

Directaddresstable	
- Maintain table $\mathrm{T}[\mathrm{i}] \mathrm{s}_{\mathrm{I}}[\mathrm{i}]=\left\{\begin{array}{cc}x & \text { if } x \in T, \text { key }(x)=i \\ \varnothing & \text { otherwise }\end{array}\right.$ - Disadvantage: too much memory! - Idea: maintain small table:	75

Collisions

Analysis of Chaining

- Assume each key equally likely hashed to any slot.
- n keys, m slots: $\alpha=\frac{n}{m}=$ "load factor"
- Expected length of a chain: $\sum_{1}^{n} \frac{1}{m}=\frac{n}{m}=\alpha$

$$
\Rightarrow \text { Access time }=O(1+\alpha)
$$

- Unsuccessful search:

Expected length of a randomly chosen list $+\mathbf{1}$: $\quad O(1+\alpha)$

successitulsearch

- Expected time to find i-th element $=$ time to insert i-th element
- If $A[h(x)]$ full, try "next" slot.
- Assume that the key being searched for is equally likely to be any one of the keys stored.
- Linear probing:
" pick some integer b relatively prime to size of table m.
»For $\mathrm{i}=0,1,2,3, \ldots$ try to place x in position: $h(x)+$ b.i mod m
- Conditioned on "key was the i-th element inserted",
expected time $=\left(1+\frac{i-1}{m}\right)$
"Bad idea: results in large clusters.
Increosed search time and insert time as $\quad \alpha \rightarrow 1$.
overall: $\frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{i-1}{m}\right]=1+\frac{1}{n m} \sum_{i=1}^{n}(i-1)$

$$
=1+\frac{1}{n m} \frac{n(n-1)}{2}=1+\frac{\alpha}{2}-\frac{1}{2 n m}=O(1+\alpha)
$$

- Intuition: need to search $1 / 2$ of a list on the average.

Openaddressing

- Double hashing: works well in practice.
"Pick two hash functions $\boldsymbol{h}_{1}, \boldsymbol{h}_{2}$
*For $i=0,1,2,3, \ldots$ try to place x in position: $h_{1}(x)+i \cdot h_{2}(x) \bmod m$

Analysis of OpenAddressing

- Simplifying assumption: h(key, probe \#), random and uniform.
- Probability that at least i probes lead to already occupied slots? \qquad
- Expected \# probes in unsuccessful search:
$1+\sum_{i=1}^{\infty} \underbrace{i \operatorname{Pr}[\text { exactly } i \text { probes }]}_{\hat{p}_{i}}=1+\sum_{i=1}^{\infty} q_{i}=1+\sum_{i=1}^{\infty} \alpha=\frac{1}{1-\alpha}$

Why? | | p_{1} | p_{2} | p_{3} | \cdots | q_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | p_{2} | p_{3} | \cdots | q_{2} | |
| | | | p_{3} | \cdots | q_{3} |
| | p_{1} | $2 p_{2}$ | $3 p_{3}$ | \cdots | $\sum i p_{i}=\sum q_{i}$ |

Moreopenaddressing

- What about successful search ?

Depends on the element: element inserted earlier will be easier to find!

- Assume uniform distribution on the element we search for. If element was inserted at (i-1)-th step, expected number of probes was $\leq \frac{1}{1-\frac{i}{m}}=\frac{m}{m-i}$
- Condition on i, take expectation:

$$
\begin{aligned}
& \leq \frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m-i}=\frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m-i}=\frac{1}{\alpha}\left[H_{m}-H_{m-n}\right] \\
& \text { But: } \ln i \leq H_{i} \leq \ln i+1 \\
& \text { Thus expected \#probes: } \\
& \leq \frac{1}{\alpha}[\ln m+1-\ln (m-n)]=\frac{1}{\alpha}\left[\ln \frac{m}{m-n}+1\right]=\frac{1}{\alpha}\left[\ln \frac{1}{1-\alpha}+1\right]
\end{aligned}
$$

