
1

1

CS161 CS161
Design and Analysis of AlgorithmsDesign and Analysis of Algorithms

Dan Boneh

2

AdministrativeAdministrative

Web page http://theory.stanford.edu/~dabo/cs161
» Handouts
» Announcements
» Late breaking news

l Grading and course requirements
» Midterm/final/hw
» Project
» Late HW policy
» Importance of readable HW
» Collaboration

l Probability - Ch. 6.2, pp 104-115 READ NOW !

Lecture 1, April 3, 2001

2

3

Why Study Algorithms ?Why Study Algorithms ?
(why cs161?)(why cs161?)

l Bag of tricks
» Sorting
» Data structures: queues/stacks/heaps/trees
» Search

l Methodology - how to design algorithms
» Divide & conquer
» Recursive algorithms
» Randomized algorithms
» Dynamic programming

l Useful abstractions.
» Scheduling classes graphs.
» Job assignment balls and boxes.

l Higher-level way of approaching problems

4

How to compare algorithms ?How to compare algorithms ?

l Code and run - experiment
» Inputs ?
» Parameters ?
» Bad implementations ?

l Average case
» what is “average input” ??

l Worst case
» Asymptotics
» rough idea on performance
» analytical dependence between parameters

3

5

Example from Ch. 2Example from Ch. 2

l Insertion sort:
for j = 2 to n
key = A(j)
i=j-1
while i > 0 and A(i) > key

A(i+1) = A(i)
A(i) = key
i--

end
end

l Example:
7 3 5 8 1 2
3 7
3 5 7
3 5 7 8
1 3 5 7 8
1 2 3 5 7 8

6

About PseudoAbout Pseudo--CodeCode

l Not really a program, just an outline
l Enough details to establish the running time and correctness.
l No error-handling mechanisms.

l Even pseudo-code is too complicated !
Note that for a trivial algorithms it obscures
what is really going on...

l The “in-place” part is an optimization.
We could start by a simpler description:

» Go over the numbers one-by-one, starting from the first, copy to new
array.

» Each time copy to the correct place in the new array.
» In order to create empty space, shift the numbers that are larger than

the currently considered number one cell to the right.

4

7

AnalysisAnalysis

l Correctness and termination.

l Running time:
» Depends on input size
» input properties

l Want an upper bound on:
» Worst case: max T(n), any input.
» Expected: E[T(n)], input taken from a distribution. which ??

example: sorting arriving TCP/IP packets – they are mostly sorted
already.

» Best case: Can be used to argue that the algorithm is really bad.
(any algorithm can be rewritten to have an excellent “best case”
performance)

8

Back to insertion sortBack to insertion sort

l Insertion sort:
for j = 2 to n

key = A(j)
i=j-1
while i > 0 and A(i) > key

A(i+1) = A(i)
A(i) = key
i--

end
end

l Simplified algorithm:
» Go over the numbers one-by-one,

starting from the first, copy to new
array.

» Each time copy to the correct place
in the new array.

» In order to create empty space,
shift the numbers that are larger
than the currently considered number
one cell to the right.

n
n-1
...

()t j
j

n
-

=
Â 1

2

n times

tj each

5

9

AnalysisAnalysis

l Best running time: Outer loop always executed,
Inner loop - not executed if input already sorted.

l Assume each operation takes 1 time unit - approximation.

l Would like to formalize this statement !

l Do we really need to pay close attention to all the indices in the
summations ? Maybe some or them are not really important ??

n n n t t n

t j

t n n

j
j

n

j
j

n

j

j
j

n

+ - + - + + - + -

ª

fi = + -

= =

=

Â Â

Â

() () () ()

()

1 1 2 1 1

1
2 1

2 2

2

 worst case

This dominates !
1 24 34

10

FormalizationFormalization

l How to formalize that was the main issue ??

l The answer is asymptotic analysis:
» Ignore machine-dependent constants.
» Look at growth of T(n) as

l Intuition: drop low-order terms
eg:

n n()+ 1
2

→ ∞

4 2 45 10 -3 2 ()
2 4Idea: as , () becomes better (faster) than ()

n n n n
n n n

+ + =Θ
→ ∞ Θ Θ

6

11

Back to insertion sort analysisBack to insertion sort analysis

l Inner loop was Θ (j)

l Is this formal ? NO !
Example, using the same logic:

l We need formalization !

