Lecture 13, Tuesday 5/22/01 Greedy Algorithms	
- Problem: set of n activities s_{i}, f_{i} start and end of activity i. - i compatible with j if intervals do not intersect. - Goal: find max \# of compatible activities.	
- Let k have smallest f_{k} and let A be OPT solution. Case 1: k in OPT. Claim: A- k is SOPTT for Assume not. Let B be OPT for $\mathrm{S}^{\prime},\|\mathrm{B}\|>\|A\|-1$ But then add k to B and we get better than A ! Case 2: k not in A, finish time of $1 s t$ job in A is AFTER f_{k} k! replace it with Thus we compute k, commit to it, compute S^{\prime}, and repeat!	109

Summary

	Huffiman encoding
- Idea: represent often encountered letters by shorter	
codes.	
- Prefix code: a code for x is not a prefix for any code-	
word for y.	

Huffman encoding

Prim's Algorithm

- Main idea:
" Pick a node v, set $A=\{v\}$.
" Repeat:
find min-weight edge e, outgoing from A,
add e to A.
- Need support for finding an edge that is:
" outgoing.
" Min-weight among all outgoing.
" Outgoing,
"Min-weight among all outgoing.

More about implementation

- Only v - 1 edges were used, the rest - wasted.
- Idea:
keep nodes in the heap, instead of edges.
" Key: distance of node from A over a single edge.
" Initially: $k e y(v)=$ infinity, for all v
$x=$ root
Repeat:
$\forall v: v x \in E$ do:
$k e y(v)=\min (k e y(v), w(v x))$
» Pick smallest-key x, add x to A.
- So why does this work ???

Alternative Implementations

- Total: $O(E)$ decrease-key, $O(V)$ extract-min.

	extract-min	decrease-key	Total
array	$O(V)$	$O(1)$	$O\left(V^{2}\right)$
heap	$O(\log V)$	$O(\log V)$	$O(E \log V)$
Fib. heap	$O(\log V)$	$O(1)$	$O(V \log V+E)$

Kruskal's Algorithm

- Main loop:
»scan edges in increasing order of weight
» put edge in if no loop created.
- Why does this result in MST ??
" Observation: min-weight edge is always in MST.
Proof: Assume there exists a tree without this edge.
Add this edge to the tree - this creates a
ycle. Delete max-weight edge on this cycle, we get a lighter tree!

Proof of Kruskal's algorithm

- Consider the instant when we are adding the first wrong edge,
i.e. edge $x y$ that is not in any optimum tree:
» blobs are current connected components.
" There exists a path from x to y " in the optimum tree.
》 uv and u'v' are not in our tree
thus they are heavier than $x y$
cut-and-paste to get a b
opt. tree: contradiction.

Implementation

- Given two nodes u and v, need to know if they are
in the same connected component, i.e. in the same set.
Find_Set(v)
- After adding edge uv, need to merge the set that includes u with the set that includes v.
Union(Find_Set(u). Find_Set(v))
- Total: O(V) Make Set
$O(E)$ Find Se
O(V) Union
- Section 22.4 explains how to achieve these ops in $\alpha(E, V)$ time, where α is inverse Ackerman function.
(Union-Find data structure)
- $\alpha(m, n)<5$ for $m, n<10^{8!!!}$

Dynamic Programming

- Main problem with greedy approaches:
front.
sometimes we can not commit up-
- Dynamic programming:
"Meta-technique, not a specific algorithm.
- Main idea:
" solve many small sub-problems,
" combine solution to several small subproblems to solve
larger subproblems.
"continue combining until we solve the original problem.

Single-Source Shortest Paths

- Read Chapter 25.
- Problem:
» Directed graph $G=(V, E)$, n nodes, m edges.
" Edge uv has (real) weight w(uv).
"Distinguished node s, the "source".
"Need to find shortest path from s to all nodes reachable
from s. from s.
- Main observation: if shortest path s to u goes through v, then its part up to v is the shortest path from s to v.

