, x)\right|_{1 \ldots 4} . \quad\left(\right.$ for $y \in\{0,1\}^{n},\left.y\right|_{1 \ldots 4}$ are the 4 least significant bits of y)
d. $n=128$ and $F_{4}\left(\left(k_{1}, k_{2}\right), x\right):= \begin{cases}F\left(k_{1}, x\right) & \text { if } F\left(k_{2}, x\right)=0 \text {, and } \\ F\left(k_{2}, x\right) & \text { otherwise }\end{cases}$
e. Same as part (d), but with $n=1$.
f. Treat $\{0,1\}^{n}$ as the integers $\left\{0, \ldots, 2^{n}-1\right\}$ with multiplication modulo 2^{n}. Let $n=128$ and define $F_{5}\left(\left(k_{1}, k_{2}\right), x\right):=F\left(k_{1}, x\right) \cdot F\left(k_{2}, x\right)$.

Problem 3. In this question we look at concrete security of CBC and counter modes.
a. Let F be a secure PRF defined over $\left(\mathcal{K},\{0,1\}^{32}, \mathcal{Y}\right)$, namely F has domain is $\{0,1\}^{32}$. Suppose we construct a symmetric cipher from this F using randomized counter mode. We plan to use this cipher to encrypt two movies with the same key, where each movie contains 2^{32} blocks of F. Will the cipher provide semantic security under a chosen plaintext attack in these settings (i.e. where the attacker sees the encryption of two messages of his choice, each 2^{32} blocks long)? If so, explain why. If not, describe a chosen plaintext attack that breaks semantic security.
Note: if you describe a chosen plaintext attack, the attacker should query for the encryption of one message of his choice and then use that to solve a semantic security challenge. In total the attacker is given two ciphertexts.
b. Let π be a secure PRP defined over $\left(\mathcal{K},\{0,1\}^{64}\right)$. Suppose we construct a symmetric cipher from this π using randomized CBC mode (CBC mode with a random IV). As before, we plan to use this cipher to encrypt two movies with the same key, where each movie contains 2^{32} blocks of π. Will the cipher provide semantic security under a chosen plaintext attack in these settings (i.e. where the attacker sees the encryption of two messages of his choice, each 2^{32} blocks long)? If so, explain why. If not, describe a chosen plaintext attack that breaks semantic security using the note from part (a).
Hint: consider the effect of the birthday paradox.
Problem 4. One-time signatures from discrete-log. Let \mathbb{G} be a cyclic group of prime order q with generator g. Consider the following signature system for signing messages m in \mathbb{Z}_{q} :

KeyGen: choose $x, y \stackrel{\mathrm{R}}{\leftarrow} \mathbb{Z}_{q}$, set $h:=g^{x}$ and $u:=g^{y}$.
output $\mathrm{sk}:=(x, y)$ and $\mathrm{pk}:=(g, h, u) \in \mathbb{G}^{3}$.
$\operatorname{Sign}(\mathrm{sk}, m)$: output s such that $u=g^{m} h^{s}$. Verify (pk, m, s): output ' 1 ' if $u=g^{m} h^{s}$ and ' 0 ' otherwise.
a. Explain how the signing algorithm works. That is, show how to find s using sk.
b. Show that the signature scheme is weakly one-time secure assuming the discrete-log problem in \mathbb{G} is hard. That is, suppose there is an adversary \mathcal{A} that asks for a signature on a message $m \in \mathbb{Z}_{q}$ and in response is given the public key pk and a signature s on m. The adversary then outputs a signature forgery $\left(m^{*}, s^{*}\right)$ where $m \neq m^{*}$. Show how to use \mathcal{A} to compute discrete-log in \mathbb{G}. This will prove that the signature is secure as long as the adversary sees at most one signature.
Hint: Your goal is to construct an algorithm \mathcal{B} that given a random $h \in \mathbb{G}$ outputs an $x \in \mathbb{Z}_{q}$ such that $h=g^{x}$. Your algorithm \mathcal{B} runs adversary \mathcal{A} and receives a message m from \mathcal{A}. Show how \mathcal{B} can generate a public key $\mathrm{pk}=(g, h, u)$ so that it has a signature s for m. Your algorithm \mathcal{B} then sends pk and s to \mathcal{A} and receives from \mathcal{A} a signature forgery $\left(m^{*}, s^{*}\right)$. Show how to use the signatures on m^{*} and m to compute the discrete-log of h base g.
c. Show that this signature scheme is not 2-time secure. Given the signature on two distinct messages $m_{0}, m_{1} \in \mathbb{Z}_{q}$ show how to forge a signature for any other message $m \in \mathbb{Z}_{q}$.
d. Explain how you would extend this signature scheme to sign arbitrary long messages rather than just messages in \mathbb{Z}_{q}.

Problem 5. In class we showed a collision resistant hash function from the discrete-log problem. Here let's do the same, but from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_{n}^{*}. Show that the function

$$
H_{n, u, e}: \mathbb{Z}_{n}^{*} \times\{0, \ldots, e-1\} \rightarrow \mathbb{Z}_{n}^{*} \quad \text { defined by } \quad H_{n, u, e}(x, y):=x^{e} u^{y} \quad \in \mathbb{Z}_{n}
$$

is collision resistant assuming that taking e^{\prime} th roots modulo n is hard.
Suppose \mathcal{A} is an algorithm that takes n, u as input and outputs a collision for $H_{n, u, e}(\cdot, \cdot)$. Your goal is to construct an algorithm \mathcal{B} for computing e 'th roots modulo n.
a. Your algorithm \mathcal{B} takes random n, u as input and should output $u^{1 / e}$. First, show how to use \mathcal{A} to construct $a \in \mathbb{Z}_{n}$ and $b \in \mathbb{Z}$ such that $a^{e}=u^{b}$ and $0 \neq|b|<e$.
b. Clearly $a^{1 / b}$ is an $e^{\text {'th }}$ root of u (since $\left(a^{1 / b}\right)^{e}=u$), but unfortunately for \mathcal{B}, it cannot compute roots in \mathbb{Z}_{n}. Nevertheless, show how \mathcal{B} can compute $a^{1 / b}$. This will complete your description of algorithm \mathcal{B} and prove that a collision finder can be used to compute e^{\prime} th roots in \mathbb{Z}_{n}^{*}.
Hint: since e is prime and $0 \neq|b|<e$ we know that b and e are relatively prime. Hence, there are integers s, t so that $b s+e t=1$. Use a, u, s, t to find the e 'th root of u.
c. Show that if we extend the domain of the function to $\mathbb{Z}_{n}^{*} \times\{0, \ldots, e\}$ then the function is no longer collision resistant.

