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Greedy Algorithms

Problem: set of n activities
si, fi start and end of activity i.

i compatible with j if intervals do not intersect.

Goal: find max # of compatible activities.

Let k have smallest fk and let A be OPT solution.
Case 1: k in OPT. Claim: A-k is OPT for

Assume not. Let B be OPT for S’, |B|>|A|-1
But then add k to B and we get better than A !

Case 2: k not in A, finish time of 1st job in A is AFTER fk

replace it with 
k !

Thus we compute k, commit to it, compute S’, and repeat ! 

S i s fi k' |= >{ }
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Another greedy algorithm

Task defined by (duration, deadline), eg.  HW.
Goal: find a schedule if one exists.

Assume that there exists a schedule
Claim: then there exists a schedule with 

first job = job with smallest deadline.

a b

job with smallest
deadline

db da

We can exchange b and a !!
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Summary

Take locally best choice and commit to it.

Main issue: proof that we can commit without loosing our 
chance

to get an optimum solution.
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Huffman encoding

Idea: represent often encountered letters by shorter 
codes.

Prefix code: a code for x is not a prefix for any code-
word for y.

In this example:    c=010, e=100
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Huffman encoding

Assume that a is a very common symbol.

Now:  a = 0
b = 100
e = 1100
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Huffman encoding

Assume we know symbol frequencies:

50     40     5      3     2   
a         b      c      d     e

50*1+40*2+5*3+3*4+2*4 = 165, 1.65b/symbol 
instead of 3 !
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Generating optimum encoding

Claim: Let x&y be lowest freq. characters.
Then there exists code where x&y differ only in 

1 bit.

So does this mean that we do not need any other codes ?
[Hint: consider a sequence 10101010101….]

WLOG f a f b f x f y

also f x f a f y f b
exchanging x a y b

( ) ( ), ( ) ( )

: ( ) ( ), ( ) ( )
,

£ £

£ £

U
V
W
fi ´ ´ can only help!

116

Min-Cost Spanning Tree

Applications:
» Cable TV,

» VLSI,

» basic task for many optimization algs (eg. flow).

Formally:
» Undirected graph G=(V,E).

» Weights 

» Goal: find spanning tree of minimum weight.
(spanning = connects all nodes in G)

w E R: Æ
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Example
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Example MST
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Optimum Substructure

Assume T is MST of G,
let uv be min-weight edge connecting A to (T-A)

Proof:  “Cut-and-Paste” approach”

» Replace u’v’ by uv !

Questions:
» Why no more edges parallel

to u’v’ in T ?? - Cycles !

» Why u’v’ exists at all ??
(walk in T until you hit [T-A]

2
)            

A T TÃ  subtree of  

fi$ » ÕMST  s.t.   (loose notation)T A uv T' ( ) '
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Prim’s Algorithm

Main idea:
» Pick a node v, set A={v}.

» Repeat: 
– find min-weight edge e, outgoing from A,

– add e to A.

Need support for finding an edge that is:
» outgoing,

» Min-weight among all outgoing.                  

Lecture 15, Tuesday 11/21/00
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Implementing Prim’s Alg

First try:
» Keep all edges (outgoing and internal) from A in a heap,

» new node: add all its edges to the heap.

» To get “next edge”: 
– extract min-weight from heap

– check if internal.   (how ??)

– if yes, discard and repeat.

Time:  O(E) insertions and O(E) deletions from heap: 

Total:O(E log V)
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More about implementation

Only V-1 edges were used, the rest - wasted.

Idea: 
» keep nodes in the heap, instead of edges.
» Key: distance of node from A over a single edge.
» Initially:  key(v) = infinity, for all v.

key(root) = 0.

»

So why does this work ???            

x root

v vx E
key v key v w vx

x x A

=

" Œ

=

Repeat: 
         do:  
             
      Pick smallest -key , add  to .

