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Administrative

Web page http://theory.stanford.edu/~dabo/cs161
» Handouts
» Announcements
» Late breaking news

e Grading and course requirements
» Midterm/final/hw
» Project
» Late HW policy
» Importance of readable HW
» Collaboration

e Probability - Ch. 6.2, pp 104-115 READ NOW !




Why Study Algorithms ?
(why cs161?)

e Bag of tricks
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»

»

»
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»

»

Sorting
Data structures: queues/stacks/heaps/trees
Search

Methodology - how to design algorithms

Divide & conquer
Recursive algorithms
Randomized algorithms
Dynamic programming

Useful abstractions.

Scheduling classes— graphs.
Job assignment—— balls and boxes.

Higher-level way of approaching problems

How to compare algorithms ?

e Code and run - experiment
» Inputs ?
» Parameters ?
» Bad implementations ?

e Average case
» what is “average input” ??

e Worst case
» Asymptotics
» rough idea on performance
» analytical dependence between parameters




Example from Ch. 2

e Insertion sort:

forj=2ton
key = A()
i=j-1
while i > 0 and A(i) > key
Ai+1) = A()
A(i) = key
j——
end
end

e Example:
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About Pseudo-Code

Not really a program, just an outline

Enough details to establish the running time and correctness.

No error-handling mechanisms.

e Even pseudo-code is too complicated !
Note that for a trivial algorithms it obscures
what is really going on...

e The “in-place” part is an optimization.
We could start by a simpler description:

» Go over the numbers one-by-one, starting from the first, copy to new

array.
» Each time copy to the correct place in the new array.

» In order to create empty space, shift the numbers that are larger than

the currently considered number one cell to the right.




Analysis

e Correctness and termination.

e Running time:
» Depends on input size
» input properties

e Want an upper bound on:
» Worst case: max T(n), any input.

» Expected: E[T(n)], input taken from a distribution. =~ which ??
example: sorting arriving TCP/IP packets — they are mostly sorted
already.

» Best case: Can be used to argue that the algorithm is really bad.
(any algorithm can be rewritten to have an excellent “best case”
performance)

Back to insertion sort

e Insertion sort:

for j =2ton .
key = A(J)
i=]-1 n-1
while i > 0 and A(i) > key
ACi +1) = A(i)
Ai) = key
i--

end
end
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e Simplified algorithm:
» Go over the numbers one-by-one, ;
starting from the first, copy to new} ntimes

array.

» Each time copy to the correct place
in the new array.

» In order to create empty space,
shift the numbers that are larger
than the currently considered number
one cell to the right.
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Analysis

Best running time: Outer loop always executed,
Inner loop - not executed if input already sorted.

Assume each operation takes 1 time unit - approximation.

n+(n—1)+(n—])+j22?i +2§1(t1 -D)+(n-1
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This dominates!

Would like to formalize this statement !

Do we really need to pay close attention to all the indices in the
summations ? Maybe some or them are not really important ??

Formalization

was the main issue ??

How to formalize that ")

The answer is asymptotic analysis:
» lgnore machine-dependent constants.
» Look at growth of T(n) &¥

Intuition: drop low-order terms
eg:

5n4+10n2-3n+2=Q(n%)
ldea: asn® ¥, Q(nz) becomes better (faster) than Q(n4)
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Back to insertion sort analysis

e Inner loop was Q(j)

n n
T(n) »%Q(tj):Q(%n):Q(nZ)

Is this formal ? NO !
Example, using the same logic:

QD +QM =)
seems to imply that g QM) =Q() - Incorrect!
i=1

We need formalization !

7
Another example: logn ~ nt/10
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Asymptotics

big-Oh notation:
f(n)=0(g(n) U $const c,n, s.t." n3 ny; OF f (n)£cg(n)
Example: 2n*=0(n°) but not vice versa !!
“=*is not equality but membership in a set.
Set notation is cumbersome:
O(g(n)) ={ f (n)|$const c,n, s.t." n3 n,: O£ f (n) £ cg(n)}

What do we mean by ¢ n)=o(m)+n2
U $h(n)=0(n), f (n) =h(n)+n2

We are too lazy to specify h(n) exactly !




Asymptotics

e Small-oh notation:
f(n)=o0(g(n))U " const c,$n, st.” n3 ny OF f(n)<cg(n)
Differences from big-Oh

Prove that n=o0(n?):
Givenc, letstaken, =2/c

p forn3n,, n23%n P cn?s c(%n):2n>n QED

gy

f(n) Factor 2 f(n)

//f\m>

\
f=0(g) in both cases! 13

Omega notation

e Big-Omega:
f(N)=W(g(n)) U $const cnyst.” n3ny O£cg(n)£ f(n)

e Small-omega:
f(n)=w(g(n)U " const ¢, $nyst." n3ny: 0£cg(n)<f(n)
O:
Q.

0: <
w: >

IV IA
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Transitivity etc.

e Most rules apply: atb, bEcb afc
Example: transitivity f=0(g),g=0(h)pk f=0(h)

Proof:
f=0(g) P $constc,n st.” n3 n: OF f(n)£cg(n)
g=0(h)P $const c,,n, st.” n3n,: 0£g(n)£c,h(n)

Take n:s = max(rl, nz)! C3 = C1C2
Then: " n3 n3: O£ f(n)£cg(n)£cch(n) =ch(n)
P f(n)=0(g(n)) QED

e Not all rules apply !

$f,gst. f 1 O(g) andg? O(f)
example f =n, g=nt+sn
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Theta notation

e Theta:
f(n)=Q(g(n)) U $const C.C,nyst." n3ny: 0£cg(n) £ f(n)£c,g(n)

e Often confused with Big-Oh notation !
[ ) Example: n2/2_ zan(nZ)
Proof:
take n, =8, thenfor n3 ny:
n2/2-2n3 n2/4+8n/4- 2n=n2/4
Onthe other hand, we have: n2/2- 2n<n2/2

Thus: n?/4£n2/2- 2n£n?/2 i.e ¢ =1/4,c,=1/2

e Claim: Low order terms do not matter. Needs a proof ! (HW?)
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Simple Theorem

e Claim f(n)=0(g(n) and g(n) =O(f (M) P (n) =Q(g(n)
Proof:
$n,c st. " n3n;: OF f(n)£cg(n)
$n,,c,st." n3n,: 0£g(n)£c,f(n)

P " n3 max(n,n,): OE%g(n)E f(n) £c,g(n) QED
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Summary

e Remember the definitions.
e Formally prove from definitions.

e Use intuition from the properties of ‘€7, “°*, etc.
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