
1

74

Hashing�(Chapter�12)

Heaps support:
» Insert

» Delete

» Max/min

How about Search ?
(How would you implement “find” in a heap ?)

Possible solutions:
» Ordered array: slow “insert” - Ω(n).

» Ordered list: both find and insert are slow !

Lecture�8,�Thursday�4/26/01

75

Direct�address�table

Maintain table T[i]:

Disadvantage: too much memory !

Idea: maintain small table:

, ()
[]

x if x T key x i
T i

otherwise

ÏÔ
Ì
ÔÓ

Œ =
=
∆

Universe
of�keys

Small
table

76

Collisions

| Table | << | Universe of keys | - collisions !
(collision= two keys map into the same slot in T)

How to resolve collisions:
» Chaining:

» Open addressing: if A[h(x)] full - try next slot.

What�is�“next”�?

77

Analysis�of�Chaining

Assume each key equally likely hashed to any slot.

n keys, m slots;

Expected length of a chain:

Unsuccessful search:
Expected length of a randomly chosen list +1:

α = =n
m

�"load�factor"

1
1 m

n
m

n

∑ = =α

��Access�time�=� (1+)O afi

� (1+)O a

78

Successful�Search

Expected time to find i-th element = time to insert i-th
element

Assume that the key being searched for is equally likely to be
any one of the keys stored.

Conditioned on “key was the i-th element inserted”,

expected time =

overall:

Intuition: need to search 1/2 of a list on the average.

11 i
m

−+

1 1

1 1

(1)1 1
2 2 2

11 1 1

1 1 (1)

n n

i in nm

n n
nm nm

i im

Oa
a

= =

Ê ˆ Ê ˆÁ ˜ Á ˜Ë ¯Á ˜Ë ¯

-

-
+ = + -

= + = + - = +

Â Â

79

Open�Addressing

If A[h(x)] full, try “next” slot.

Linear probing:

» pick some integer b relatively prime to size of table m.

» For i = 0, 1, 2, 3, … try to place x in position:
h(x)�+�b·i��mod�m

» Bad idea: results in large clusters.
Increased search time and insert time as α→1.

Double hashing: works well in practice.

» Pick two hash functions h
1
, h

2

» For i = 0, 1, 2, 3,… try to place x in position:
h1(x)�+�i·h2(x)��mod�m

2

80

Analysis�of�Open�Addressing

Simplifying assumption: h(key, probe #), random and
uniform.

Probability that at least i probes lead to already
occupied slots ?

Expected # probes in unsuccessful search:

i
i

i
nq
m

a
Ê ˆ
Á ˜Ë ¯

= =

1 1 1

2 3

1 1 1

1 2 3 1

2 3 2

3 3

1 2 3

1
1

+ = + = + =

=

=

∞

=

∞

=

∞

∑ ∑ ∑

∑∑

−
i exactly i probes q

Why

p p p q
p p q

p q
p p p ip q

pi
i

i i

i i

i

iPr[]

?

1 24444 34444

L

L

L

L

α
α

81

More�open�addressing

What about successful search ?
Depends on the element: element inserted earlier will be
easier to find !

Assume uniform distribution on the element we search for.
If element was inserted at (i-1)-th step, expected number
of probes was

Condition on i, take expectation:

≤
−

= −
1

1 i
m

m
m i

1 1

0 0

1 1

But: ln ln 1
Thus �expected �#probes :

1 1 1 1ln 1 ln() ln 1 ln 1
1

1n n

m m n
i i

i

m H Hn n

i H i

mm m n
m n

m
m i m i a

a a a a

- -

-

= =

È ˘
Î ˚

È ˘È ˘È ˘ Í ˙Í ˙Î ˚ Í ˙Î ˚ Î ˚

= = -

£ £ +

£ + - - = + = +
- -

£
- -

Â Â