:
( ) min( ( ), ( ))
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Alternative Implementations

Total: O(E) decrease-key, O(V) extract-min.

extract min decrease key Total

array ( )

heap

Fib. heap

- -

+

O V O O V

O V O V O E V

O V O O V V E

( ) ( )

(log ) (log ) ( log )

(log ) ( ) ( log )

1 2

1
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Kruskal’s Algorithm

Main loop:
» scan edges in increasing order of weight

» put edge in if no loop created.

Why does this result in MST ??
» Observation: min-weight edge is always in MST.

Proof: Assume there exists a tree without this edge.
Add this edge to the tree - this creates a 

cycle.
Delete max-weight edge on this cycle, we get 

a lighter tree !
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Proof of Kruskal’s algorithm

Consider the instant when we are adding the first wrong 
edge,
i.e. edge xy that is not in any optimum tree:

» blobs are current connected 
components. 

» There exists a path from x to y
in the optimum tree.

» uv and u’v’ are not in our tree,
thus they are heavier than xy !

» cut-and-paste to get a better than
opt. tree: contradiction. 
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Implementation

Given two nodes u and v, need to know if they are 
in the same connected component, i.e. in the same set.
Find_Set(v)

After adding edge uv, need to merge the set that includes u
with the set that includes v.
Union(Find_Set(u), Find_Set(v))

Total:     O(V) Make_Set
O(E) Find_Set
O(V) Union

Section 22.4 explains how to achieve these ops in α(E,V) time,
where α is inverse Ackerman function.
(Union-Find data structure)

α(m,n)<5 for m,n < 108 !!!
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Simple Union-Find 
Implementation

Main idea:
» Maintain every set as a linked list, 

every element points to head of the list.

» Merge smaller lists into larger ones.

Work: 
» Find-Set takes O(1). 

» Union: O(1) per element of the smaller list.

» Each time an element is charged during union, 
his set at least doubles !!

O(log V) charges per element for all
unions.

» Total: O(V log V) work for all Unions.

Total time:   Sort + O(E+V log V)
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Dynamic Programming

Main problem with greedy approaches:  
sometimes we can not commit up-

front.

Dynamic programming:
» Meta-technique, not a specific algorithm.

Main idea:
» solve many small sub-problems,

» combine solution to several small subproblems to solve 
larger subproblems.

» continue combining until we solve the original problem.

Lecture 16, Tuesday 11/28/00
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Single-Source Shortest Paths

Read Chapter 25.

Problem:
» Directed graph G=(V,E), n nodes, m edges.

» Edge uv has (real) weight w(uv).

» Distinguished node s, the “source”.

» Need to find shortest path from s to all nodes reachable 
from s.

Main observation: if shortest path s to u goes through v, 
then its part up to v is the shortest path from s to v.

s v u
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Bellman-Ford

Dynamic programming:
» Subproblem: dk(v) = distance from s to v in up to k “hops”.

» To reach v in at most k+1 hops:
– reach neighbor of v in at most k hops,

– hop to v

– alternatively, reach v in at most k-1 hops

– phase k computes dk(v) for all v.

» Terminates in n-1 phases if no negative cycles
Proof in the book.
(Main idea: if more than n-1 hops, the path is not simple.)

{ }{ }1 ( ),( ) min min ( ) ( )|kk kvd v d d u w uv uv E+
= + Œ

Total time = O(nm)
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Bellman-Ford

Early termination:
We can terminate at phase k if, for all v, dk(v) = dk-1(v)
,
since no more changes will happen in dk(v) for larger 
values of k.
(might terminate earlier than after n-1 phases)

If negative cycle exists then no termination, even in n-1 
phases: 
Proof:

– Consider edge v
i
v
i+1

along the cycle at termination.

– If terminated, then for all edges on the cycle: 

– Sum up:    

d v d v w v vi i i i( ) ( ) ( )≤ ++ +1 1

d v d vi
i

i
i

( ) ( )≤ +

⇒ ≥

∑ ∑  (weight of the cycle)

 weight of the cycle 0
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Another example:
Matrix chain multiplication

Consider the following chain:

Example: [5x100] [100x2] [2x50]
» Multiplying last two and then by the first one:

100x2x50 + 5x100x50 = 35,000 multiplications.

