
1

109

Greedy Algorithms

Problem: set of n activities
si, fi start and end of activity i.

i compatible with j if intervals do not intersect.

Goal: find max # of compatible activities.

Let k have smallest fk and let A be OPT solution.
Case 1: k in OPT. Claim: A-k is OPT for

Assume not. Let B be OPT for S’, |B|>|A|-1
But then add k to B and we get better than A !

Case 2: k not in A, finish time of 1st job in A is AFTER fk

replace it with
k !

Thus we compute k, commit to it, compute S’, and repeat !

S i s fi k' |= >{ }

Lecture 13, Tuesday 5/22/01

110

Another greedy algorithm

Task defined by (duration, deadline), eg. HW.
Goal: find a schedule if one exists.

Assume that there exists a schedule
Claim: then there exists a schedule with

first job = job with smallest deadline.

a b

job with smallest
deadline

db da

We can exchange b and a !!

111

Summary

Take locally best choice and commit to it.

Main issue: proof that we can commit without loosing our
chance

to get an optimum solution.

112

Huffman encoding

Idea: represent often encountered letters by shorter
codes.

Prefix code: a code for x is not a prefix for any code-
word for y.

In this example: c=010, e=100

113

Huffman encoding

Assume that a is a very common symbol.

Now: a = 0
b = 100
e = 1100

114

Huffman encoding

Assume we know symbol frequencies:

50 40 5 3 2
a b c d e

50*1+40*2+5*3+3*4+2*4 = 165, 1.65b/symbol
instead of 3 !

2

115

Generating optimum encoding

Claim: Let x&y be lowest freq. characters.
Then there exists code where x&y differ only in

1 bit.

So does this mean that we do not need any other codes ?
[Hint: consider a sequence 10101010101….]

WLOG f a f b f x f y

also f x f a f y f b
exchanging x a y b

() (), () ()

: () (), () ()
,

£ £

£ £

U
V
W
fi ´ ´ can only help!

116

Min-Cost Spanning Tree

Applications:
» Cable TV,

» VLSI,

» basic task for many optimization algs (eg. flow).

Formally:
» Undirected graph G=(V,E).

» Weights

» Goal: find spanning tree of minimum weight.
(spanning = connects all nodes in G)

w E R: Æ

117

Example

118

Example MST

119

Optimum Substructure

Assume T is MST of G,
let uv be min-weight edge connecting A to (T-A)

Proof: “Cut-and-Paste” approach”

» Replace u’v’ by uv !

Questions:
» Why no more edges parallel

to u’v’ in T ?? - Cycles !

» Why u’v’ exists at all ??
(walk in T until you hit [T-A]

2
)

A T TÃ subtree of

fi$ » ÕMST s.t. (loose notation)T A uv T' () '

120

Prim’s Algorithm

Main idea:
» Pick a node v, set A={v}.

» Repeat:
– find min-weight edge e, outgoing from A,

– add e to A.

Need support for finding an edge that is:
» outgoing,

» Min-weight among all outgoing.

Lecture 15, Tuesday 11/21/00

3

121

Implementing Prim’s Alg

First try:
» Keep all edges (outgoing and internal) from A in a heap,

» new node: add all its edges to the heap.

» To get “next edge”:
– extract min-weight from heap

– check if internal. (how ??)

– if yes, discard and repeat.

Time: O(E) insertions and O(E) deletions from heap:

Total:O(E log V)

122

More about implementation

Only V-1 edges were used, the rest - wasted.

Idea:
» keep nodes in the heap, instead of edges.
» Key: distance of node from A over a single edge.
» Initially: key(v) = infinity, for all v.

key(root) = 0.

»

So why does this work ???

x root

v vx E
key v key v w vx

x x A

=

" Œ

=

Repeat:
 do:

 Pick smallest -key , add to .

:
() min((), ())

123

Alternative Implementations

Total: O(E) decrease-key, O(V) extract-min.

extract min decrease key Total

array ()

heap

Fib. heap

- -

+

O V O O V

O V O V O E V

O V O O V V E

() ()

(log) (log) (log)

(log) () (log)

1 2

1

124

Kruskal’s Algorithm

Main loop:
» scan edges in increasing order of weight

» put edge in if no loop created.

Why does this result in MST ??
» Observation: min-weight edge is always in MST.

Proof: Assume there exists a tree without this edge.
Add this edge to the tree - this creates a

cycle.
Delete max-weight edge on this cycle, we get

a lighter tree !

125

Proof of Kruskal’s algorithm

Consider the instant when we are adding the first wrong
edge,
i.e. edge xy that is not in any optimum tree:

» blobs are current connected
components.

» There exists a path from x to y
in the optimum tree.

» uv and u’v’ are not in our tree,
thus they are heavier than xy !

