Lecture 13, Tuesday 5/22/01
Greedy Algorithms

® Problem: set of n activities
s;, f; start and end of activity i.

® i compatible with § if intervals do not intersect.

® Goal: find max # of compatible activities.

o Let k have smallest f, and let A be OPT solution.
Case 1: k in OPT. Claim: A-k is@%‘l{g ar
Assume not. Let B be OPT for S', |B|>|A|-1
But then add k to B and we get better than A |
Case 2: k not in A, finish time of 1st job in A is AFTER f,
K replace it with

Thus we compute k, commit to it, compute S’, and repeat !
109

Another greedy algorithm

o Task defined by (duration, deadline), eg. HW.
Goal: find a schedule if one exists.

e Assume that there exists a schedule
Claim: then there exists a schedule with
first job = job with smallest deadline.

job with smallest dy d

deadline
We can exchange b and a!!

110

e Assume that a is a very common symbol.

o Now: a
100
1100

oo
mn o

113

Summary Huffman encoding
|— — — — |— — — — |
o Take locally best choice and commit to it.] Idga: represent often encountered letters by shorter
codes.
° ‘A:I:‘(zirr‘lciessue: proof that we can commit without loosing our ® Prefix code: a code for x is not a prefix for any code-
to get an optimum solution. word for y.
® In this example: ¢=010, e=100
111 112
Huffman encoding Huffman encoding
|— — — — |— — — — |

® Assume we know symbol frequencies:

50 40 5 3 2 \
a b

c d e .\ :

o 50-1+40-2+5-3+3+4+2-4 = 165,

1.65b/symbol
instead of 3!

114

Generating optimum encoding

P ——————

® Claim: Let x&¥ be lowest freq. characters.
1 bt hen there exists code where x&y differ only in
it

WLOG f(a)s f(b), f(x)S f(y)
also 1< F(a)f()< '(b)}ﬁexmaﬂg\r\nga,yHbD@ﬂmW help!

® So does this mean that we do not need any other codes ?
[Hint: consider a sequence 10101010101....]

115

Min-Cost Spanning Tree

P ————

® Applications:
» Cable TV,
» VLSI,
» basic task for many optimization algs (eg. flow).

e Formally:
» Undirected graph &=(V.E).
» WeightswE - R

» Goal: find spanning tree of minimum weight.
(spanning = connects all nodes in 6)

116

Example
e ——)
.
3 ~4

ps 5) ° 9 e

14 |2

. 3 10 * 113 .
*

117

Example MST

118

Optimum Substructure

o Assume T is MST ofA&] subtreeof T
let uv be min-weight edge connecting A to (T-A)
= IMST T' st. (Auuv)cT' (loose notation)

® Proof: "Cut-and-Paste” approach”

» Replace u'v' by uv ! (P45

o Questions: / /

» Why no more edges parallel

T-A),
to uv in T ?? - Cycles ! TR
» Why u'v' exists at all ?? R G
(walk in T until you hit [T-/4 edgein T g

af [T-A] with nede v.

119

Lecture 15, Tuesday 11/21/00
Prim’s Algorithm

P —————

e Main idea:
» Pick a node v, set A={}.
» Repeat:

— find min-weight edge e, outgoing from A,
— add e to A.

o Need support for finding an edge that is:
» outgoing,
» Min-weight among all outgoing.

120

Implementing Prim’s Alg

o First try:
» Keep all edges (outgoing and internal) from A in a heap,
» new node: add all its edges to the heap.
» To get “"next edge”:
— extract min-weight from heap
— check if internal. (how ??)
— if yes, discard and repeat.

o Time: O(E) insertions and O(F) deletions from heap:

[ey

121

More about implementation

e Only V-1 edges were used, the rest - wasted.

® Idea:
» keep nodes in the heap, instead of edges.
» Key: distance of node from A over a single edge.
» Initially: key(v) = infinity, for all v.
key(root) = 0.

X=root
Repeat:
Yv.vxeE do:
Key(v)=min(key(v) w(vx))
» Pick smallest-key x, addxto A

® So why does this work ???

122

Alternative Implementations

o Total: O(E) decrease-key, O(V) extract-min.

extract—min decrease-key Total

ay OV oW ov?)
heap O(logV) O(logV) O(ElogV)
Fib.heap O(logV) o) OV logV+E)

123

Kruskal’s Algorithm

® Main loop:
» scan edges in increasing order of weight
» put edge in if no loop created.

e Why does this result in MST ??
» Observation: min-weight edge is always in MST.
Proof: Assume there exists a tree without this edge.
Add this edge to the tree - this creates a
cycle.
Delete max-weight edge on this cycle, we get
a lighter tree |

124

Proof of Kruskal’s algorithm

e Consider the instant when we are adding the first wrong
edge,
i.e. edge xy that is not in any optimum tree:

» blobs are current connected Q
components.

