Final Exam

Instructions:

– Answer all five questions.

- The exam is open book and open notes. Wireless devices are not allowed.
- Students are bound by the Stanford honor code.
- You have two hours.

Problem 1. Questions from all over.

- **a.** Can a symmetric cipher that uses deterministic encryption (with no nonce) be semantically secure under a chosen plaintext attack? If so, explain why. If not, describe a chosen plaintext attack.
- **b.** When building a CBC-MAC from AES one has to properly handle messages whose length is not a multiple of 16 bytes. Describe one method to do so that results in a secure MAC.
- c. Suppose Alice bought a certificate from certificate authority X. Alice intends to use the certificate to issue signatures in her name (e.g. to sign code that Alice develops). If X is malicious, can it forge Alice's signature on rogue malware? More precisely, can X fool a verifier into believing that a certain rogue malware was written by Alice? If so explain how, if not explain why not. You may assume the verifier has not seen signatures from Alice before.
- **d.** Describe a concrete attack that is prevented by challenge-response authentication, but is not prevented by authentication based on one-time passwords. Please be specific when describing how an attacker defeats the one-time password scheme.
- **Problem 2.** Let F be a secure PRF defined over $(\mathcal{K}, \mathcal{X}, \{0, 1\}^n)$. Which of the following is a secure PRF? Justify your answer.
 - **a.** $F_1((k_1, k_2), x) := F(k_1, x) \oplus F(k_2, x).$
 - **b.** $F_2((k_1, k_2), x) := F(k_1, x) \wedge F(k_2, x)$. Here $u \wedge v$ is the bit-wise and of u and v.
 - **c.** $F_3(k, x) := F(k, x)|_{1...4}$. (for $y \in \{0, 1\}^n$, $y|_{1...4}$ are the 4 least significant bits of y)
 - **d.** n = 128 and $F_4((k_1, k_2), x) := \begin{cases} F(k_1, x) & \text{if } F(k_2, x) = 0, \text{ and} \\ F(k_2, x) & \text{otherwise} \end{cases}$
 - **e.** Same as part (d), but with n = 1.
 - f. Treat $\{0,1\}^n$ as the integers $\{0,...,2^n-1\}$ with multiplication modulo 2^n . Let n = 128 and define $F_5((k_1,k_2), x) := F(k_1,x) \cdot F(k_2,x)$.

- **Problem 3.** In this question we look at concrete security of CBC and counter modes.
 - a. Let F be a secure PRF defined over $(\mathcal{K}, \{0, 1\}^{32}, \mathcal{Y})$, namely F has domain is $\{0, 1\}^{32}$. Suppose we construct a symmetric cipher from this F using randomized counter mode. We plan to use this cipher to encrypt two movies with the same key, where each movie contains 2^{32} blocks of F. Will the cipher provide semantic security under a chosen plaintext attack in these settings (i.e. where the attacker sees the encryption of two messages of his choice, each 2^{32} blocks long)? If so, explain why. If not, describe a chosen plaintext attack that breaks semantic security.

Note: if you describe a chosen plaintext attack, the attacker should query for the encryption of one message of his choice and then use that to solve a semantic security challenge. In total the attacker is given two ciphertexts.

- **b.** Let π be a secure PRP defined over $(\mathcal{K}, \{0, 1\}^{64})$. Suppose we construct a symmetric cipher from this π using randomized CBC mode (CBC mode with a random IV). As before, we plan to use this cipher to encrypt two movies with the same key, where each movie contains 2^{32} blocks of π . Will the cipher provide semantic security under a chosen plaintext attack in these settings (i.e. where the attacker sees the encryption of two messages of his choice, each 2^{32} blocks long)? If so, explain why. If not, describe a chosen plaintext attack that breaks semantic security using the note from part (a). **Hint:** consider the effect of the birthday paradox.
- **Problem 4.** One-time signatures from discrete-log. Let \mathbb{G} be a cyclic group of prime order q with generator g. Consider the following signature system for signing messages m in \mathbb{Z}_q :

KeyGen: choose $x, y \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$, set $h := g^x$ and $u := g^y$. output sk := (x, y) and pk := $(g, h, u) \in \mathbb{G}^3$. Sign(sk, m): output s such that $u = g^m h^s$. Verify(pk, m, s): output '1' if $u = q^m h^s$ and '0' otherwise.