» cut-and-paste to get a better than
opt. tree: contradiction.

126

Implementation

Given two nodes u and v, need to know if they are
in the same connected component, i.e. in the same set.
Find_Set(v)

After adding edge uv, need to merge the set that includes u
with the set that includes v.
Union(Find_Set(u), Find_Set(v))

Total: O(V) Make_Set
O(E) Find_Set
O(V) Union

Section 22.4 explains how to achieve these ops in α(E,V) time,
where α is inverse Ackerman function.
(Union-Find data structure)

α(m,n)<5 for m,n < 108 !!!

4

127

Simple Union-Find
Implementation

Main idea:
» Maintain every set as a linked list,

every element points to head of the list.

» Merge smaller lists into larger ones.

Work:
» Find-Set takes O(1).

» Union: O(1) per element of the smaller list.

» Each time an element is charged during union,
his set at least doubles !!

O(log V) charges per element for all
unions.

» Total: O(V log V) work for all Unions.

Total time: Sort + O(E+V log V)

128

Dynamic Programming

Main problem with greedy approaches:
sometimes we can not commit up-

front.

Dynamic programming:
» Meta-technique, not a specific algorithm.

Main idea:
» solve many small sub-problems,

» combine solution to several small subproblems to solve
larger subproblems.

» continue combining until we solve the original problem.

Lecture 16, Tuesday 11/28/00

129

Single-Source Shortest Paths

Read Chapter 25.

Problem:
» Directed graph G=(V,E), n nodes, m edges.

» Edge uv has (real) weight w(uv).

» Distinguished node s, the “source”.

» Need to find shortest path from s to all nodes reachable
from s.

Main observation: if shortest path s to u goes through v,
then its part up to v is the shortest path from s to v.

s v u

130

Bellman-Ford

Dynamic programming:
» Subproblem: dk(v) = distance from s to v in up to k “hops”.

» To reach v in at most k+1 hops:
– reach neighbor of v in at most k hops,

– hop to v

– alternatively, reach v in at most k-1 hops

– phase k computes dk(v) for all v.

» Terminates in n-1 phases if no negative cycles
Proof in the book.
(Main idea: if more than n-1 hops, the path is not simple.)

{ }{ }1 (),() min min () ()|kk kvd v d d u w uv uv E+
= + Œ

Total time = O(nm)

131

Bellman-Ford

Early termination:
We can terminate at phase k if, for all v, dk(v) = dk-1(v)
,
since no more changes will happen in dk(v) for larger
values of k.
(might terminate earlier than after n-1 phases)

If negative cycle exists then no termination, even in n-1
phases:
Proof:

– Consider edge v
i
v
i+1

along the cycle at termination.

– If terminated, then for all edges on the cycle:

– Sum up:

d v d v w v vi i i i() () ()≤ ++ +1 1

d v d vi
i

i
i

() ()≤ +

⇒ ≥

∑ ∑ (weight of the cycle)

 weight of the cycle 0

132

Another example:
Matrix chain multiplication

Consider the following chain:

Example: [5x100] [100x2] [2x50]
» Multiplying last two and then by the first one:

100x2x50 + 5x100x50 = 35,000 multiplications.

» Multiplying first two and then by the last one:
5x100x2 + 5x2x50 = 1500

Order of multiplication affects the amount of work !

A A A A p p A p pn o1 2 1 1 2 1 2¥ ¥ ¥ ¥ ¥L ,],], is [is [etc.

A A A i k A k j p p p
i j k

p

1 2 1 2
1

0 1 2

1

¥ = ª

=

Â,
[,] [,], time

5

133

Solving matrix chain
multiplication

Observation:

» Consider last optimum multiplication:
» Then both and were

computed optimally !!
(Why ??)

Subproblems: is best “time” to multiply

Answer is m(1,n)

Why can’t we just use as subproblems the time to multiply
matrices 1 to i ??

() ()A A A Ak k n1 1¥ ¥ ¥ ¥ ¥
+

L L

()A Ak1¥ ¥L ()A Ak n+
¥ ¥1 L

()A Ai j¥ ¥Lm i j(,)

m i j
if i j

m i k m k j p p p if i j
i k j i k j

(,) min (,) (,)=

=

+ + + <
£ < -

R
S|

T|

0
1 1{ }

134

Matrix chain continued

Lets try to analyze using recurrence relation:

Wrong approach ! There are only O(n2) different
subproblems !

Build the table bottom up, for increasing (j-I).

O(n) per each , total O(n3) .

T

T n T k T n k T k n

T n
k

n

k

n

n

()

() [() ()] ()

()

1 1

1 1 2

2
1

1

1

1

1

≥

≥ + + - + ≥ +

≥

=

-

=

-

-

Â Â

by substitution, easy to see that

m i j(,)

Lecture 17, Thursday 11/30/00

135

Summary - Dynamic
Programming

Find optimum substructure

Define subproblems (not too many of them !)

