
CS255: Cryptography and Computer Security Winter 2008

Final Exam

Instructions
− Answer four of the following five problems. Do not answer more than four.
− All questions are weighted equally.
− The exam is open book and open notes. Wireless devices are not allowed.
− You have two hours.

Problem 1. General questions.

a. Suppose a server uses a MAC-based challenge-response protocol to authenticate users.
Show that an attacker who eavesdrops on network traffic can mount a dictionary attack
to recover the user’s password.

b. Suppose one implements CBC mode encryption where the IV is a counter. That is,
message number i is encrypted using i as the IV. Is the resulting system semantically
secure under CPA attacks (i.e. when the secret key is used to encrypt multiple messages)?
If so explain why; if not, explain why not.

c. Explain what goes wrong if the hash function used in the RSA digital signature scheme is
not collision-resistant.

d. Let F be a PRF and suppose that F
(
k, F (k, 0)

)
= 0 for all keys k. Is this a secure PRF?

If so explain why; if not, explain why not.

Problem 2. In this question we explore whether it is safe to encrypt one’s key. Let (E,D) be
a semantically secure symmetric cipher with key space K. Let k

R← K be a random key.
Consider the encryption of k under itself, namely the ciphertext

c∗ := E(k, k)

Let us see why this is generally a bad idea.

a. Use (E,D) to construct a semantically secure cipher (E′, D′) that becomes completely
insecure if the adversary is given c∗ := E′(k, k).
Hint: try modifying E’s behavior when it is encrypting k. Make sure to define E′ as an
encryption algorithm that takes a key and a message and outputs a ciphertext. Explain
why your (E′, D′) is semantically secure when c∗ is not given to the adversary. Then
explain why (E′, D′) is insecure when c∗ is given to the adversary.

b. Let us show an even stronger negative result for PRFs. Let F be a secure PRF with
key space K := {0, 1}n and let k

R← K. Suppose the adversary can obtain F
(
k, g(k)

)
for any function g of the adversary’s choosing. Show that by using at most n + 1
functions g1, . . . , gn+1 the adversary can recover k. Your task is to construct the functions
g1, . . . , gn+1 that the adversary will use to learn k.

In other words, not only is it dangerous to encrypt ones key, it is even dangerous to encrypt
a function of the key.

1

Problem 3. One-time sigs. Recall that Lamport built a one-time signature scheme from any one-
way function f : X → Y . In this question we abstract the construction and extend to a
two-time system. Throughout we assume that messages to be signed are `-bits long. We
write L := 2` and assume that a message m to be signed is a number 1 ≤ m ≤ L.

Let Σn := {1, . . . , n} and let S1, . . . , SL ⊆ Σn be subsets of Σn. The sets S1, . . . , SL are fixed
and known to everyone. Consider the following signature scheme. Algorithm G picks random
x1, . . . , xn

R← X and outputs

pk :=
(
f(x1), . . . , f(xn)

)
and sk := (x1, . . . , xn)

Then to sign a message m with secret key sk define

Sign(sk,m) = sig :=
{

all xi where i ∈ Sm

}
a. Explain how Verify(pk,m, sig) works. What is the worst-case length of the resulting

signatures?

b. We say that the L sets (S1, . . . , SL) are cover-free if for all 1 ≤ i 6= j ≤ L we have Si 6⊆ Sj .
Briefly explain why if (S1, . . . , SL) are cover free then the signature scheme is a secure
one-time signature scheme.

c. Let us assume that ` is a power of 2 and let n := ` + 1 + log2 `. For a message m ∈ {0, 1}`
let c be the number of 0s in m. Let m̂ := m‖c ∈ {0, 1}n and let m̂1, . . . , m̂n ∈ {0, 1} be
the n bits of m̂. Define the set Sm as:

Sm := {1 ≤ i ≤ n where m̂i = 1} ⊆ Σn

Prove that the sets (S1, . . . , SL) are cover-free. What is the length of the resulting
signatures as a function of `?

d. We say that the sets (S1, . . . , SL) are 2-cover-free if for all 1 ≤ i, j, k ≤ L where i 6= j, k we
have Si 6⊆ Sj ∪Sk. Briefly explain why if (S1, . . . , SL) are 2-cover-free then the signature
scheme is a secure two-time signature scheme (i.e. remains secure as long as sk is not
used to sign more than two messages).

extra credit: construct L sets S1, . . . , SL ⊆ Σn that are 2-cover-free where n = O(`2). Note
that n = O(`) is possible.

Problem 4. Time-space tradeoff. Let f : X → X be a one-way permutation. Show that one
can build a table T of size B bytes (B � |X|) that enables an attacker to invert f in time
O(|X|/B). More precisely, construct an O(|X|/B)-time deterministic algorithm A that takes
as input the table T and a y ∈ X, and outputs an x ∈ X satisfying f(x) = y. This result
suggests that the more memory the attacker has, the easier it becomes to invert functions.
Hint: Pick a random point z ∈ X and compute the sequence

z0 := z, z1 := f(z), z2 := f(f(z)), z3 := f(f(f(z))), . . .

Since f is a permutation, this sequence must come back to z at some point (i.e. there exists
some j > 0 such that zj = z). We call the resulting sequence (z0, z1, . . . , zj) an f -cycle. Let
t := d|X|/Be. Try storing (z0, zt, z2t, z3t, . . .) in memory. Use this table (or perhaps, several
such tables) to invert an input y ∈ X in time O(t).

2

Problem 5. Homomorphic encryption. Let G be a group of prime order q and g a generator of G.

a. Consider a variant of ElGamal encryption where the encryption of a message m ∈ Zq using
public key (G, g, h) is defined as c ← (gr, gmhr) where r

R← Zq. Suppose 1 ≤ m ≤ B.
Write pseudo-code to decrypt the ciphertext c (i.e. recover the message m) using the
secret key x := Dlogg(h) with one exponentiation and O(B) additional group operations.

b. For i = 1, 2 let ci be the encryption of message mi. Show that there is a simple algorithm
A that takes the public key (G, g, h) and the two ciphertexts c1 and c2 as input, and
outputs a random encryption of m1 + m2. The output ciphertext should be distributed
as if the message m1 + m2 was encrypted with fresh randomness. Note that A does not
know either m1 or m2.

c. Suppose n people wish to compute the average of their salaries. Let xi be the salary
of person number i, where xi is an integer in [1, B] for all i. Our goal is to compute
A := (x1 + . . .+xn)/n without revealing any other information about individual salaries.
Note that A need not be an integer.
Design an n step protocol where in step i (for i = 1, . . . , n − 1) user number i sends a
message to user number i+1. In step n user number n sends a message to user 1. User 1
then publishes A for all n people to see.
You may assume user 1 does not collude with any other user. All user 1 sees is the
message he sends to user 2 and the message he receives from user n. Some remaining
users may share information with one another to try and learn more information about
individual salaries (information beyond what is revealed by A).
Hint: User 1 generates a public/private ElGamal key. The remaining users use your
mechanism from part (b).

3

