Analyzing Insertion Sort as a Recursive Algorithm

- Basic idea: divide and conquer
 - » Divide into 2 (or more) subproblems.
 - » Solve each subproblem recursively.
 - » Combine the results.
- Insertion sort is just a bad divide & conquer!
 - » Subproblems: (a) last element (b) all the rest
 - » Combine: find where to put the last element

Lecture 2, April 5, 2001

19

Recursion for Insertion Sort

• We get a recursion for the running time T(n):

$$T(n) = \begin{cases} T(n-1) + n & \text{for } n > 1 \\ 1 & \text{for } n = 1 \end{cases}$$

$$T(n) = T(n-1) + n$$

$$= T(n-2) + (n-1) + n$$

$$= T(n-3) + (n-2) + (n-1) + n$$

$$= \dots$$

$$= \sum_{i=1}^{n} i$$

$$= \Theta(n^2)$$

- Formal proof: by induction.
- Another way of looking: split into n subproblems, merge one by one.

Improving the insertion sort

- Simple insertion sort is good only for small n.
- Balance sorting vs. merging: Merge equal size chunks.
- How to merge:

```
 i=1, \ j=1 \\  for \ k=1 \ to \ 2n \\  if \ A(i) < B(j) \\    then \\    C(k) = A(i) \\  i++ \\  else \\    C(k) = B(j) \\  j++ \\ end
```

• O(n) time !!

21

Analysis

- Iterative approach:
 - » Merge size-1 chunks into size-2 chunks
 - » Merge size-2 chunks into size-4 chunks
 - » etc.

```
\frac{n}{2}merge(1) + \frac{n}{4}merge(2) + \frac{n}{8}merge(4) + \cdots
Overall: \Theta(n\log n)
```

• Intuitively right, but needs proof!

Analyzing Recursive Merge-Sort

- Another approach: recursive.
 - » Divide into 2 equal size parts.
 - » Sort each part recursively.
 - » Merge.

- •Recursion is a way of thinking.
- •Easy to design recursive algorithms.
- We directly get the following recurrence:

$$T(n) = \begin{cases} 2T(n/2) + \Theta(n) & n > 1 \\ 1 & n = 1 \end{cases}$$

- How to formally solve recurrence ?
 - » For example, does it matter that we have $\mathbb{Q}\left(n\right)$ instead of an exact expression $\ref{eq:property}$
 - » Does it matter that we sometimes have n not divisible by 2 ??

23

Summations

 Before dealing with recurrencies, need to read Chapter 3, in particular summations:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Harmonic function: $H(n) = \sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1)$

$$\begin{split} \text{Telescoping series:} \quad & \sum_{k=1}^{n-1} \frac{1}{k(k+1)} \qquad = \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1}\right) \\ & = \sum_{k=1}^{n-1} \left(\frac{1}{k}\right) - \sum_{k=1}^{n-1} \left(\frac{1}{k+1}\right) \\ & = \sum_{k=1}^{n-1} \left(\frac{1}{k}\right) - \sum_{k=2}^{n} \left(\frac{1}{k}\right) \\ & = 1 - \frac{1}{n} \end{split}$$

More summations

• Another useful trick:

$$\sum_{k=0}^{\infty} kx^k = x \frac{d}{dx} \sum_{k=0}^{\infty} x^k = x \frac{d}{dx} \frac{1}{1-x} = \frac{x}{(1-x)^2}$$

- Summary:
 - » Learn to recognize standard simplifications
 - » Try going opposite direction
 - » If all fails -apply tricks one by one...

25

Recurrencies

- Chapter 4 in the textbook.
- Algorithm "calls itself" recursive.

$$T(n) = \begin{cases} 1 & n=1 \\ T\left(\left\lceil \frac{n}{2} \right\rceil\right) + 1 & otherwise \end{cases}$$

- First, solve for $n=2^k$
 - » Claim: $T(n) = \lg n + 1$
 - » Proof by induction: T(1)=1

$$T(2^{k+1}) = T(2^k) + 1$$

= $\lg(2^k) + 1 + 1$
= $k + 2$
= $\lg(2^{k+1}) + 1$ QED

What if n not a power of 2?