» Multiplying first two and then by the last one:
5x100x2 + 5x2x50 = 1500

Order of multiplication affects the amount of work !

A A A A p p A p pn o1 2 1 1 2 1 2¥ ¥ ¥ ¥ ¥L , ], ], is [  is [  etc.

A A A i k A k j p p p
i j k

p

1 2 1 2
1

0 1 2

1

¥ = ª

=

Â,
[ , ] [ , ], time 
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Solving matrix chain 
multiplication

Observation: 

» Consider last optimum multiplication:
» Then both                      and                          were

computed optimally !!
(Why ??)

Subproblems:                is best “time” to multiply

Answer is m(1,n)

Why can’t we just use as subproblems the time to multiply
matrices 1 to i ??

( ) ( )A A A Ak k n1 1¥ ¥ ¥ ¥ ¥
+

L L

( )A Ak1¥ ¥L ( )A Ak n+
¥ ¥1 L

( )A Ai j¥ ¥Lm i j( , )

m i j
if i j

m i k m k j p p p if i j
i k j i k j

( , ) min ( , ) ( , )=

=

+ + + <
£ < -

R
S|

T|

0
1 1{ }
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Matrix chain continued

Lets try to analyze using recurrence relation:

Wrong approach ! There are only O(n2) different 
subproblems !

Build the table bottom up, for increasing (j-I).

O(n) per each             , total O(n3) .

T

T n T k T n k T k n

T n
k

n

k

n

n

( )

( ) [ ( ) ( ) ] ( )

( )

1 1

1 1 2

2
1

1

1

1

1

≥

≥ + + - + ≥ +

≥

=

-

=

-

-

Â Â

by substitution,  easy to see that 

m i j( , )

Lecture 17, Thursday 11/30/00
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Summary - Dynamic 
Programming

Find optimum substructure

Define subproblems (not too many of them !)

Organize subproblems into a table.

Make sure there is a way to fill the table.
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Longest common-subsequence

Consider two sequences:
x = A  B   C  B  D  A  B        |x| = m

y = B  D  C  A  B   A            |y| = n

Greedy: does not work ! (Why ??)

Brute force: take any substring of x, check against y.
Total: O(2mn),  too slow !
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Optimum Substructure

Define subproblems:
Observe that C(m,n) is the answer that we seek.

Theorem:

Proof: Case 1,  xi=yi.
Consider z1,…zk LCS of (x1…xi), (y1…yj)
if zk ≠ xi , then z is not LCS !!!  (Why ??)

Now we claim that z1…zk-1 is LCS of (x1…xi-1), 
(y1…yj-1)

Proof: if there is a longer than Z sequence, just 
extend it !

C i j LCS x x x y y y
i j

( , ) ( , , , , , , , )=

1 2 1 2
K K

C i j C i j x y
C i j C i j

i i( , ) ( , )
max{ ( , ), ( , )}

=
- - + =

- -

R
S
|

T|

1 1 1
1 1

if 
otherwise
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Proof: continued

Case 2: xi ≠ yi
either: zk = xi       (2a)

or zk = yj (2b)
or             not equal to either 

of them. (2c)

» Case 2a: zk = xi zk ≠ yj
z1,…zk is a LCS of

(x1…xi), (y1…yj-1) (Why ??)

» Case 2b is symmetric.

» Do Case 2c at home. 
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Recursive algorithm

We can use the theorem to construct a recursive 
algorithm.
Consider its tree:

3,4

2,3 2,4 3,3

1,2 1,3 2,2 1,3 1,4 2,3 2,2 2,3 3,2

1,2 1,3 2,2
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Analysis

Depth of the tree is O(m+n), leads to O(3m+n) bound, too 
large !

