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Choosing Hash Functions

Mostly black magic…
division method:  h(k)=k mod m

» Do not use m=2
p
(will not use all the bits)

» choose m=prime not too close to power of 2 or 10.

Multiplication method:  
» choose m≠2p

, 0 < A < 1, not too close to 0 or 1.

» If m=2P , then all we do is scramble by multiplication, and 
choose p bits to the left of binary point.

» Another explanation: consider going from k-1 to k.
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More multiplicative method

Example: m=8:
» each time k incremented:

– go A around the circle,

– Read off sector number.

» Note what happens if A=.5 or
1/2p.
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Universal Hashing

Biggest problem with hash function: 
There is always an adversarial sequence that “kills” it !

Can not choose truly random function - m to the power of keys
different functions. Too much storage !!!

We need a small family H of hash functions, such that,
for any input, only small percentage of these functions are 
“killed”.

Existence of such family ? Size ? 
First, lets look at properties: What if h() is truly random ?
Then: 
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Universal Hashing

Assume we found a family H that satisfies the 
requirement
that if h ∈ H is chosen at random, 
then, for any x&y:

(note that we are given x&y and h chosen independently 
of x&y)

Claim: this property is good enough for our purposes !
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This is enough for
1+α expected performance
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Construction 
Universal Hash Functions

Need: for any x&y, proportion of functions in H that 
map

both x and y to the same slot is 1/m.

Take m prime.

Define a function for each possible choice of a.

Claim: the family H is universal.
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Proving Universality

Total number of functions in H:    mr+1

Given particular x and y, what proportion of these functions
map h(x)=h(y) ?     WLOG, assume x

0
≠ y

0

Choose a
1
, a

2
, a

3
, etc first.   There are mr choices.

Now we need to choose a
0
, to make h(x)=h(y):

Thus, total number of functions such that h(x)=h(y) is mr ,
exactly the right proportion.
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Binary Search Trees
(Chapter 13)

In addition to insert/delete:
» Heaps supported min/max.

» Hashing supported search.

» What if we want both min/max/search, and also pred/succ ?

Binary Search trees:
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Examples

Legal B-Trees:

In-Order walk: InOrder(left(x))
print(x)
InOrder(right(x))

Note that given B-tree, can output sorted in O(n) time !
Gives lower bound on constructing B-Tree.
(Compare with Heap !)
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