- Easy to prove by induction that $T(n) \ge T(n-1)$
- Now we can say: $T(n) \le T(2^{\lceil \lg n \rceil}) = \lceil \lg n \rceil + 1 = \Theta(\log n)$
- Observe that we did not prove Theta, only big-Oh!
- Technically, we should be careful about floor/ceiling, but usually we can safely concentrate on n=power of 2.

2

Guessing the solution

 Instead of adding sequentially, lets divide into 2 parts, add each one recursively, and add the result:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

Guess: $T(n) < cn$ for some constant c

Note that we omit the n=1 case for simplicity

Then: $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$ $< c(\lfloor n/2 \rfloor) + c(\lceil n/2 \rceil) + 1$ = cn + 1 *Oopssss....*

Need a stronger induction hypothesis!

Assume: T(n) < cn-b for some constants c,b**Then:** $T(n) = \cdots = cn-2b+1 < cn-b$ for b > 1

Another example

- Consider recursion: $T(n) = 4T\left(\frac{n}{2}\right) + n$
- First guess: $T(n) \le cn^3$
- We omit base case. Induction step: ${}_{4T}\left(\frac{n}{2}\right) + n \le c\frac{n^3}{2} + n = cn^3 + \underbrace{(n \frac{c}{2}n^3)}_{rest}$ for $c \le 2, n \ge 1 \Rightarrow "rest" \le 0$ QED
- But we can do better !First try: $T(n) \le cn^2$ is too weak!

Assume:
$$T(n) \le c_1 n^2 - c_2 n$$

Then: $T(n) = 4T\left(\frac{n}{2}\right) + n \le 4\left(c_1\left(\frac{n}{2}\right)^2 - c_2\frac{n}{2}\right) + n = c_1 n^2 - 2c_2 n + n$
 $= c_1 n^2 - c_2 n + \underbrace{(n - c_2 n)}_{REST}$

Initial Conditions

• Can initial conditions affect the solution ? — YES!

$$T(n) = \left[T(n/2)^2 \right]$$

$$T(1) = 2 \implies T(n) = 2^n$$

$$T(1) = 3 \implies T(n) = 3^n$$

$$T(1) = 1 \implies T(n) = 1$$

n was assumed to be a power of 2.

Iterating recurrencies

- Example: T(n) = 4T(n/2) + n = n + 4(n/2 + 4T(n/4)) = n + 2n + 16T(n/4) = n + 2n + 16[n/4 + 4T(n/8)] = n + 2n + 4n + 4T(n/8) $= n + 2n + 4n + 8n + \dots = n \sum_{\substack{j=0 \\ n \ge 2-1 \\ 2-1}}^{\lfloor \frac{j}{2}n-1 \rfloor} 2^k + 4^{\lfloor \frac{j}{2}n}T(1)$ $\Theta(n^2)$
- Disadvantages:
 - » Tedious
 - » Error-prone
- Use to generate initial guess, and then prove by induction!

31

Recursion Tree

• **Example:** $T(n) = T(n/4) + T(n/2) + n^2$

• At k-th level we get a general formula: i steps right, k-i left

$$\begin{split} n^2 \sum_i \binom{k}{i} \left[2^{-i} 4^{-(k-i)} \right]^2 &= n^2 \sum_i \binom{k}{i} \left[4^{-i} 16^{-(k-i)} \right] = \\ &= n^2 \left[\frac{1}{4} + \frac{1}{16} \right]^k = n^2 \left[\frac{5}{16} \right]^k \end{split}$$

• Summing over all k, geometric sum, sums $t_{\Theta(n^2)}$ (overcount, since T(1)=1)