Main idea: we see repeating sub-question,
only O(mn) different ones !

memoization: after computing sub-problem answer, 
remember it.
dynamic programming: compute the table bottom-up.
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Fill the table starting from top-left corner, and going 
row-by-row:

Each element depends on the one above, one left, and if 
xi=yi  ,
then it is one more then the diagonal up-left element.

yi B D C A B A

x i

0 0 0 0 0 0
A 0 0 0 0 1 1 1
B 0 1 1 1 1 2 2
C 0 1 1 2 2 2 2
B 0 1 1 2 2 3 3
D 0 1 2 2 2 3 3
A 0 1 2 2 3 3 4
B 0 1 2 2 3 4 4

Computing the table
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Knapsack Problem

Problem statement:
» We have n items, I-th item costs v(I) and weights w(I).

» We have a knapsack that can hold total W weight.
» Goal: maximize total value of items that we choose to put

into the knapsack, without exceeding total 
allowed weight W.

Abstraction of many real problems:
from investing to telephone call routing.

Fractional (allowed to take part of an item)- easy !
do greedy, choose best value-per-weight element.
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Fractional vs. Integer Knapsack

Consider the following example:
» Greedy: #1+#2 gives   $90
» Optimum: #2+#3, gives $110
» Fractional: #1 +#2 + 3/5 of #3,  gives $120.

Optimum substructure:

w W$ $ /
.
.

20 30 15
50 60 12
50 50 1

Consider optimum solution:     

where  means we do not take the item, and  means we take it.

Claim:  is optimum for  

x x x

x x

x x x S x W w x

k

i i

k k k

1 2

1 2 1

0 1

, , , ,

, , , , ( ) .

K

K

124 34 1 244 344

= =

- -

-

set of items

knapsack size
(max weight) 144

Solving Knapsack

Subproblems:

Table size in nW, O(1) per element, TOTAL = O(nW)

But knapsack is NP-Hard ! 
Do we indeed have a contradiction here ??

No contradiction since W is not 
polynomial in the size

of the input...

C i w i w

C i w
if i w

otherwisev C i w w C i wi i

( , ) , .

( , ) max{ , }( , ) ( , )

 -  OPT solution using items  to  knapsack 
 or 

take i- th do not take i-th

1
0 0 0

1 1=

= =

+ - - -

R

S
|

T
| 1 2444 3444 1 24 34
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Graph Algorithms

Examples of graph problems:
» Direct applications:

– City streets map: reachability, shortest path, congestion management

– Communication networks: planning, fault tolerance/reliability, topology 
augmentation

» Indirect applications:
– Assigning MDs to hospitals

– Scheduling jobs on a multiprocessor

– Searching solution spaces

Restate as a graph problem             solve              
map back

Lecture 18, Tuesday 12/5/00
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Depth First Search

Visit(u)
color(u) = gray;   d(u) = time;  time++;
for each neighbor w of v:

if w is white then Visit(w)
color(u) = black;  f(u) = time;  time++;

Initially, set all nodes white, 
examine nodes one-by-one, call Visit if node is still 
white.

Node visited once, edge touched twice: 
Running time O(n+m)

At home:  Read theorems 23.6 and 23.8 !
(we will only sketch the proofs)
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Edge Classification

Classification of uw according to (color of u) -> (color of 
w):
(when the edge is considered)

» Tree edge:      gray -> white

» Back edge:     gray -> gray

» Forward:        gray -> black, u ancestor of w.

» Cross:            other gray -> black edges.

How to distinguish forward and cross edges ??
We can use d() time !
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Parenthesis Theorem

Theorem: 
For any two nodes u and v, 
the two intervals [d(u),f(u)] and [d(v),f(v)] either:

» Do not intersect, or

» [d(u),f(u)] includes [d(v),f(v)] , v descendant of u, or

» [d(v),f(v)] includes [d(u),f(u)] , u descendant of v.

Proof:
» Assume (wlog) d(u)< d(v).

