
1

68

Sorting using heapsSorting using heaps

l We can first build heap, then repeat: remove max.

l In place:
BuildHeap
for i=n down to 2

exch A(1), A(i)
Heapify(A,1,i-1)

l Essentially same as the first approach.
We use the fact that:

» heap becomes smaller after “remove max”,
» last array entry becomes free.

Lecture 7, Tuesday 4/24/01

69

ExampleExample

l Sort:

8
5 7

3 2 1 ?

1
5 7

3 2 8 ?

7
5 1

3 2 8 ?

2
5 1

3 7 8 ?

exchange exchangeheapify

5
3 1

2 7 8 ?
heapify

70

Variations on HeapsVariations on Heaps

l Min instead of max.

l K-ary instead of binary
» Time for Insert: logk n (n = #elems. in heap).
» Time for extract-max: k⋅logkn
» Best value of k to use is determined by application:

– Mostly inserts: use big k (e.g. k = √n)
– Mostly extract-max: use small k (i.e. k=2 or 3)

71

Lower bound for sortingLower bound for sorting

l All sorting algs that we saw : comparison-sorts
only operation allowed on data is comparison.

l Is O(n log n) the best we can do in this case ?

l Represent computation by decision tree:

l Execution - walk from root to a leaf.

72

More lower boundMore lower bound

l 1 leaf per each possible answer.
n! different answers at least n! leaves.

l Binary tree with n! leaves has to be Ω(n log n) deep !
worst-case execution time is Ω(n

log n)

l In the comparison model, quicksort, mergesort, etc are
optimum.

l HW: Why doesn’t this work for selection ??
What if instead of sorting, we need to divide into
groups of, say, 10, and sort the groups
(all element of 1st group < all elements of 2nd

group, etc)

73

Counting SortCounting Sort

l Is Ω(n log n) indeed the limit ?? NO !

l Example: Counting Sort
Assume inputs are in [1,…,k], integers.
for i=1 to k C(i)=0
for j=1 to n C(A(j))++
compute prefix sum C(i)=C(i)+C(i -1) for all i=2 to k
put element x into B(C(x)), C(x) --, for all x in A().

l Example: Input 1,1,5,5,7
C(1)=2, C(5)=2, C(7)=1.
After prefix sum: C(1)=2, C(5)=4, C(7)=5
in particular, first 5 goes into 4th position, as it should.

l Read Radix sort: note the stability of intermediate sort
requirement !