» There exists a path from x to y
in the optimum tree.

» uv and u'v' are not in our tree,
thus they are heavier than xy !

» cut-and-paste to get a better t..... === —;
opt. tree: contradiction.

125

Implementation

® Given two nodes u and v, need to know if they are
in the same connected component, i.e. in the same set.
Find_Set(v)
o After adding edge uv, need to merge the set that includes u
with the set that includes v.
Union(Find_Set(u), Find_Set(v))
e Total: O(V) Make_Set
O(E) Find_Set
O(V) Union
® Section 22.4 explains how to achieve these ops in o(E.V) time,
where o is inverse Ackerman function.
(Union-Find data structure)

o o(m,n)<5 for m,n < 108 Il

126

e Early termination:
We can terminate at phase k if, for all v, &) = &)

since no more changes will happen in &*() for larger
values of k.

(might terminate earlier than after n-1 phases)

o If negative cycle exists then no termination, even in n-1
ases: d(W) =< d(v,0) +WW,,)
roof :

B e B g

— Sum up: = weight of the cycle >0

131

S|mp|e Union-Find Lecture 16, Tuesday 11/28/00
Implementation Dynamic Programming
rmm— rmm— —
® Main idea: ® Main problem with greedy approaches:
» Maintain every set as a linked list, sometimes we can not commit up-
every element points to head of the list. front.
» Merge smaller lists into larger ones. o Dynamic programming:
o Work: » Meta-technique, not a specific algorithm.
» Find-Set takes O(1). L
» Union: O(1) per element of the smaller list. ® Main idea:
» Each time an element is charged during union, » solve many small sub-problems,
his set at least doubles !!O n tement for al » combine solution to several small subproblems to solve
unions. (log V) charges per element for al larger subproblems.
. Total: O(V log V) work for all Unions. » continue combining until we solve the original problem.
o Total time: Sort + O(E+V log V)
127 128
Single-Source Shortest Paths Bellman-Ford
rmm— — rmm— —
e Dynamic programming:
® Read Chapter 25. » Subproblem: d(¥) = distance from s to v in up to & “hops”.
» To reach v in at most k+1 hops:
e Problem: — reach neighbor of v in at most k hdps,
» Directed graph G=(V,.E), n nodes, m edges. - ::"Z::a:mly reach v in af most kfidk):min{dk(v)v min{dk(u)w(uv)\uveE}}
» Et.ige. uv.has (real) weight :v(uv). ; — phase k computes (i) for all v.
» Distinguished node s, the “source”. » Terminates in n-1 phases if no negative cycles
» Need to find shortest path from s to all nodes reachable Proof in the book.
from s. (Main idea: if more than n-1 hops, the path is not simple.)
® Main observation: if shortest path s to u goes through v,
then its part up to v is the shortest path from s to v. Total time = O(nm)
VA —~_—Uu
129 130
Another example:
Bellman-Ford Matrix chain multiplication
[m— — rmm— —

o Consider the following chaincAx <A, Alislpoxpl A is[pyxp,], etc.
[AxA| —;A,[I KIALK], time = popip,

e Example: [6x100] [100x2] [2x50]

» Multiplying last two and then by the first one:
100x2x50 + 5x100x50 = 35,000 multiplications.

» Multiplying first two and fhen by the last one:
5x100x2 + 5x2x50 = 150

® Order of multiplication affects the amount of work !

132

o Define subproblems: c(j,j)= LCS(X, X, X Y Y, -

e Observe that C(m,n) is the answer that we seeN

e Theorem:)= Cli-1j-1+1 ifx =y,

D= max{c(i,j-1,C(-1)} otherwise

Proof: Case 1, X-d LeS of ((
Consider z,..z of (XX
if z,# x; "Thén z is not LES '?l (Why ??)
Now we claim that z,.z,_, is LCS of (x,.x,.p),

(Yx---Y/-x)

Proof: if there is a longer than Z sequence, just
extend it !