2() () () ()
2 2

j j
n n

T n t t n≈ Θ =Θ =Θ∑ ∑

?? 1/10Another example: log ~n n

1

(1) (1) (1)

seems to imply that (1) (1) Incorrect !
n

i=

Θ + Θ =Θ

Θ = Θ ←∑

12

AsymptoticsAsymptotics

l big-Oh notation:

l Example: but not vice versa !!

l “=“ is not equality but membership in a setmembership in a set.
Set notation is cumbersome:

l What do we mean by

l We are too lazy to specify h(n) exactly !

f n O g n c n n n f n cg n() (()) , . : () ()= ⇔ ∃ ∀ ≥ ≤ ≤const s.t0 0 0

2 2 6n O n= ()

O g n f n c n n n f n cg n(()) { ()| , . : () ()}= ∃ ∀ ≥ ≤ ≤const s.t0 0 0

f n O n n
h n O n f n h n n

() ()
() (), () ()
= +

⇔ ∃ = = +
2

2

7

13

AsymptoticsAsymptotics

l Small-oh notation:
f n o g n c n n n f n cg n() (()) , . : () ()= ⇔ ∀ ∃ ∀ ≥ ≤ <const s.t0 0 0

Differences from big-Oh

Prove that
Given c, lets take

for QED

n o n
n c

n n n c n cn c c n n n

=
=

⇒ ≥ ≥ ⇒ ≥ = >

():
/

, ()

2

0

0
2 2

2
2 2 2

g(n)

f(n) f(n)

g(n)

Factor 2

f=O(g) in both cases !

14

Omega notationOmega notation

l Big-Omega:

l Small-omega:

f n g n c n n n cg n f n() (()) , . : () ()= ⇔ ∃ ∀ ≥ ≤ ≤Ω const s.t0 0 0

f n g n c n n n cg n f n() (()) , . : () ()= ⇔ ∀ ∃ ∀ ≥ ≤ <ω const s.t0 0 0

O o: :
: :

£ <
≥ >W w

8

15

Transitivity etc.Transitivity etc.

l Most rules apply:
Example: transitivity

l Not all rules apply !

1 1

2 2

3 1 2 3 1 2

1 1 2 3

1 1

2 2

,
(), () ()

Proof:
() const , s.t. : 0 () ()
() const , s.t. : 0 () ()

Take max(,),
Then: 3: 0 () () () ()

() ((

a b b c a c
f O g g O h f O h

f O g c n n n f n c g n
g O h c n n n g n c h n

n n n c cc
n n f n c g n c c h n c h n

f n O g

≤ ≤ ⇒ ≤
= = ⇒ =

= ⇒ ∃ ∀ ≥ ≤ ≤
= ⇒ ∃ ∀ ≥ ≤ ≤

= =
∀ ≥ ≤ ≤ ≤ =

⇒ =)) QEDn

∃ ≠ ≠
= = +

f g f O g g O f
f n g n n

, () ()
: , sin

 s.t. and
example 1

16

Theta notationTheta notation

l Theta:

l Often confused with Big-Oh notation !

l Example:

l Claim: Low order terms do not matter. Needs a proof ! (HW?)

f n g n c c n n n c g n f n c g n() (()) , , . : () () ()= ⇔ ∃ ∀ ≥ ≤ ≤ ≤Θ const s.t1 2 1 20 0 0

n n n

n n n
n n n n n n

n n n

n n n n c c

2 2

0 0
2 2 2

2 2

2 2 2
1 2

2 2

8
2 2 4 8 4 2 4

2 2 2

4 2 2 2 1 4 1 2

/ ()

, :
/ / / /

/ /

/ / / / , / .

− =

= ≥
− ≥ + − =

− <

≤ − ≤ = =

Θ

Proof:
take then for

On the other hand, we have:

Thus: i.e.

9

17

Simple TheoremSimple Theorem

l Claim f n O g n g n O f n f n g n

n c f n c g n
n c g n c f n

n n n c g n f n c g n

() (()) () (()) () (())

, () ()
, () ()

max(,): () () ()

= = ⇒ =

∃ ∀ ≥ ≤ ≤
∃ ∀ ≥ ≤ ≤

⇒ ∀ ≥ ≤ ≤ ≤

 and

Proof:
 s.t. n n : 0
 s.t. n n : 0

 QED

1

2

Θ

1 1 1

2 2 2

1 2
2

10 1

18

SummarySummary

l Remember the definitions.

l Formally prove from definitions.

l Use intuition from the properties of “≤”, “≥“, etc.