Bellman-Ford

- Dynamic programming:
"Subproblem: $\alpha^{*}(v)=$ distance from s to v in up to k "hops".
" To reach v in at most $\mathbf{k + 1}$ hops:
reach neighbor of v in at most k hoss.
alternatively, reach v in at most $\mathbf{k}-\left\{_{1} d^{d+1}(y)=\min \left\{d^{k}(v), \min \left\{d^{k}(u)+w(u v) \mid u v \in E\right\}\right\}\right.$
phase k computes $d(v)$ for all v.
" Terminates in $n-1$ phases if no negative cycles
(Main idea: if more than $n-1$ hops, the path is not simple.)

$$
\text { Total time }=\mathrm{O}(\mathrm{~nm})
$$

Another example: Matrix chain multiplication

- Consider the following chain: $A_{2} \times \cdots \times A_{n}, A_{1}$ is $\left[p_{o} \times p_{1}\right], A_{2}$ is $\left[p_{1} \times p_{2}\right]$, etc.
$\left[A_{1} \times A_{2}\right]_{i, j}=\sum_{k=1}^{p_{1}} A_{1}[i, k] A_{2}[k, j]$, time $\simeq p_{0} p_{1} p_{2}$
- Example: [5×100] [100×2] [2×50]

Multiplying last two and then by the first one:
$100 \times 2 \times 50+5 \times 100 \times 50=35,000$ multiplications.
"Multiplying first two and then by the last one:
$5 \times 100 \times 2+5 \times 2 \times 50=1500$
$5 \times 100 \times 2+5 \times 2 \times 50=1500$

- Order of multiplication affects the amount of work!

Matrix chain continued

- Lets try to analyze using recurrence relation:
$T(1) \geq 1$

$$
T(\mathrm{I}) \geq 1
$$

$$
T(n) \geq 1+\sum_{k=1}^{n-1}[T(k)+T(n-k)+1] \geq 2 \sum_{k=1}^{n-1} T(k)+n
$$

by substitution, easy to see that $T(n) \geq 2^{n-1}$

- Wrong approach! There are only $O\left(n^{2}\right)$ different subproblems!
- Build the table bottom up, for increasing ($j-I)$.
- $O(n)$ per each ${ }^{m(i, j)}$
, total $O\left(n^{3}\right)$.

Summary - Dynamic
 Programming

- Find optimum substructure
- Define subproblems (not too many of them!)
- Organize subproblems into a table.
- Make sure there is a way to fill the table.

Longest common-subsequence

- Consider two sequences:
- Greedy: does not work! (Why ??)
- Brute force: take any substring of x, check against y. Total: $O\left(2^{m} n\right)$, too slow!

$$
\begin{aligned}
& x=A \quad B \quad C \quad B \quad D \quad A \quad B \quad|x|=m \\
& y=B \begin{array}{llllllll}
& D & C & A & B & A & |y|=n
\end{array}
\end{aligned}
$$

AnalySis
- Depth of the tree is $O(m+n)$, leads to $O\left(3^{m+n}\right)$ bound, too
large!
- Main idea: we see repeating sub-question,
only $O(m n)$ different ones !
remember it.
dynamic programming: compute the table bottom-up.

Computing the table

Knapsack Problem - Problem statement: " We have n items, I-th item costs v(I) and weights $w(I)$. " We have a knapsack that can hold total W weight. " Goal: maximize total value of items that we choose to put into the knapsack, without exceeding total allowed weight W. - Abstraction of many real problems: from investing to telephone call routing. - Fractional (allowed to take part of an item)- easy ! do greedy, choose best value-per-weight element.

Fractional vs. Integer Knapsack

- Consider the following example:
"
Greedy: $\# 1+\# 2$
20

" Fractional: \#1 +\#2 + 3/5 of \#3, gives $\$ 120$.