137

Solvin g matrix chain Lecture 17, Thursday 11/30/00
multiplication Matrix chain continued
[— — [— — — |
® Observation: e Lets try to analyze using recurrence relation:
» Consider last optimum multiplicatiohfy<: - X A)x (A, x:-xAy) W21
> I:'i:ﬁ:éhéﬁ.,:/}y] (Aqpandhy) were T(n)21+‘§j[T(k)+T(nfk)+1]22§T(k)+n
Wi r‘r‘(l J) (A XA by substitution, easy to seethat T(n) 22"
® Subproblems: is best “time” to mulfiﬁfy
o fic e Wrong appr‘oach | There are only O(n?) different
D= {";' {0+ L)+ Ry p] i i< subproblems |
® Build the table bottom up, for increasing {f-I).
® Answer is m(1,n) mi, j)
e O(n) per each , total O(n®) .
o Why can't we JI.IST use as subproblems the time to multiply
matrices 1 to 1
133 134
Summary - Dynamic
Programming Longest common-subsequence
[— — — | [— — — |
e Find optimum substructure e Consider two sequences:
x;A‘B\ ‘BDAB Ix] =
i I
o Define subproblems (not too many of them 1) yiBDCAB A Iyl =
® Organize subproblems into a table. o Greedy: does not work | (Why 2?)
® Make sure there is a way to fill the table. e Brute force: take any substring of x, check against y.
Total: O(2™n), too slow !
135 136
Optimum Substructure Proof: continued
[— — — | [— — — |

e Case 2: x;# y;

either: 2, =% (2a)
or z, =y, (2b)
or not equal to either
of them. (2¢)
—
» Case 2a: Z, ==X==> zZ,#

7,.2,is a LCS of
(X 5uX), (Yx---Y/-x) (Why ??)

» Case 2b is symmetric.

» Do Case 2c at home.

138

Recursive algorithm

e We can use the theorem to construct a recursive
algorithm.
Consider its tree:

34

I
PANIVAY A

12 13 14 2 32

,
7N
12

13 22

139

Analysis

° IDepfhI of the tree is O(m+n), leads to O(3™") bound, too
arge |

e Main idea: we see repeating sub-question,
only O(mn) different ones |

® memoization: after computing sub-problem answer,
remember it.
dynamic programming: compute the table bottom-up.

140

Computing the table

o Fill the table starting from top-left corner, and going
row-by-row:

¥ B 3 c A B A

®>o0m0®>

® Each element depends on the one above, one left, and if

X=y; .
then it is one more then the diagonal up-left element.

141

Knapsack Problem

® Problem statement:
» We have n items, I-th item costs wI) and weights w(T).
» We have a knapsack that can hold total ¥ weight.

» Goal: maximize total value of items that we choose to put
into the knapsack, without ding |
allowed weight W.

® Abstraction of many real problems:
from investing to telephone call routing.

o Fractional (allowed to take part of an item)- easy !
do greedy, choose best value-per-weight element.

142

Fractional vs. Integer Knapsack

e Consider the following example: %r{»‘s"’
» Greedy: #1+#2 gives $90 50 60| 12
» Optimum: #2+#3, gives $110 50 50| 1

» Fractional: #1 +#2 + 3/5 of #3, gives $120.

® Optimum substructure:
Consider optimum solution: X, X,,---, X,
where x =0 meanswe do not take the item, and x, =1 meanswetake it.

Clam: x,%,..., % _, isoptimumfor S-x_, W-wXx,).

st of items ,_J
knapsack size

(mex weight) 143

Solving Knapsack

® Subproblems:
C(i,w) - OPT solution using items 1 to i, knapsack w.
- 0 if i=00orw=0
C(i,W) =4 max{y, + C(i —1.w-w),C(i—1.w) otherwise

e Table size in nW, O(1) per element, TOTAL = O(nW)

® But knapsack is NP-Hard !
Do we indeed have a contradiction here ??

No contradiction since W _is not

polynomial in the size
of the input...

144

Lecture 18, Tuesday 12/5/00
Graph Algorithms

e Examples of graph problems:
» Direct applications:
— City streets maop: Y. shortest path,

— Communication networks: planning, fault tolerance/reliability, topology
augmentation

» Indirect applications:
— Assigning MDs to hospitals
— Scheduling jobs on a multipr
— Searching solution spaces

e Restate as a graph problem " solve
map back

145

Depth First Search

o Visit(u)
color(u) = gray; d(u) = time; time++;
for each neighbor w of v:
if w is white then Visit(w)
color(u) = black: f(u) = time; time++;

o Initially, set all nodes white,
e);‘amme nodes one-by-one, call Visit if node is still
white

o Node visited once, ed'ge Touci;ed TvCl)lfe)
unning time O(n+m

e At home: Read theorems 23.6 and 23.8 |
(we will only sketch the proofs)

146

o In (directed or undirected) graph G, node v is descendant of u
iff at d(u) (time when u was discovered) there is a path from v
to u using only currently white nodes.

