
1

82

Choosing Hash Functions

Mostly black magic…
division method: h(k)=k mod m

» Do not use m=2
p
(will not use all the bits)

» choose m=prime not too close to power of 2 or 10.

Multiplication method:
» choose m≠2p

, 0 < A < 1, not too close to 0 or 1.

» If m=2P , then all we do is scramble by multiplication, and
choose p bits to the left of binary point.

» Another explanation: consider going from k-1 to k.

() ()h k m kA kAÍ ˙Í ˙
Í ˙Î ˚Î ˚

= -

Lecture 9, Thursday 5/3/01

83

More multiplicative method

Example: m=8:
» each time k incremented:

– go A around the circle,

– Read off sector number.

» Note what happens if A=.5 or
1/2p.

84

Universal Hashing

Biggest problem with hash function:
There is always an adversarial sequence that “kills” it !

Can not choose truly random function - m to the power of keys
different functions. Too much storage !!!

We need a small family H of hash functions, such that,
for any input, only small percentage of these functions are
“killed”.

Existence of such family ? Size ?
First, lets look at properties: What if h() is truly random ?
Then:

Pr[() ()] Pr[() ()]h x h y h x h y i m
m mi

n
= = = = = =

=
∑

1
2

1 1

85

Universal Hashing

Assume we found a family H that satisfies the
requirement
that if h ∈ H is chosen at random,
then, for any x&y:

(note that we are given x&y and h chosen independently
of x&y)

Claim: this property is good enough for our purposes !

Pr[() ()] Pr[() ()]h x h y h x h y i m
m mi

n
= = = = = =

=
∑

1
2

1 1

 total # collisions with (random variable !)

1 () () indicator random variable
0

By our assumption: [] 1/

1[]

x

yz

x xy
y T
y x

xy

x xy
y T
y x

C x

if h y h z
otherwise

C

E m

nE C E
m

l

l

l

l a

Œ

π

Œ

π

ÏÔ
Ì
ÔÓ

È ˘
Í ˙
Í ˙
Í ˙
Í ˙Î ˚

=

=
=

=

=

-
fi = = £

Â

Â

This is enough for
1+α expected performance

86

Construction
Universal Hash Functions

Need: for any x&y, proportion of functions in H that
map

both x and y to the same slot is 1/m.

Take m prime.

Define a function for each possible choice of a.

Claim: the family H is universal.

Input x x x x i x m
Let a a a a a m

r i

r i

: , , , , , .
, , , , [0,]

=< > ∀ <
=< > ∈ −

0 1

0 1 1
L

L chosen uniformly at random.

0
() mod

r

a i i
i

h x a x m
=

=∑

87

Proving Universality

Total number of functions in H: mr+1

Given particular x and y, what proportion of these functions
map h(x)=h(y) ? WLOG, assume x

0
≠ y

0

Choose a
1
, a

2
, a

3
, etc first. There are mr choices.

Now we need to choose a
0
, to make h(x)=h(y):

Thus, total number of functions such that h(x)=h(y) is mr ,
exactly the right proportion.

a x y a x y m

But x y x y invertible m

i i i
i

r

0 0 0
1

0 0 0 0

() ()mod

() mod

− =− −

≠ ⇒ −
⇒

=
∑

There is .only 1 solution

2

88

Binary Search Trees
(Chapter 13)

In addition to insert/delete:
» Heaps supported min/max.

» Hashing supported search.

» What if we want both min/max/search, and also pred/succ ?

Binary Search trees:

x

y z

" Œ £

" Œ ≥

a key a key x
a key a key x

 left tree
 right tree

() ()
() ()

89

Examples

Legal B-Trees:

In-Order walk: InOrder(left(x))
print(x)
InOrder(right(x))

Note that given B-tree, can output sorted in O(n) time !
Gives lower bound on constructing B-Tree.
(Compare with Heap !)

8

3 25

9 3051

25

9

8

1

30

5

