CS 161
Design and Analysis of $\mathcal{A l g o r i t f i m s}$

Dan Bonef

Administrative

We 6 page frtp：／／theory．stanford．edu／～dabo／cs161
» Handouts
» Announcements
»Late Greaking news
－Grading and course requirements
》 Midterm／final／hw
＂Project
》Late $\mathcal{H} \mathcal{W}$ policy
》 Importance of readable $\mathcal{H} \mathcal{W}$
» Collaboration
－Probability－Cf．6．2，pp 104－115 READ N（OW ！

Why Study Algorithms ？ （why cs161？）

－Bag of tricks
》 Sorting
》 Data structures：queues／stacks／heaps／trees
＞Searcf
－Methodology－how to design algoritfims
» Divide éconquer
＞Recursive algoritfms
＞Randomized algoritfms
＞Dynamic programming
－Uls eful abstractions．
$>$ Scfieduling classe \longleftrightarrow graphs．
$>$ gob assignment balls and boxes．
－Higher－level way of approaching problems

How to compare algorithms ？

－Code and run－experiment
» Inputs ？
» Parameters ？
» Bad implementations ？
－Average case
＂what is＂average input＂？？
－Worst case
》 Asymptotics
» rough idea on performance
＂analytical dependence between parameters

Example from Ch. 2

- Insertion sort:

```
for j = 2 to n
        key = { (j)
        i=j-1
        while i>0 and }\mathcal{A}(i)>ke
            A(i+1)={\mathscr{A}(i)
            A(i) = key
            i..
        end
```

- Example:

735812
37
357
3578
13578
123578

About Pseudo-Code

- Not really a program, just an outline
- Enough details to establisf the running time and correctness.
- No error-fiandling mechanisms.
- Even pseudo-code is too complicated!
\mathcal{N} ote that for a trivial algorithms it obscures what is really going on...
- The "in-place" part is an optimization.

We could start by a simpler description:
» Go over the numbers one-6y-one, starting from the first, copy to new array.
" Each time copy to the correct place in the new array.
》 In order to create empty space, shift the numbers that are larger than the currently considered number one cell to the right.

Analysis

－Correctness and termination．
－Running time：
＂$D e p e n d s$ on input size
» input properties
－Want an upper bound on：
» Worst case： $\max \mathcal{T}(n)$ ，any input．
» Expected：E［T $(n)]$ ，input taken from a distribution．\quad which ？？ example：sorting arriving $\mathcal{T C P} /$ IP packets－they are mostly sorted already．
》 Best case：Can be used to argue that the algorithm is really bad． （any algoritfm can be rewritten to have an excellent＂best case＂ performance）

Back to insertion sort

－Insertion sort：
for $\mathbf{j}=2$ to $\underset{\text { key }}{=} \mathrm{A}(\overline{\mathrm{j}} \mathrm{n}$
$i=j-1$
while $i>0$ and $A(i)>$ key $n-1$. $A(i+1)=A(i)$ $\underset{i(i)}{A(i)}=$ key
end $\longrightarrow \sum_{j=2}^{n}\left(t_{j}-1\right)$
－Simplified algorithm：
$\left.\begin{array}{l}\text {（Go over the numbers one－by－one，} \\ \text { starting from the first，copy to new }\end{array}\right\} \quad$ n times starting from the first，copy to new $\}$ array．
》 Each time copy to the correct place in the new array．
t_{j} each
》 In order to create empty space， shift the numbers that are larger than the currently considered number one cell to the right．

Analysis

- Best running time: Outer loop always executed,

Inner loop - not executed if input already sorted.

- Assume eack operation takes 1 time unit - approximation.
$n+(n-1)+(n-1)+\sum_{j=2}^{n} t_{j}+2 \sum_{j=2}^{n}\left(t_{j}-1\right)+(n-1)$
t_{j} worst case $\approx j$
$\Rightarrow \sum_{j=2}^{n} t_{j}=\underbrace{\frac{n(n+1)}{2}}_{\text {This dominates ! }}-1$
- Would like to formalize this statement!
- Do we really need to pay close attention to all the indices in the summations? Maybe some or them are not really important ??

Formalization

- How to formalize that $\frac{n(n+1)}{2}$ was the main issue ??
- The answer is asymptotic analysis:
»Ignore machine-dependent constants.
»Look at growth of $\mathcal{T}(n) \infty$
- Intuition: drop low-order terms
eg:

$$
5 n^{4}+10 n^{2}-3 n+2=\Theta\left(n^{4}\right)
$$

Idea: as $n \rightarrow \infty, \Theta\left(n^{2}\right)$ becomes better (faster) than $\Theta\left(n^{4}\right)$

Back to insertion sort analysis

- Inner loop was $\Theta(j)$

$$
T(n) \approx \sum_{2}^{n} \Theta\left(t_{j}\right)=\Theta\left(\sum_{2}^{n} t_{j}\right)=\Theta\left(n^{2}\right)
$$

- Is this formal? NO !