Organize subproblems into a table.

Make sure there is a way to fill the table.

136

Longest common-subsequence

Consider two sequences:
x = A B C B D A B |x| = m

y = B D C A B A |y| = n

Greedy: does not work ! (Why ??)

Brute force: take any substring of x, check against y.
Total: O(2mn), too slow !

137

Optimum Substructure

Define subproblems:
Observe that C(m,n) is the answer that we seek.

Theorem:

Proof: Case 1, xi=yi.
Consider z1,…zk LCS of (x1…xi), (y1…yj)
if zk ≠ xi , then z is not LCS !!! (Why ??)

Now we claim that z1…zk-1 is LCS of (x1…xi-1),
(y1…yj-1)

Proof: if there is a longer than Z sequence, just
extend it !

C i j LCS x x x y y y
i j

(,) (, , , , , , ,)=

1 2 1 2
K K

C i j C i j x y
C i j C i j

i i(,) (,)
max{ (,), (,)}

=
- - + =

- -

R
S
|

T|

1 1 1
1 1

if
otherwise

138

Proof: continued

Case 2: xi ≠ yi
either: zk = xi (2a)

or zk = yj (2b)
or not equal to either

of them. (2c)

» Case 2a: zk = xi zk ≠ yj
z1,…zk is a LCS of

(x1…xi), (y1…yj-1) (Why ??)

» Case 2b is symmetric.

» Do Case 2c at home.

6

139

Recursive algorithm

We can use the theorem to construct a recursive
algorithm.
Consider its tree:

3,4

2,3 2,4 3,3

1,2 1,3 2,2 1,3 1,4 2,3 2,2 2,3 3,2

1,2 1,3 2,2

140

Analysis

Depth of the tree is O(m+n), leads to O(3m+n) bound, too
large !

Main idea: we see repeating sub-question,
only O(mn) different ones !

memoization: after computing sub-problem answer,
remember it.
dynamic programming: compute the table bottom-up.

141

Fill the table starting from top-left corner, and going
row-by-row:

Each element depends on the one above, one left, and if
xi=yi ,
then it is one more then the diagonal up-left element.

yi B D C A B A

x i

0 0 0 0 0 0
A 0 0 0 0 1 1 1
B 0 1 1 1 1 2 2
C 0 1 1 2 2 2 2
B 0 1 1 2 2 3 3
D 0 1 2 2 2 3 3
A 0 1 2 2 3 3 4
B 0 1 2 2 3 4 4

Computing the table

142

Knapsack Problem

Problem statement:
» We have n items, I-th item costs v(I) and weights w(I).

» We have a knapsack that can hold total W weight.
» Goal: maximize total value of items that we choose to put

into the knapsack, without exceeding total
allowed weight W.

Abstraction of many real problems:
from investing to telephone call routing.

Fractional (allowed to take part of an item)- easy !
do greedy, choose best value-per-weight element.

143

Fractional vs. Integer Knapsack

Consider the following example:
» Greedy: #1+#2 gives $90
» Optimum: #2+#3, gives $110
» Fractional: #1 +#2 + 3/5 of #3, gives $120.

Optimum substructure:

w W$ $ /
.
.

20 30 15
50 60 12
50 50 1

Consider optimum solution:

where means we do not take the item, and means we take it.

Claim: is optimum for

x x x

x x

x x x S x W w x

k

i i

k k k

1 2

1 2 1

0 1

, , , ,

, , , , () .

K

K

124 34 1 244 344

= =

- -

-

set of items

knapsack size
(max weight) 144

Solving Knapsack

Subproblems:

Table size in nW, O(1) per element, TOTAL = O(nW)

But knapsack is NP-Hard !
Do we indeed have a contradiction here ??

No contradiction since W is not
polynomial in the size

of the input...

C i w i w

C i w
if i w

otherwisev C i w w C i wi i

(,) , .

(,) max{ , }(,) (,)

 - OPT solution using items to knapsack
 or

take i- th do not take i-th

1
0 0 0

1 1=

= =

+ - - -

R

S
|

T
| 1 2444 3444 1 24 34

7

145

Graph Algorithms

Examples of graph problems:
» Direct applications:

– City streets map: reachability, shortest path, congestion management

– Communication networks: planning, fault tolerance/reliability, topology
augmentation

» Indirect applications:
– Assigning MDs to hospitals

– Scheduling jobs on a multiprocessor

– Searching solution spaces

Restate as a graph problem solve
map back

Lecture 18, Tuesday 12/5/00

146

Depth First Search

Visit(u)
color(u) = gray; d(u) = time; time++;
for each neighbor w of v:

if w is white then Visit(w)
color(u) = black; f(u) = time; time++;

Initially, set all nodes white,
examine nodes one-by-one, call Visit if node is still
white.

