Lecture 4, Thursday 12/4/01

Quicksort

- Quicksort (A, P, r)
while $\mathrm{p}<\mathrm{r}$
$q=$ partition (A, p, r) quicksort(A, $\mathrm{p}, \mathrm{q}-1$) quicksort ($A, q+1, r$)
end
- To simplify, assume distinct elements.
»Lucky - always an even split: $T(n)=2 T(n / 2)+\Theta(n) \Rightarrow T(n)=\Theta(n \lg n)$
» Unlucky: $\quad T(n)=T(0)+T(n-1)+\Theta(n) \Rightarrow T(n)=\Theta\left(n^{2}\right)$
- How to avoid bad case ?
» Partitioning around middle element does not work!
»Idea: partition around a random element.

Randomized Algorithms

- Algoritfin can "toss coins".
- \mathcal{N} o specific input leads to worst-case beflavior.
- Distinction between randomized algoritfms and random data!

Quick review of probability

- Sample space S of "elementary events".
» Example: 36 ways of kow 2 dice can fall.
- Event $A \subseteq S$. Eg. "roll 3 with 2 dice".
- Probability distribution: $P: \Perp A_{-}^{-} \rightarrow[0,1], 2^{|S|}$ values
- Properties:
$P(A) \geq 0, P(S)=1$
$P(A \cup B)=P(A)+P(B)$ if $A \cap B=\varnothing$

Example

- 2 dice example:
$S=\{1,1),(1,2),(2,1), \cdots,(6,6)^{*},|S|=36$
$(5,6) \neq(6,5)!!$
Event roll $4:\{1,3),(2,2),(3,1)\}$
$\operatorname{Pr}[A]=\frac{|A|}{36}=\frac{3}{36}$
- Simple case of "inclusion/exclusion":
$\operatorname{Pr}[A \cup B]=P(A)+P(B)-P(A \cap B)$ $\leq P(A)+P(B)$

Discrete Random Variable

- Definition:
$X: S \rightarrow R$
event $X=i \Leftrightarrow\{s \in S \mid X(s)=i\}$
Ex: Uniform distr, 2 dice: $\operatorname{Pr}[X=5]=4 / 36$
- Expected value : $\sum_{i} i \operatorname{Pr}[X=i]$

S UIM	Pr ¢ 36
1	0
2	1
3	2
4	3
12	1

$\mathcal{E}[X]=252 / 36=7$

$\operatorname{SUM} \underset{0}{ } \operatorname{Pr} \times 36$
2
6
12
12
$\cdots \cdots$
252

Linearity of expectation

- $\mathcal{E}[a X+\sigma \mathcal{Y}]=a \mathcal{E}[X]+\sigma \mathcal{E}[\mathcal{Y}]$
- Example: X - outcome of first, \mathcal{Y} - outcome of second. $\mathcal{E}[X]=\mathcal{E}[\mathcal{Y}]=[1+2+3+\ldots+6] / 6=3.5$ $\mathcal{E}[X+\mathcal{Y}]=7$, as Gefore!
- Independence:
$X \& Y$ independent iff $\forall x, y: \operatorname{Pr}[X=i, Y=j]=\operatorname{Pr}[X=i] \operatorname{Pr}[Y=j]$ $E[X \cdot Y]=E[X] E[Y]$

Conditional Probability

Conditional Probability

- Definition $: \operatorname{Pr}[X=i \mid Y=j]=\frac{\operatorname{Pr}[X=i, Y=j]}{\operatorname{Pr}[Y=j]}$
- Conditional expectation:

$$
\left.\begin{array}{rl}
E_{y}\left[E_{x}[X \mid Y]\right] & =\sum_{i} \operatorname{Pr}[Y=i] E_{x}[X \mid Y=i] \\
& =\sum_{i} \operatorname{Pr}[Y=i] \sum_{j} j \operatorname{Pr}[X=j \mid Y=i] \\
& =\sum_{i} \sum_{j} j \operatorname{Pr}[X=j \mid Y=i] \operatorname{Pr}[Y=i] \\
& \left.=\sum_{j} \sum_{i} j \operatorname{Pr}[X=j \cup Y=i]\right] \\
& =\sum_{j} j \operatorname{Pr}\left[\bigcup_{i}(X=j \cup Y=i)\right] \\
& =\sum_{j} j \operatorname{Pr}[X=j] \\
& =E[X]
\end{array}\right\} \text { One of the most useful properties }
$$

