

More multiplicative method	
- Example: m=8: » each time \mathbf{k} incremented: - go A around the circele. - Read off sector number. " Note what happens if $A=.5$ or $1 / 2^{\mathrm{P}}$.	
	83

UniverSal Hashing

- Biggest problem with hash function:
There is always an adversarial sequence that "kills" it!
- Can not choose truly random function - m to the power of keys
different functions. Too much storage !!!"
- We need a small family H of hash functions, such that,
for any input, only small percentage of these functions are
"killed".
- Existence of such family? Size ?
First, lets look at properties: What if ho is truly random?
Then:
$\quad \operatorname{Pr}[h(x)=h(y)]=\sum_{i=1}^{n} \operatorname{Pr}[h(x)=h(y)=i]=m \frac{1}{m^{2}}=\frac{1}{m}$

Universal Hashing	
- Assume we found a family H that satisfies the requirement that if $h \in H$ is chosen at random, then, for any x\&y: $\operatorname{Pr}[h(x)=h(y)]=\sum_{i=1}^{n} \operatorname{Pr}[h(x)=h(y)=i]=m \frac{1}{m^{2}}=\frac{1}{m}$ (note that we are given x dy and h chosen independently of $x \& y$) - Claim: this property is good enough for our purposes! $C_{x}=$ total \# collisions with x (random variable!) $\lambda_{y z}=\left\{\begin{array}{ll}1 & \text { if } h(y)=h(z) \\ 0 & \text { otherwise }\end{array}\right.$ indicator random variable $C_{x}=\sum_{\substack{y \in T \\ y \neq x}}^{1} \lambda_{x y}$ By our assumption: $E\left[\lambda_{x y}\right]=1 / m$ $\Rightarrow E\left[C_{x}\right]=E\left[\sum_{\substack{y \in T \\ y \neq x}} \lambda_{x y}\right]=\frac{n-1}{m} \leq \alpha$ This is enough for	85

Construction Universal Hash Functions

- Need: for any $x \& y$, proportion of functions in H that map
both x and y to the same slot is $1 / \mathrm{m}$.
- Take mprime.

Input: $x=\left\langle x_{0}, x_{1}, \cdots, x_{r}\right\rangle, \quad \forall i, x_{i}<m$.
Let $a=\left\langle a_{0}, a_{1}, \cdots, a_{r}>, a_{i} \in[0, m-1]\right.$ chosen uniformly at random.

- Define a function for each possible choice of a.
$h_{a}(x)=\sum_{i=1}^{r} a_{i} x_{i} \bmod m$
Proving Universality
- Total number of functions in H : m^{r+1}
- Given particular x and y, what proportion of these functions map $h(x)=h(y)$? WLOG, assume $x_{0} \neq y_{0}$
- Choose a_{1}, a_{2}, a_{3}, etc first. There are m^{r} choices. Now we need to choose a_{0}, to make $h(x)=h(y)$:

$$
\begin{aligned}
a_{0}\left(x_{0}-y_{0}\right) & =-\sum_{i=1}^{r} a_{i}\left(x_{i}-y_{i}\right) \bmod m \\
\text { But } x_{0} \neq y_{0} & \Rightarrow\left(x_{0}-y_{0} \text { invertible } \bmod m\right. \\
& \Rightarrow \text { There is onlv } 1 \text { solution. }
\end{aligned}
$$

- Thus, total number of functions such that $h(x)=h(y)$ is m^{r}, exactly the right proportion.