Master Method

- Consider the following recurrence aT(n/b) + f(n); $a^31,b>1$
 - 1. $f(n) = O(n^{\lg_b a e}), e > 0$ P $Q(n^{\lg_b a})$
 - 2. $f(n) = Q(n^{\lg_b a} \lg^k n), k^3 0$ P $Q(n^{\lg_b a} \lg^{k+1} n)$

3.
$$f(n) = W(n^{\lg_b a + e}), e > 0$$

$$af(n/b) \pounds cf(n) \text{ for some } c < 1^{\frac{n}{2}} p \quad Q(f(n))$$

- More general than the book.
- Let $Q = n^{\lg_b a}$. Then the cases are:
 - » Q polynomially larger than f.
 - » f is larger than Q by a polylog factor.
 - » O polynomially smaller than f.

33

Build recursion tree

f(n)

af(n/b)

 $a^2 f(n/b^2)$

Last row: $\Theta(a^{\lg_b n}) = \Theta(n^{\lg_b a})$ elements, each one $\Theta(1)$.

Total: $\Theta(n^{\lg_b a}) + \sum_{i=1}^{\lg_b n-1} a^i f(n/b^i)$

Which term dominates?

First case: "f(n) small"

$$\frac{n^{\lg_b a}}{f\left(n\right)} = \Omega(n^e) \ \Rightarrow \ \exists c \text{ s.t for "large enough n"}, \ f\left(n\right) \leq c n^{\lg_b a}/n^e$$

$$a^jf(n/b^j)\!\leq\! ca^j(n/b^j)^{\lg_ba-\epsilon}=\!cn^{\lg_ba-\epsilon}a^j\frac{b^{j\epsilon}}{b^{j\lg_ba}}=\!cn^{\lg_ba-\epsilon}b^{j\epsilon}$$

The ratio summed over all possible j: $\frac{b^{\varepsilon \lg_b n} - 1}{b^{\varepsilon} - 1} = \Theta(n^{\varepsilon}).$

Total: $O(n^{\lg_b a})$.

Lower bound is trivial (Why ?? First term in the original expression was already $\Theta(n^{\lg_b a})$.)

35

Second case

$$f(n) = \Theta(n^{\lg_b a} \lg^k n)$$

$$\sum \underbrace{a^{j} \left(\frac{n}{b^{j}}\right)^{\lg_{b} a}}_{=n^{\lg_{b} a}} \underbrace{\lg^{k} \left(\frac{n}{b^{j}}\right)}_{\leq \lg^{k} n} = O(\lg^{k+1} n) n^{\lg_{b} a} \quad \text{(there are } O(\lg n) \text{ elements in the sum)}$$

This is an UPPER bound! How to prove the lower bound??

Rough and easy approach:

$$\sum_{i=1}^{\lg_b n-1} \lg^k \left(\frac{n}{b^j} \right) \ge \sum_{i=1}^{(\lg_b n)/2} \lg^k \left(\frac{n}{b^j} \right) \ge \sum_{i=1}^{(\lg_b n)/2} \lg^k \sqrt{n} = (\text{const}) \lg^{k+1} n$$

(Note that we use the assumption that $k \ge 0$

Third case

$$\begin{aligned} &a^{j}f(n/b^{j}) \leq c^{j}f(n) & \text{ for some } c < 1, \text{ and } f(n) = \Omega(n^{\lg_{b}a + e}) \\ &\Rightarrow \sum_{i=1}^{\lg_{b}n - 1}c^{j}f(n) = \Theta(f(n)) \\ &\Rightarrow \sum_{i=1}^{\lg_{b}n - 1}a^{j}f(n/b^{j}) = O(f(n)) & \text{ Note Big-Oh and not Theta !} \end{aligned}$$

The first term is already $\Theta(n^{\lg_b a}) = O(f(n))$

TOTAL: $\Theta(f(n))$