CS161: Design and Analysis of Algorithms

Spring 2001

Assignment #2

Due: Thursday, May 3rd, 2001. In class.

Problem 1. For *n* distinct elements x_1, x_2, \ldots, x_n with positive weights w_1, w_2, \ldots, w_n such that $\sum_{i=1}^n w_i = W$, the weighted median is the element x_k satisfying:

$$\sum_{x_i < x_k} w_i \le \frac{W}{2}$$

and

$$\sum_{x_i > x_k} w_i \le \frac{W}{2}$$

- **a.** Let x_1, \ldots, x_n be a set of n distinct elements. Prove that for any choice of positive weights w_1, \ldots, w_n there are at most two elements that could be considered to be the weighed median.
- **b.** Show how to compute all weighted medians of n elements in $O(n \log n)$ worst-case time using sorting.
- c. Show how to compute all weighted medians in $\Theta(n)$ worst-case time using a linear-time median algorithm such as Select from the text.

Problem 2. Do problem 7.5–5 in CLR. (page 151)

Problem 3. Radix sort.

- a. Do problem 9.3-1 in CLR. (page 180)
- **b.** Do problem 9.3–3 in CLR. (page 180)

Problem 4. Do Problem 7.5–6 in CLR (page 151).

Problem 5. Show how to sort n integers in the range 1 to n^{10} in O(n) time. You may use O(n) auxiliary space.

Problem 6. Do Problem 9.1–4 in CLR (page 175).