- **a.** Explain how the signing algorithm works. That is, show how to find s using sk.
- **b.** Show that the signature scheme is weakly one-time secure assuming the discrete-log problem in \mathbb{G} is hard. That is, suppose there is an adversary \mathcal{A} that asks for a signature on a message $m \in \mathbb{Z}_q$ and in response is given the public key pk and a signature s on m. The adversary then outputs a signature forgery (m^*, s^*) where $m \neq m^*$. Show how to use \mathcal{A} to compute discrete-log in \mathbb{G} . This will prove that the signature is secure as long as the adversary sees at most one signature.

Hint: Your goal is to construct an algorithm \mathcal{B} that given a random $h \in \mathbb{G}$ outputs an $x \in \mathbb{Z}_q$ such that $h = g^x$. Your algorithm \mathcal{B} runs adversary \mathcal{A} and receives a message m from \mathcal{A} . Show how \mathcal{B} can generate a public key pk = (g, h, u) so that it has a signature s for m. Your algorithm \mathcal{B} then sends pk and s to \mathcal{A} and receives from \mathcal{A} a signature forgery (m^*, s^*) . Show how to use the signatures on m^* and m to compute the discrete-log of h base g.

- c. Show that this signature scheme is not 2-time secure. Given the signature on two distinct messages $m_0, m_1 \in \mathbb{Z}_q$ show how to forge a signature for any other message $m \in \mathbb{Z}_q$.
- **d.** Explain how you would extend this signature scheme to sign arbitrary long messages rather than just messages in \mathbb{Z}_q .

Problem 5. In class we showed a collision resistant hash function from the discrete-log problem. Here let's do the same, but from the RSA problem. Let n be a random RSA modulus, e a prime relatively prime to $\varphi(n)$, and u random in \mathbb{Z}_n^* . Show that the function

 $H_{n,u,e}: \mathbb{Z}_n^* \times \{0, \dots, e-1\} \to \mathbb{Z}_n^*$ defined by $H_{n,u,e}(x,y):=x^e u^y \in \mathbb{Z}_n$

is collision resistant assuming that taking e'th roots modulo n is hard.

Suppose \mathcal{A} is an algorithm that takes n, u as input and outputs a collision for $H_{n,u,e}(\cdot, \cdot)$. Your goal is to construct an algorithm \mathcal{B} for computing e'th roots modulo n.

- **a.** Your algorithm \mathcal{B} takes random n, u as input and should output $u^{1/e}$. First, show how to use \mathcal{A} to construct $a \in \mathbb{Z}_n$ and $b \in \mathbb{Z}$ such that $a^e = u^b$ and $0 \neq |b| < e$.
- **b.** Clearly $a^{1/b}$ is an *e*'th root of *u* (since $(a^{1/b})^e = u$), but unfortunately for \mathcal{B} , it cannot compute roots in \mathbb{Z}_n . Nevertheless, show how \mathcal{B} can compute $a^{1/b}$. This will complete your description of algorithm \mathcal{B} and prove that a collision finder can be used to compute *e*'th roots in \mathbb{Z}_n^* .

Hint: since e is prime and $0 \neq |b| < e$ we know that b and e are relatively prime. Hence, there are integers s, t so that bs + et = 1. Use a, u, s, t to find the e'th root of u.

c. Show that if we extend the domain of the function to $\mathbb{Z}_n^* \times \{0, \ldots, e\}$ then the function is no longer collision resistant.