
1

90

Searching in B-Tree

Check if “current node” is =x or =NIL.
Equal to x -- return,
Equal to NIL -- return “not found”

else:
if x ≤ current key ---- search in the left tree
otherwise search in the right tree.

“Go down the tree, turning right/left as appropriate…”

Running time: O(h), h=height of the tree.

Note that this was impossible to do with a heap !

Lecture 10, Tuesday 5/8/01

91

Inserting into B-Tree

Insertion: search for key, and put it in the first empty
space.

Insertion takes O(h).

Sort:
» Insert item-by-item,

» in-order walk.

» O(n2)…

Min/max - go all the way left or all the way right.

25

9

8

1

5

92

Relation to Quicksort

Randomly permute input.

Consider example: 3 1 8 2 6 7 5
» Quicksort chooses 3, then compares 1,8,2,6,7,5 to 3.

Then chooses 2, compares 1 to 2
chooses 8, compares 6,7,5 to 8.

» B-Tree: chooses 3, places as root
Then chooses 1, compares with 3, put in place.

chooses 2, compares with 1, 3, put in place
etc…

» Overall, same comparisons, only different order !!

93

Successor/Predecessor

Successor:
If right(x) != NIL, return TreeMin(right(x))
y=parent(x)
while y != NIL & x=right(y)

x=y
y=parent(x)

return y

Successor of 6 is 8.

Easy case

Go up the tree to the LEFT

8

3 25

9 3051

4 6

94

Deletion

3 Cases:
» No children

» 1 child

» 2 children

3rd case: put successor(x) instead of x.
» B-Tree property satisfied.

» Delete “hole” using case 1 or 2. (successor does not have
left child !)

