Analyzing Insertion Sort as a Recursive Algorithm

- Basic idea: divide and conquer
» Divide into 2 (or more) subproblems.
»Solve each subproblem recursively.
»Combine the results.
- Insertion sort is just a bad divide \& conquer!
»Subproblems: (a) last element
(6) all the rest
»Combine: find where to put the last element

Lecture 2, April 5, 2001

Recursion for Insertion Sort

- We get a recursion for the running time $\mathcal{T}(n)$:

$$
\begin{aligned}
T(n)= & \left\{\begin{array}{cc}
T(n-1)+n & \text { for } n>1 \\
1 & \text { for } n=1
\end{array}\right. \\
T(n)= & T(n-1)+n \\
& =T(n-2)+(n-1)+n \\
& =T(n-3)+(n-2)+(n-1)+n \\
& =\ldots \\
& =\sum_{i=1}^{n} i \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

- Formal proof: by induction.
- Another way of looking: split into n subproblems, merge one by one.

Improving the insertion sort

- Simple insertion sort is good only for small n.
- Balance sorting vs. merging: Merge equal size chunks.
- How to merge:
$i=1, j=1$
for $k=1$ to $2 n$
if $A(i)<B(j)$
then
$C(k)=A(i)$
i++
else
else
$C(k)=B(j)$
$j++$
end
- $O(n)$ time !!

Analysis

- Iterative approach:
" Merge size- 1 cfiunks into size-2 chunks
》Merge size- 2 chunks into size- 4 chunks
»etc.
$\frac{n}{2} \operatorname{merge}(1)+\frac{n}{4} \operatorname{merge}(2)+\frac{n}{8} \operatorname{merge}(4)+\cdots$
Overall: $\Theta(n \log n)$
- Intuitively right, but needs proof!

Analyzing Recursive Merge-Sort

- Another approach: recursive.
» Divide into 2 equal size parts.
"Sort each part recursively.
"Merge.
- Recursion is a way of thinking.
-Easy to design recursive algorithms.
- We directly get the following recurrence:

$$
T(n)=\left\{\begin{array}{cc}
2 T(n / 2)+\Theta(n) & n>1 \\
1 & n=1
\end{array}\right.
$$

- How to formally solve recurrence ?
" For example, does it matter that we have $\Theta(n)$ instead of an exact expression??
» Does it matter that we sometimes have n not divisible by 2 ??

Summations

- Before dealing with recurrencies, need to read Chapter 3, in particular summations:

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& \text { Harmonic function: } H(n)=\sum_{i=1}^{n} \frac{1}{i}=\ln n+O(1) \\
& \text { Telescoping series: } \sum_{k=1}^{n-1} \frac{1}{k(k+1)}=\sum_{k=1}^{n-1}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
& \qquad \sum_{k=1}^{n-1}\left(\frac{1}{k}\right)-\sum_{k=1}^{n-1}\left(\frac{1}{k+1}\right) \\
& \quad=\sum_{k=1}^{n-1}\left(\frac{1}{k}\right)-\sum_{k=2}^{n}\left(\frac{1}{k}\right) \\
& =1-\frac{1}{n}
\end{aligned}
$$

More summations

- Another useful trick:

$$
\sum_{k=0}^{\infty} k x^{k}=x \frac{d}{d x} \sum_{k=0}^{\infty} x^{k}=x \frac{d}{d x} \frac{1}{1-x}=\frac{x}{(1-x)^{2}}
$$

- Summary:
» Learn to recognize standard simplifications
" Try going opposite direction
» If all fails - apply tricks one by one...

Recurrencies

- Chapter 4 in the textbook.
- Algoritfim "calls itself". recursive.
$T(n)=\left\{\begin{array}{cc}1 & n=1 \\ T\left(\left[\frac{n}{2}\right\rceil\right)+1 & \text { otherwise }\end{array}\right.$
- First, solve for $n=2^{k}$
»Claim: $T(n)=\lg n+1$
» Proof 6y induction: $\quad T(1)=1$

$$
\begin{aligned}
T\left(2^{k+1}\right) & =T\left(2^{k}\right)+1 \\
& =\lg \left(2^{k}\right)+1+1 \\
& =k+2 \\
& =\lg \left(2^{k+1}\right)+1 \text { QED }
\end{aligned}
$$

What if \mathbf{n} not a power of 2 ?