® Proof:
» Assume v is descendant of u.
Let ww' be edge on the u->v path in the tree.
If w' was not white at d(u), then ww’ will not be tree edge.
Thus, all nodes on the u->v path are white when u is discovered.
» Assume that at d{u) there is a white path from u to v.
Let ww' be the first edge on this path, with w’ closest to u
so that w is descendant of u but w' is not.
We have f(u)> f(w) > d) > d(u).
— But we have to discover w' after starting u and before finishing w:
d(u) < dw) < FW) < f(0)

— By parenthesis theorem, w' is also a descendant of u, contradiction.

149

Edge Classification Parenthesis Theorem
| — | —
o Classification of uw according to (color of u) -> (color of e Theorem:
w): For any two nodes u and v,
(when the edge is considered) the two intervals [d(u), f(u)] and [d(v).f(v)] either:
) B . » Do not intersect, or

: ;:f:: :gg:: g:ﬂy_)) :’:”e » [d{u), f(W] includes [d(v),f()] ., v descendant of u, or
ge: gray gray » [d(¥), f()] includes [d(u),f(u)] , u descendant of v.

» Forward: gray -> black, u ancestor of w.

» Cross: other gray -> black edges.

® Proof:
e How to distinguish forward and cross edges ?? » Assume (wlog) d(u)< d(v).
We can use d() time | » Ilf: v was not discovered before finishing u, then we have case 1
above.
» If v was discovered, then we have to finish it before returning
and finishing u, leading to case 2
» Case 3 is symmetric.
147 148
White-Path Lemma Simple Lemma
| — | —

e Lemma: if G undirected, then only tree and back e
Proof: wlog, d{u)<d(v).

Thus v must be discovered and fi

before finishing u, since uv e

If uv discovered from u, befére

it is treg edge ®

if v was discovered before u

uv becomes a back edge.

e Why does the proof break down in the_directed case ?

What type is 'his edge 77

150

Discovering Cycles

o Claim: 6 acyclic iff DFS yields no back edges.
® Proof:
» Trivial to observe that back edge implies a cycle.
» Assume there exists a cycle:

— Let v be the node with smallest d on the cycle and let uv be edge of
the cycle.

— At d(v) all nodes on the cycle, including u, are white.
— All these nodes, including u, become descendants of v.
- Thus,’ when u is scanned, we will discover uv edge and mark it as “back

edge”.

151

Topological Sort

® Directed acyclic graph &.

o Algorithm:
» Call DFS to compute finishing times f[v] for each vertex v.
» As eoch v is finished, insert it onto the front of linked list
» Return the linked list.

® Claim: the output list is a legal topological sort.

» Sufficient to prove that, for every u and v s.t. {uv) is an edge,
we have flv] < flu]. (Why ??)

» Consider edge (uv) explored by DFS.
Observe that when (uv) is explored, v can not be gray !
(back edge implies cycle)

» If v white, it becomes descendant of u, and thus f[v] < f[u].

» If v black, it finished before u started, so again f[v] < f[u].

152

Back to shortest paths:
Dijkstra’s Algorithm

e We can do better than Bellman-Ford if no negative-weight
edges |
d(9=0 Vv#sd(v)=ce;
® Algorithm: Construct hesp, key(v) = d(v);
While heap not empty:
u=extract_min(heap);
foreachvst weE:
if d(v)>d(u)+w(uv)
then d(v) = d(u) +w(uv)

® Main idea: add node with shortest perceived distance.
e Time: n extract_min, m decrease_key

binar‘z| heap: O(m log n)

Fib. Heap: O(m+n log n)

153

Correctness of Dijkstra’s
algorithm

@ Correctness Proof:

Let u be the first extracted node with d(v) not equal to distance.
(note that once v is extracted, its d(v) is not adjusted)

Consider shortest path s to u, focus on edge Sxy) where x was
extracted already (its d(xLis correct distance) and y was not yet
extracted. (Why does such edge exist ?)

Observe that d(y) is at most d(x)+w(xy), since x was already
processed.

All distances are non-negative and d{u) i
d(u)>dist(s,u)
=dist(s x)+w(xy)+dist(y,u)
=d(x)+w(xy)+dist(y,u)
=d(y)+dist(y,u)
2d(y)

at least @s?(s,u):

Thus d(u) is currently not minimum and u will not be extracted !

END

155

