
1

61

Data Structures Data Structures -- HeapsHeaps

l We will be developing data structures that
support queries and updates.

l Example where a data structure will help:
» Event driven system
» event: (start of call i, time when i starts)

(end of call j, time when j ends)
» Processing a new call introduces 2 events - start and end.
» Simulator: pick next event, process it, maybe update event

queue.

» How to maintain events ?
Need support for fast:

– enter new event
– pick “next event”, i.e. event with smallest time key.

Lecture 6, Thursday 4/19/01

62

Several possible approachesSeveral possible approaches

l Keep all events in a list.
(What is the problem with using array ??

the number of events is unknown !)
» Easy to insert - O(1)
» hard to extract - Ω(n)

l Sorted list:
» Easy to extract - O(1)
» Hard to insert - Ω(n)

l We would like something like:
» insert O(lg n)
» extract O(lg n)

Explain why !

Explain why !

Tradeoff

63

HeapsHeaps

l Nearly complete binary tree with:

l Claim: max is at the root (by induction on the size of the
heap)

l Pointers are not the most efficient solution.
Instead, parent(i) is stored in
Example: parent of the 5th element is at 2.

Heap property: A[parent(i)] ≥ A[i]Heap property: A[parent(i)] ≥ A[i]

8

6 4

5 1 3 C

2
iÍ ˙

Í ˙Í ˙Î ˚

Data: 8 6 4 5 1 3
Index: 1 2 3 4 5 6

64

Fixing a broken heapFixing a broken heap

l Assume problem is only at the root:

l Now the problem “moved” down, into right tree.
Recurse in this tree, exchanging 5 and 8, its largest
child.

5

11 6

8 2 4 C

11

5 6

8 2 4 C

exchange
with max son

65

l b is larger then c, and a, thus the only problem can be
between a
and one of its children.

l Formal proof - by induction on the height of a.

l This procedure will be called Heapify(A,i,n).
Makes subtree rooted at A(i) into a heap.

l Time: O(lg n). (Why ??)

Correctness of fixing the heapCorrectness of fixing the heap

a
b c a c

b

66

Extract maxExtract max

l max=A(1)
A(1)=A(last)
last --
Heapify(A,1,last)

l How to build a heap initially ?
» for i=n down to 1

Heapify(A,i,n)
end

» But “bottom loops” take less time, since height is smaller !
» Observation: cost of Heapify prop. to the height, i.e. #

visited levels.

O(lg n)

n loops, O(log n) each,
Total: O(n log n)

1 2
2

2 2 2 2

2 2
2

2
2

2 1 2
1 1 2

2

1

2

1 2 3 0

1 1 1
2

1

st
nd

i i i O n

k

k

k k k

k i

i

k
k

i

k
k

i
k k

 level: height 1, nodes,
2 level: height 2, nodes, etc.

Total: 1 2 3 k

-

-

- - -

-
=

•
+

◊ + ◊ + ◊ + + ◊
= = £ = - = =Â Â Â

L
/

(/)
()

2

67

Inserting new elementInserting new element

l Similar to Heapify:
last++
A(last)=new element
i=last
while parent(i) != null

if A(i)≤ A(parent(i)) return
else exch. A(i), A(parent(i))

i=parent(i)
end

end

l Example:

l Propagate up, O(lg n). Correctness ??

7

4 6

2 0 1 9

exchange
with parent
if parent smaller

7

4 9

2 0 1 6