- Easy to prove by induction that $T(n) \geq T(n-1)$
- \mathcal{N} ow we can say: $T(n) \leq T\left(2^{[\lg n\rceil}\right)=\lceil\lg n\rceil+1=\Theta(\log n)$
- Observe that we did not prove Theta, only big-Of!
- Tecfinically, we should be careful about floor/ceiling, but usually we can safely concentrate on $n=$ power of 2 .

Guessing the solution

- Instead of adding sequentially, lets divide into 2 parts, add each one recursively, and add the result:

Note that we omit the $\mathrm{n}=1$ case for simplicity
Guess: $T(n)<c n$ for some constant c
Then: $\quad T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+1$

$$
\begin{aligned}
& <c((\lfloor n / 2\rfloor)+c(\lceil n / 2\rceil)+1 \\
& =c n+1 \quad \text { Oopssss.... }
\end{aligned}
$$

- Need a stronger induction fypothesis!

Assume: $T(n)<c n-b$ for some constants c, b
Then: $\quad T(n)=\cdots=c n-2 b+1<c n-b$ for $b>1$

Another example

- Consider recursion: $T(n)=4 T\left(\frac{n}{2}\right)+n$
- First guess: $T(n) \leq c n^{3}$
- We omit base case.

Induction ste $p: 4 T\left(\frac{n}{2}\right)+n \leq c \frac{n^{3}}{2}+n=c n^{3}+\underbrace{\left(n-\frac{c}{2} n^{3}\right)}_{\text {rest }}$
for $c \leq 2, n \geq 1 \Rightarrow$ "rest" ≤ 0 QED

- But we cando better !First try: $T(n) \leq c n^{2}$ is too weak !

$$
\text { Assume: } T(n) \leq c_{1} n^{2}-c_{2} n
$$

Then: $T(n)=4 T\left(\frac{n}{2}\right)+n \leq 4\left(c_{1}\left(\frac{n}{2}\right)^{2}-c_{2} \frac{n}{2}\right)+n=c_{1} n^{2}-2 c_{2} n+n$
$=c_{1} n^{2}-c_{2} n+\underbrace{\left(n-c_{2} n\right)}_{\text {REST }}$

Initial Conditions

- Can initial conditions affect the solution? \longrightarrow VES!

$$
\begin{aligned}
& T(n)=\left[T(n / 2)^{2}\right] \\
& T(1)=2 \Rightarrow T(n)=2^{n} \\
& T(1)=3 \Rightarrow T(n)=3^{n} \\
& T(1)=1 \Rightarrow T(n)=1
\end{aligned}
$$

- n was assumed to be a power of 2 .

Iterating recurrencies

- Example: $T(n)=4 T(n / 2)+n$
$=n+4(n / 2+4 T(n / 4))=n+2 n+16 T(n / 4)$
$=n+2 n+16[n / 4+4 T(n / 8)]=n+2 n+4 n+4 T(n / 8)$

- Disadvantages:
» \mathcal{T} edious
"Error-prone
- Ule to generate initial guess, and then prove by induction!

Recursion Tree

- Example: $T(n)=T(n / 4)+T(n / 2)+n^{2}$

- At K-th level we get a general formula: i steps right, K-ileft

$$
\begin{aligned}
n^{2} \sum_{i}\binom{k}{i}\left[2^{-i} 4^{-(k-i)}\right]^{2} & =n^{2} \sum_{i}\binom{k}{i}\left[4^{-i} 16^{-(k-i)}\right]= \\
& =n^{2}\left[\frac{1}{4}+\frac{1}{16}\right]^{k}=n^{2}\left[\frac{5}{16}\right]^{k}
\end{aligned}
$$

- Summing over all K, geometric sum, sums t@($\left.n^{2}\right)$ (overcount, since $\mathcal{T}(1)=1$)