- Optimum substructure:

Consider optimum solution: $\quad x_{1}, x_{2}, \ldots, x_{k}$,
where $x_{i}=0$ means we do not take the item, and $x_{i}=1$ means we take it.
Claim: $x_{1}, x_{2}, \ldots, x_{k-1}$ is optimum for $\underbrace{S-x_{k}}, \underbrace{W-w\left(x_{k}\right)}$.

Solving Knapsack

- Subproblems:

$$
\begin{aligned}
& C(i, w) \text { - OPT solution using items } 1 \text { to } i \text {, knapsack } w
\end{aligned}
$$

- Table size in $n W, O(1)$ per element, TOTAL $=O(n W)$
- But knapsack is NP-Hard !

Do we indeed have a contradiction here ??
Nolyon contradiction since W is not
polynomial in the size
of the input...

Edge Classification

- Classification of uw according to (color of U) \rightarrow (color of $w):$
(when the edge is considered)

" Tree edge: gray \rightarrow white gray \rightarrow gray	
" Back edge:	grward:
gray \rightarrow black, u ancestor of w.	
" Cross:	other gray $->$ black edges.

- How to distinguish forward and cross edges ?? We can use dO time!

Parenthesis Theorem

- Theorem:

For any two nodes u and v
the two intervals $[\mathrm{d}(\mathrm{u}), \mathrm{f}(\mathrm{u})]$ and $[\mathrm{d}(\mathrm{v}, \mathrm{f}(\mathrm{v})]$ either:
"Do not intersect, or
$»[d(u), f(u)]$ includes $[d(v), f(v)], v$ descendant of u, or
" $[d(v), f(v)]$ includes $[d(u), f(\nu)], u$ descendant of v

- Proof:
" Assume (wlog) $d(u) \times d(v)$.
"If v was not discovered before finisthing u, then we have case 1 above.
If v was discovered, then we have to finish it before returning
and finishing u, leading to case 2 .
Case 3 is symmetric.

White-Path Lemma

- In (directed or undirected) graph G, node v is descendant of u iff at $d(u)$ (time when u was discovered) there is a path from v to u using only currently white nodes.
- Proof:
" Assume v is descendant of u.
Let ww be edge on the $u->v$ path in the tree
If w^{\prime} was not white at $\mathrm{d}(\mathrm{u})$, then ww' will not be tree edge
Thus, all nodes on the $u->v$ path are white when u is discovered.
Assume that at $d(u)$ there is a white path from u to v.

- We hove $f((L)) f(w)>d(w)>d(L)$.

But we hove to disccien w' ofter storting u ond before finishing w

Simple Lemma

- Lemma: if G undirected, then only tree and back edges (1) Proof: wlog, $\mathrm{d}(u)<\mathrm{d}(v)$.

Thus v must be discovered and finished
before finishing u, since us exist's.
If uv discovered from u, before v.
it is tree edge (v)
if v was discovered before us.
uv becomes a back edge.

- Why does the proof break down in the directed case?

Discovering Cycles

- Claim: G acyclic iff DFS yields no back edges.
- Proof:
" Trivial to observe that back edge implies a cycle.
" Assume there exists a cycle:
Let v be the node with smallest d on the cycle and let in be edge of
the cycle.

Thus, when u is sconned, we will discover uv edge and mark it as "back
edge".
edgei"

Back to shortest paths:
 Dijkstra's Algorithm

- We can do better than Bellman-Ford if no negative-weight edges!
- Algorithm: $\quad d(s)=0 ; \forall v \neq s . d(v)=\infty$
$d(s)=0 ; \quad \forall v \neq \operatorname{s.d}(v)=\infty ;$
Construct heap, key(v) $=d(v)$
While heap not empty:
$u=$ extract_mintheap)
for each v s.t. $u \in E$:
if $d(v)>d(u)+w(u v)$
then $d(v)=d(u)+w(u v)$
- Main idea: add node with shortest perceived distance.
- Time: n extract_min, m decrease key

$$
\begin{aligned}
& \text { binary heap: } O(m \log n)= \\
& \text { Fib. Heap: } \\
& O(m+n \log n)
\end{aligned}
$$

END

