Analyzing Insertion Sort as a
Recursive Algorithm

e Basic idea: divide and conquer
» Divide into 2 (or more) subproblems.
» Solve each subproblem recursively.
» Combine the results.

e Insertion sort is just a bad divide & conquer !

» Subproblems: (a) last element
(b) all the rest

» Combine: find where to put the last element

Lecture 2, April 5, 2001

19

Recursion for Insertion Sort

e We get a recursion for the running time T(n):
iT(n-)+n forn>1
i1 forn=1
T(n)=T(n-+n
=T(n- 2)+(n-+n
=T(n- 3) +(n- 2)+(n-D+n

T(n)=

o5

i=1

=Q()

e Formal proof: by induction.

e Another way of looking: split into n subproblems, merge
one by one.

20

Improving the insertion sort

e Simple insertion sort is good only for small n.
e Balance sorting vs. merging: Merge equal size chunks.

e How to merge:

i=1, j=1
for k=1 to 2n
if A(i)<B(j)
then
C(k) =A(i)
i++
el se
(k) =B(j)
j++
end
e O(n) time !l

21

Analysis

e lterative approach:

» Merge size-1 chunks into size-2
chunks

» Merge size-2 chunks into size-4
chunks

» etc.

Smerge(l) + merge(2) + gmerge(4)+-
Overall: Q(nlogn)

e Intuitively right, but needs proof !

Analyzing Recursive Merge-Sort

e Another approach: recursive.
» Divide into 2 equal size parts.
» Sort each part recursively.
» Merge.

*Recursion is away of thinking.

*Easy to design recursive algorithms.

e We directly get the following recurrence:

_12T(n/2)+Q(n) n>1
Tm==1" n=1

e How to formally solve recurrence ?

» For example, does it matter that we have Q(n) instead
of an exact expression ??

» Does it matter that we sometimes have n not divisible by 2 ??

23

Summations

e Before dealing with recurrencies, need to read Chapter 3,
in particular summations:
e‘=1+x+x—2+x—3+»~

20 3

Harmonic function: H(n) = 2} =Inn+0(1)

Telescoping series: E 1 =E[1—L)

-0

24

More summations

e Another useful trick:

dd xi 1 x
o dXizo dx1- x (1- x)?

e Summary:
» Learn to recognize standard simplifications
» Try going opposite direction
» IF all fails —apply tricks one by one...

25

Recurrencies

e Chapter 4 in the textbook.

e Algorithm “talls itself”” - recursive.

: 1 n=1
=l

T ;rggiu otherwise

| &l

e First, solve for n=2«
» Claim: T(n)=Ign+1
» Proof by induction: T(@)=1
T2 =T(2%) +1
=Ig(2) +1+1
=k+2

=1g(2<Y)+1 QED %

What if n not a power of 2 ?

Easy to prove by induction that T(n)3 T(n-1)

Now we can say: T(n)STd'g"l):ﬂgn}l:e(logn)

Observe that we did not prove Theta, only big—-Oh !

Technically, we should be careful about floor/ceiling, but
usually we can safely concentrate on n=power of 2.

27

Guessing the solution

e Instead of adding sequentially, lets divide into 2 parts,
add each one recursively, and add the result:

T)=T(|n/2[}+T([n/2]]+1
n (Ln J]+ Un U+ «—_/ Note that we omit the n=1

case for simplicity
Guess: T(n) <cn for some constant ¢

Then: T(n)=T[Ln/2D+TUn/2D+l
<c[Ln/2D+cUn/2D+l
=cn+1 OO0pssss...

e Need a stronger induction hypothesis !
Assume: T(n)<cn-b for someconstantsc,b

Then: T(n)=---=cn- 2b+1<cn-b for b>1

28

Another example

Consider recursion: T(n):4T[g]+n

First guess: T(n)£cn®

We omit base case.

