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Data Structures Data Structures -- HeapsHeaps

l We will be developing data structures that 
support queries and updates.

l Example where a data structure will help:
» Event driven system
» event: (start of call i, time when i starts)

(end of call j, time when j ends)
» Processing a new call introduces 2 events - start and end. 
» Simulator: pick next event, process it, maybe update event 

queue.

» How to maintain events ?
Need support for fast: 

– enter new event
– pick “next event”, i.e. event with smallest time key.
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Several possible approachesSeveral possible approaches

l Keep all events in a list.
(What is the problem with using array ??

the number of events is unknown !)
» Easy to insert - O(1)
» hard to extract - Ω(n)

l Sorted list:
» Easy to extract - O(1)
» Hard to insert - Ω(n)

l We would like something like:
» insert O(lg n)
» extract O(lg n)

Explain why !

Explain why !

Tradeoff
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HeapsHeaps

l Nearly complete binary tree with:

l Claim: max is at the root (by induction on the size of the 
heap)

l Pointers are not the most efficient solution. 
Instead, parent(i) is stored in
Example: parent of the 5th element is at 2. 

Heap property: A[parent(i)] ≥ A[i]Heap property: A[parent(i)] ≥ A[i]
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Fixing a broken heapFixing a broken heap

l Assume problem is only at the root:

l Now the problem “moved” down, into right tree.
Recurse in this tree, exchanging 5 and 8, its largest 
child.
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l b is larger then c, and a, thus the only problem can be 
between a
and one of its children.

l Formal proof - by induction on the height of a.

l This procedure will be called Heapify(A,i,n).
Makes subtree rooted at A(i) into a heap.

l Time: O(lg n).  (Why ??)

Correctness of fixing the heapCorrectness of fixing the heap

a
b c a c

b
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Extract maxExtract max

l max=A(1)
A(1)=A(last)
last --
Heapify(A,1,last)

l How to build a heap initially ?
» for i=n down to 1

Heapify(A,i,n)
end

» But “bottom loops” take less time, since height is smaller !
» Observation: cost of Heapify prop. to the height, i.e. # 

visited levels.

O(lg n)

n loops, O(log n) each,  
Total:  O(n log n)
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Inserting new elementInserting new element

l Similar to Heapify:
last++
A(last)=new element
i=last
while parent(i) != null

if A(i)≤ A(parent(i)) return
else exch. A(i), A(parent(i))

i=parent(i)
end

end

l Example:

l Propagate up, O(lg n).   Correctness ??
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if parent smaller
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