» If v was not discovered before finishing u, then we have case 1 
above.

» If v was discovered, then we have to finish it before returning 
and finishing u, leading to case 2.

» Case 3 is symmetric.
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White-Path Lemma

In (directed or undirected) graph G, node v is descendant of u
iff at d(u) (time when u was discovered) there is a path from v
to u using only currently white nodes.

Proof:
» Assume v is descendant of u. 

Let ww’ be edge on the u->v path in the tree.
If w’ was not white at d(u), then ww’ will not be tree edge.
Thus, all nodes on the u->v path are white when u is discovered.

» Assume that at d(u) there is a white path from u to v.
Let ww’ be the first edge on this path, with w’ closest to u
so that w is descendant of u but w’ is not.

– We have f(u)> f(w) > d(w) > d(u).

– But we have to discover w’ after starting u and before finishing w:
d(u) < d(w’) < f(w) < f(u)

– By parenthesis theorem, w’ is also a descendant of u, contradiction. 
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Simple Lemma

Lemma: if G undirected, then only tree and back edges.
Proof:  wlog, d(u)<d(v).

Thus v must be discovered and finished
before finishing u, since uv exists.
If uv discovered from u, before v,

it is tree edge
if v was discovered before uv, 

uv becomes a back edge.

Why does the proof break down in the directed case ?
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Discovering Cycles

Claim: G acyclic iff DFS yields no back edges.

Proof:
» Trivial to observe that back edge implies a cycle.

» Assume there exists a cycle:
– Let v be the node with smallest d on the cycle  and let uv be edge of 

the cycle.

– At d(v) all nodes on the cycle, including u, are white.

– All these nodes, including u, become descendants of v.

– Thus, when u is scanned, we will discover uv edge and mark it as “back 
edge”.
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Topological Sort

Directed acyclic graph G.

Algorithm:
» Call DFS to compute finishing times f[v] for each vertex v.

» As each v is finished, insert it onto the front of linked list

» Return the linked list.

Claim: the output list is a legal topological sort.
» Sufficient to prove that, for every u and v s.t. (uv) is an edge,

we have f[v] < f[u]. (Why ??)

» Consider edge (uv) explored by DFS. 
Observe that when (uv) is explored, v can not be gray ! 
(back edge implies cycle)

» If v white, it becomes descendant of u, and thus f[v] < f[u].

» If v black, it finished before u started, so again f[v] < f[u].
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Back to shortest paths:
Dijkstra’s Algorithm

We can do better than Bellman-Ford if no negative-weight 
edges !

Algorithm:

Main idea: add node with shortest perceived distance.

Time: n extract_min, m decrease_key
binary heap: O(m log n)
Fib. Heap:      O(m+n log n) 

d s v s d v
d v

u
uv E

d v d u w uv
d v d u w uv

( ) ; : ( ) ;
( );

:
( ) ( ) ( )

( ) ( ) ( )

= ∀ ≠ = ∞

=
∈

> +
= +

0
Construct heap, key(v) =  
While heap not empty:

extract_ min(heap);
for each v s.t. 

if  
then 
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Correctness of Dijkstra’s 
algorithm

Correctness Proof:
» Let u be the first extracted node with d(v) not equal to distance.

(note that once v is extracted, its d(v) is not adjusted)
» Consider shortest path s to u, focus on edge (xy) where x was 

extracted already (its d(x) is correct distance) and y was not yet 
extracted. (Why does such edge exist ?)

» Observe that d(y) is at most d(x)+w(xy), since x was already 
processed.

» All distances are non-negative and d(u) is at least dist(s,u):

» Thus d(u) is currently not minimum and u will not be extracted !

( ) ( , )
( , ) ( ) ( , )

( ) ( ) ( , )
( ) ( , )
( )

d u dist s u
dist s x w xy dist y u
d x w xy dist y u
d y dist y u
d y

≥
= + +
= + +
≥ +
≥

S

x y

u
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END