Induction step: ﬂ[g]mgcrg

+n=cn®+ (n—%n3)

rest
for c<2n>1= "rest"<0 QED

But we can do better !First try: T(n)<cn? istoo weak !
Assume: T(n)<gn?-c,n
2
Then: T(n)=4T[r2]]+ns4{cl[2] —(‘22}+n=qn2—202n+n

=gn?-c,n+ (n—c,n)
REST
29

Initial Conditions

e Can initial conditions affect the solution ?

YES !
T(n)=[T(n/27?]
TM=2 = T(n)=2"

TH=3 = T(n)=3F
TO=1 = T(n)=1

e n was assumed to be a power of 2.

Iterating recurrencies

e Example: T(n)=4T(n/2)+n
=n+4(n/2+4T(n/4)) =n+2n+16T(n/4)

=n+2n+1qn/4+4T(n/8)]=n+2n+4n+4T(n/8)

Ign-1
=n+20+4n+8n+ - =n Y 26+49"T(1)
=0 —

o) —— \@(nz)

e Disadvantages:
» Tedious
» Error-prone

e Use to generate initial guess, and then prove by
induction !

31

Recursion Tree

e Example: T(n)=T(n/4)+T(n/2)+n?

R I A
N N
) W W |ae

e At k-th level we get a general formula: i steps right, k-i left

nzztm[zi 4-<k-i)]2 = “Zg.m[“'ilﬁ'(k'”} =
e

e Summing over all k, geometric sum, sums t®(n?)
(overcount, since T(1)=1)

32

Master Method

e Consider the following recurrentéy)=at(n/b)+ f(n); a3 L,b>1

1. f(n)=0(n'%*®),e>0 b Q(n'%?

2. 1(N)=Q('®?Igkn), k20 b Q(n'%*Igk+in)

f (n) =Wn'%**®) e >0
3af(n/b)£cf(n)forsomec<13l;p Q(f ()

e More general than the book.

o Let Q=n%* . Then the cases are:
» Q polynomially larger than f.
» F is larger than Q by a polylog factor.
» Q polynomially smaller than f.

Build recursion tree

f(n) f(n)

f (n/b) %\f(n/b) af (n/b)
7N

n 2 e n 2 n 2 e n 2 a2 n 2
f(n/b f(n/b?) f(n/b f(n/b f(n/b

AN AN AN AN

Last row: Q(a'%") =Q(n'%?*) elements, each one Q(1).

Ig,n-1
Total: Q'%®)+ J ai f (n/bi)
i=1

Which term dominates ?

First case: “f(n) small

Ig,a

?(;)=Q(n€) = dcs.tfor "large enough n", f(n)Scnlgba/ns
I (n/bl) < cal (n/b1)*™* —cn@atqi B _ loya-epie
alf(n/bl)<cal(n/b))™ =cn al fpa=on

. L pElen_q
Theratio summed over al possiblej: =1 =0(n%).

Total: O(n'%?).

Lower bound is trivial (Why ?? First termin the original expression was already G)(n'gba).)

Second case

f(n) = ©(N%?1gk n)

. Ig,a
Yy al [BHTJ ’ ng[anJ=O(Ig'<*1n)n'gba (there are O(Ign) elements in the sum)

—_—
—nl%a <lgkn

Thisisan UPPER bound ! How to prove the lower bound ?7?

Rough and easy approach:

Igyn-1 n (Ig,n)/2 n (Igyn)/2
I k[—AJZ I k[—AJZ Igkvn = (congt) Igk*tin
21 &5 21 %5 21 g (const) Ig

(Note that we use the assumption that k > 0)

Third case

alf(n/bl)Ecif(n) for some c<1 and f(n) =Wn'%3*)
Ig,n-1

2 CHORCO)

Igyn-1 .
>} aalf(n/bl):O(f(n)) Note Big- Oh and not Theta!
i=1

Thefirst termis already Q(n'%?) =0O(f (n))

TOTAL: Q(f (n))

37

10