Example, using the same logic:
$\Theta(1)+\Theta(1)=\Theta(1)$
seems to imply that $\sum_{i=1}^{n} \Theta(1)=\Theta(1) \leftarrow$ Incorrect !

- We need formalization!

Another example: $\log n \stackrel{? ?}{\sim} n^{1 / 10}$

Asymptotics

- 6 ig-Of notation:
$f(n)=O(g(n)) \Leftrightarrow \exists$ const c, n_{0} s.t. $\forall n \geq n_{0}: 0 \leq f(n) \leq c g(n)$
- Example: $2 n^{2}=O\left(n^{6}\right) \quad$ Gut not vice versa!!
- "=" is not equality but membership in a set.

Set notation is cumbersome:
$O(g(n))=\left\{f(n) \mid \exists\right.$ const c, n_{0} s.t. $\left.\forall n \geq n_{0}: 0 \leq f(n) \leq c g(n)\right\}$

- What do we mean by $f(n)=O(n)+n^{2}$ $\Leftrightarrow \exists h(n)=O(n), f(n)=h(n)+n^{2}$
- We are too lazy to specify $f(n)$ exactly!

Asymptotics

- Small- of notation:

Prove that $n=o\left(n^{2}\right)$:
Given c, lets take $n_{0}=2 / c$
\Rightarrow for $n \geq n_{0}, \quad n^{2} \geq \frac{2}{c} n \Rightarrow c n^{2} \geq c\left(\frac{2}{c} n\right)=2 n>n \quad$ QED

Omega notation

- Big-Omega:
$f(n)=\Omega(g(n)) \Leftrightarrow \exists$ const c, n_{0} s.t. $\forall n \geq n_{0}: 0 \leq c g(n) \leq f(n)$
- Small-omega:
$f(n)=\omega(g(n)) \Leftrightarrow \forall$ const $c, \exists n_{0}$ s.t. $\forall n \geq n_{0}: 0 \leq c g(n)<f(n)$

$$
\begin{array}{ll}
O: \leq & o:< \\
\Omega: \geq & \omega:>
\end{array}
$$

Transitivity etc.

- Most rules apply: $\quad a \leq b, b \leq c \Rightarrow a \leq c$

Example: transitivity $f=O(g), g=O(h) \Rightarrow f=O(h)$
Proof:
$f=O(g) \Rightarrow \exists$ const c_{1}, n_{1} s.t. $\forall n \geq n_{1}: 0 \leq f(n) \leq c_{i} g(n)$
$g=O(h) \Rightarrow \exists$ const c_{2}, n_{2} s.t. $\forall n \geq n_{2}: 0 \leq g(n) \leq c_{2} h(n)$

Take $n_{3}=\max \left(n_{1}, n_{2}\right), c_{3}=c_{1} c_{2}$
Then: $\forall n \geq n 3$: $0 \leq f(n) \leq c_{1} g(n) \leq c_{1} c_{2} h(n)=c_{3} h(n)$
$\Rightarrow f(n)=O(g(n)) \quad$ QED

- Not all rules apply!
$\exists f, g$ s.t. $f \neq O(g)$ and $g \neq O(f)$
example: $f=n, g=n^{1+\sin n}$

Theta notation

- Theta:
$f(n)=\Theta(g(n)) \Leftrightarrow \exists$ const c_{1}, c_{2}, n_{0} s.t. $\forall n \geq n_{0}: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$
- Often confused with Big-Of notation!
- Example: $n^{2} / 2-2 n=\boldsymbol{\Theta}\left(n^{2}\right)$

Proof:
take $n_{0}=8$, then for $n \geq n_{0}$:
$n^{2} / 2-2 n \geq n^{2} / 4+8 n / 4-2 n=n^{2} / 4$
On the other hand, we have: $n^{2} / 2-2 n<n^{2} / 2$
Thus: $n^{2} / 4 \leq n^{2} / 2-2 n \leq n^{2} / 2$ i.e. $c_{1}=1 / 4, c_{2}=1 / 2$.

- Claim: Low order terms do not matter. Needs a proof! (HW?)

Simple Theorem

- Claim $f(n)=O(g(n))$ and $g(n)=O(f(n)) \Rightarrow f(n)=\Theta(g(n))$

Proof:

$\exists n_{1}, c_{1}$ s.t. $\forall \mathrm{n} \geq \mathrm{n}_{1}: \quad 0 \leq f(n) \leq c_{1} g(n)$
$\exists n_{2}, c_{2}$ s.t. $\forall \mathrm{n} \geq \mathrm{n}_{2}: 0 \leq g(n) \leq c_{2} f(n)$
$\Rightarrow \forall n \geq \max \left(n_{1}, n_{2}\right): 0 \leq \frac{1}{c_{2}} g(n) \leq f(n) \leq c_{1} g(n) \quad$ QED

Summary

- Remember the definitions.
- Formally prove from definitions.
- Ulse intuition from the properties of " \leq ", " \geq ", etc.