Master Method

- Consider the following recurrent $(\boldsymbol{n})=\boldsymbol{a} \boldsymbol{T}(\boldsymbol{n} / \boldsymbol{b})+\boldsymbol{f}(\boldsymbol{n}) ; \boldsymbol{a} \geq \mathbf{1}, \boldsymbol{b}>\mathbf{1}$

1. $f(n)=O\left(n^{\lg _{b} a-\varepsilon}\right), \varepsilon>0 \quad \Rightarrow \Theta\left(n^{\lg _{b} a}\right)$
2. $f(\boldsymbol{n})=\Theta\left(\boldsymbol{n}^{\mathbf{l}_{b} a} \mathbf{l g}^{k} n\right), k \geq \mathbf{0} \quad \Rightarrow \Theta\left(\boldsymbol{n}^{\mathbf{l}_{b} a} \mathbf{l g}^{k+1} \boldsymbol{n}\right)$
3. $\left.\begin{array}{l}f(n)=\Omega\left(n^{\mathrm{l}_{b}} a+\varepsilon\right. \\ a f(n / b) \leq c f(n) \text { for some } c<1\end{array}\right\} \Rightarrow \Theta(f(n))$

- More general than the book.
- Let $Q=n^{\lg _{b} a}$. Then the cases are:
» Q polynomially larger than f.
" f is larger than Q by a polylog factor.
» Q polynomially smaller than f.

Build recursion tree

Which term dominates ?
$\frac{n^{\lg _{b} a}}{f(n)}=\Omega\left(n^{\varepsilon}\right) \Rightarrow \exists c$ s.t for "large enough n", $f(n) \leq c n^{\lg _{b} a} / n^{\varepsilon}$
$a^{j} f\left(n / b^{j}\right) \leq c a^{j}\left(n / b^{j}\right)^{\lg _{b} a-\varepsilon}=c n^{\lg _{b} a-\varepsilon} a^{j} \frac{b^{j \varepsilon}}{b^{j \lg _{b} a}}=c n^{\lg _{b} a-\varepsilon} b^{j \varepsilon}$
The ratio summed over all possible j: $\frac{b^{\varepsilon l g_{b} n}-1}{b^{\varepsilon}-1}=\Theta\left(n^{\varepsilon}\right)$.
Total: $O\left(n^{\lg _{b} a}\right)$.
Lower bound is trivial (Why ?? First term in the original expression was already $\Theta\left(n^{\lg _{b} a}\right)$.)

Second case

$f(n)=\Theta\left(n^{\lg _{b} a} \lg ^{k} n\right)$
$\sum \underbrace{a^{j}\left(\frac{n}{b^{j}}\right)^{\lg _{b} a}}_{=n^{\lg _{b} a}} \underbrace{\lg ^{k}\left(\frac{n}{b^{j}}\right)}_{\leq \lg ^{k} n}=O\left(\lg ^{k+1} n\right) n^{\lg _{b} a} \quad$ (there are $O(\lg n)$ elements in the sum)
This is an UPPER bound! How to prove the lower bound ??
Rough and easy approach:
$\sum_{i=1}^{\lg _{b} n-1} \lg ^{k}\left(\frac{n}{b^{j}}\right) \geq \sum_{i=1}^{\left(\lg _{b} n\right) / 2} \lg ^{k}\left(\frac{n}{b^{j}}\right) \geq \sum_{i=1}^{\left(\lg _{b} n\right) / 2} \lg ^{k} \sqrt{n}=($ const $) \lg ^{k+1} n$
(Note that we use the assumption that $k \geq 0$)

Third case

$a^{j} f\left(n / b^{j}\right) \leq c^{j} f(n)$ for some $c<1$, and $f(n)=\Omega\left(n^{\lg _{b} a+\varepsilon}\right)$
$\Rightarrow \sum_{i=1}^{\lg _{b} n-1} c^{j} f(n)=\Theta(f(n))$
$\Rightarrow \sum_{i=1}^{\lg _{b^{n-1}}} a^{j} f\left(n / b^{j}\right)=O(f(n)) \quad$ Note Big-Oh and not Theta!
The first term is already $\Theta\left(n^{\lg _{b} a}\right)=O(f(n))$
TOTAL: $\Theta(f(n))$