Conditional expectation example

- Consider 1-dice toss.
- Let X be result of the toss, and \mathcal{Y} be the event that the result is above 2. $(\mathcal{Y}=1$ if above $2, \mathcal{Y}=0$ otherwise.)
- Condition on \mathscr{Y}.
\mathcal{N} (ote that $\operatorname{Pr}[\mathcal{Y}=0]=2 / 6, \operatorname{Pr}[\mathcal{Y}=1]=4 / 6$.

$$
\begin{aligned}
E[X \mid Y=0] & =\sum_{i} i \operatorname{Pr}[X=i \mid Y=0]=\frac{1}{6} \cdot \frac{1+2}{2 / 6}=\frac{3}{2} \\
E[X \mid Y=1] & =\sum_{i} i \operatorname{Pr}[X=i \mid Y=1]=\frac{1}{6} \cdot \frac{3+4+5+6}{4 / 6}=\frac{9}{2} \\
E[X] & =E[X \mid Y=0] \operatorname{Pr}[Y=0]+E[X \mid Y=1] \operatorname{Pr}[Y=1] \\
& =\frac{3}{2} \cdot \frac{2}{6}+\frac{9}{2} \cdot \frac{4}{6}=3.5
\end{aligned}
$$

Back to Quicksort

- Partition around a randomly chosen element and let $\mathcal{T}(n)$ be the expected time to sort.
- Consider the case where the partition is ($k, n-k-1$). In this case, the expected time to terminate is:

$$
T(k)+T(n-1-k)+\Theta(n)
$$

- Condition on K being a specific value.
\mathcal{N} ote that any value of k from 0 to $n-1$ is equally likely.

$$
\begin{aligned}
T(n) & =\sum_{k} \operatorname{Pr}[(k, n-k-1) \text { split } T(n \mid(k, n-k-1) \text { split }) \\
& =\frac{1}{n} \sum_{k}[T(k)+T(n-1-k)+\Theta(n)] \\
& =\frac{2}{n} \sum_{1}^{n-1}[T(k)+\Theta(n)]
\end{aligned}
$$

Solving the recurrence

We will try to prove that $T(n) \leq a n \lg n+b$
First, choose b large enough to satisfy: $T(1) \leq a \lg 1+b=b$
Inductive step:
$T(n)=\frac{2}{n} \sum_{k=1}^{n-1} T(k)+\Theta(n) \leq \frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\Theta(n)$
$=\frac{2}{n} a \sum_{k=1}^{n-1} k \lg k+\frac{2}{n} n b+\Theta(n)$
$\leq \frac{2}{n} a\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+2 b+\Theta(n)$
Need to prove that this is $\leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}$
$=a n \lg n+b+\underbrace{(\Theta(n)+b-a n / 4)}_{\leq 0 \text { for large enough } a}$
Note that using $\sum_{k=1}^{n-1} k \lg k \leq n^{2} \lg n$ is not enough !!

Technical lemma

$n^{2} \lg n$ bound is trivial. Need a stronger bound

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & =\sum_{k=1}^{\left\lceil\frac{n}{2}-1\right]} k \lg k+\sum_{\left[\frac{n}{2}\right]}^{n-1} k \lg k \\
& \leq \lg n \sum_{k=1}^{n-1} k-\sum_{k=1}^{\left\lceil\frac{n}{2}-1\right]} k \\
& \leq \lg n \frac{n(n-1)}{2}-\frac{(n / 2-1)(n / 2)}{2} \\
& \leq \frac{1}{2} n^{2} \lg n-\frac{n^{2}}{8}
\end{aligned}
$$

HW: We proved O, now prove Ω.

