
1

101

Skip List

Simple data structure, easier to implement than 
red/black trees.

Sorted linked list with “skip” pointers.

Construction:
» Every element in the “bottom list” (list 0)

» Element passed to list 1 with probability 1/2.

» In general, element in list i is passed to list i+1 with prob. 
1/2.

Lecture 12, Thursday 5/17/01

102

Skip Lists

Analysis:
» Expected O(log n) lists.

» Expected total number of nodes is n+n/2+n/4+… = O(n).

» Search: find range in last list, examine this range next one 
down, etc.

» Each range is expected to be constant length: 
O(1) work per range, O(log n) total.

Works only if deletions are not malicious.

103

Extending Red-Black Trees

Dynamic order statistics:
» Select(x,i) - i-th smallest in tree rooted at x.

» Rank(T,x) - rank of x in tree T.

New field: Size of subtree

Idea: sufficient in order to know 
whether to go right or left.

Ex: Rank: go down, each right - add size of left subtree +1.
When elements found, add 1 + left subtree.

For H in the figure: 
size(A)+1 +size(D)+1 +1+0 =5.

104

Dynamic selection continued

In order to be able to claim O(log n) time, 
need to be able to update extra fields during:

» Insertion/deletion into red/black tree

» Rotations.

Easy to see that this is trivial in this case: only local 
data needed.

Example:

105

Interval intersection

Goal:
» Maintain collection of intervals (support deletion/insertion)

» Given an interval I, produce interval J from data structure,
such that I intersects J.

Ignore open vs closed, each interval starts at a new 
point.

4 8

7

11

10

15 18 21 23

1917

16 22

106

Interval = Node
Low endpoint = key
New info: max endpoint in subtree

Easy to maintain during
insertion/deletion/rotation

Interval data structure



2

107

Using the data structure

x=root(T)
while x≠ NIL & I ∩ int(x)=∅

if left(x) ≠ NIL && max(left(x))> low(I)
then x = left(x)
else x = right(x)

Theorem: if overlap exists, and search goes left,
then there exists an overlap on left.

Same for “goes right”

Proof: 
Case 1: goes right.

Case 1a: overlap in right subtree - done.
Case 1b: no overlap in right subtree.

we went right - left(x)=NIL or max(left(x))<low(i)
In both cases there can not be overlap on the left !!

108

Case 2

Case 2: we go left.
Case 2a: overlap on left - done.
Case 2b: no overlap on left.

we went left -- left(x) != NIL, max(left(x)) >= low(i)
no overlap -- exists interval I’ s.t low(I’) > high(I)
but tree ordered by low --- all intervals in right tree have lows

above high(I) ! -- no overlap there.

I
I’

low(I’)