Node visited once, edge touched twice:
Running time O(n+m)

At home: Read theorems 23.6 and 23.8 !
(we will only sketch the proofs)

147

Edge Classification

Classification of uw according to (color of u) -> (color of
w):
(when the edge is considered)

» Tree edge: gray -> white

» Back edge: gray -> gray

» Forward: gray -> black, u ancestor of w.

» Cross: other gray -> black edges.

How to distinguish forward and cross edges ??
We can use d() time !

148

Parenthesis Theorem

Theorem:
For any two nodes u and v,
the two intervals [d(u),f(u)] and [d(v),f(v)] either:

» Do not intersect, or

» [d(u),f(u)] includes [d(v),f(v)] , v descendant of u, or

» [d(v),f(v)] includes [d(u),f(u)] , u descendant of v.

Proof:
» Assume (wlog) d(u)< d(v).

» If v was not discovered before finishing u, then we have case 1
above.

» If v was discovered, then we have to finish it before returning
and finishing u, leading to case 2.

» Case 3 is symmetric.

149

White-Path Lemma

In (directed or undirected) graph G, node v is descendant of u
iff at d(u) (time when u was discovered) there is a path from v
to u using only currently white nodes.

Proof:
» Assume v is descendant of u.

Let ww’ be edge on the u->v path in the tree.
If w’ was not white at d(u), then ww’ will not be tree edge.
Thus, all nodes on the u->v path are white when u is discovered.

» Assume that at d(u) there is a white path from u to v.
Let ww’ be the first edge on this path, with w’ closest to u
so that w is descendant of u but w’ is not.

– We have f(u)> f(w) > d(w) > d(u).

– But we have to discover w’ after starting u and before finishing w:
d(u) < d(w’) < f(w) < f(u)

– By parenthesis theorem, w’ is also a descendant of u, contradiction.

150

Simple Lemma

Lemma: if G undirected, then only tree and back edges.
Proof: wlog, d(u)<d(v).

Thus v must be discovered and finished
before finishing u, since uv exists.
If uv discovered from u, before v,

it is tree edge
if v was discovered before uv,

uv becomes a back edge.

Why does the proof break down in the directed case ?

8

151

Discovering Cycles

Claim: G acyclic iff DFS yields no back edges.

Proof:
» Trivial to observe that back edge implies a cycle.

» Assume there exists a cycle:
– Let v be the node with smallest d on the cycle and let uv be edge of

the cycle.

– At d(v) all nodes on the cycle, including u, are white.

– All these nodes, including u, become descendants of v.

– Thus, when u is scanned, we will discover uv edge and mark it as “back
edge”.

152

Topological Sort

Directed acyclic graph G.

Algorithm:
» Call DFS to compute finishing times f[v] for each vertex v.

» As each v is finished, insert it onto the front of linked list

» Return the linked list.

Claim: the output list is a legal topological sort.
» Sufficient to prove that, for every u and v s.t. (uv) is an edge,

we have f[v] < f[u]. (Why ??)

» Consider edge (uv) explored by DFS.
Observe that when (uv) is explored, v can not be gray !
(back edge implies cycle)

» If v white, it becomes descendant of u, and thus f[v] < f[u].

» If v black, it finished before u started, so again f[v] < f[u].

153

Back to shortest paths:
Dijkstra’s Algorithm

We can do better than Bellman-Ford if no negative-weight
edges !

Algorithm:

Main idea: add node with shortest perceived distance.

Time: n extract_min, m decrease_key
binary heap: O(m log n)
Fib. Heap: O(m+n log n)

d s v s d v
d v

u
uv E

d v d u w uv
d v d u w uv

() ; : () ;
();

:
() () ()

() () ()

= ∀ ≠ = ∞

=
∈

> +
= +

0
Construct heap, key(v) =
While heap not empty:

extract_ min(heap);
for each v s.t.

if
then

154

Correctness of Dijkstra’s
algorithm

Correctness Proof:
» Let u be the first extracted node with d(v) not equal to distance.

(note that once v is extracted, its d(v) is not adjusted)
» Consider shortest path s to u, focus on edge (xy) where x was

extracted already (its d(x) is correct distance) and y was not yet
extracted. (Why does such edge exist ?)

» Observe that d(y) is at most d(x)+w(xy), since x was already
processed.

» All distances are non-negative and d(u) is at least dist(s,u):

» Thus d(u) is currently not minimum and u will not be extracted !

() (,)
(,) () (,)

() () (,)
() (,)
()

d u dist s u
dist s x w xy dist y u
d x w xy dist y u
d y dist y u
d y

≥
= + +
= + +
≥ +
≥

S

x y

u

155

END

