The Monte Carlo Method and
Software Reliability Theory

Brian Korver?
briank@cs.pdx.edu

TR 94-1. February 18, 1994

1.0 Abstract

The Monte Carlo method of reliability prediction is useful
when system complexity makes the formulation of exact
models essentially impossible. The characteristics of the
Monte Carlo method make it ideal for estimating the reli-
ability of software systems. Unlike many other mathemat-
ical models, system complexity isirrelevant to the method.
Not only can the structure of the system be dynamic, but
the precise structure of the software system need not even
be known. Instead, system components need only be
tested for failure during operation, which ensures that
components which are used more often contribute propor-
tionally moreto the overall reliability estimate. Combined
with self-checking algorithms which respond to randomly-
generated inputs, the method obviates the need for valid,
nontrivial input data and an external oracle.

2.0 The Monte Carlo Method

The Monte Carlo method of estimating integralsis proba-
bly the best-known Monte Carlo technique. Instead of

1. Work supported by NSF grant CCR 9110111. | would like to
thank Dick Hamlet for his considerable insight and patience in
hel ping me to put together this tech report.

attempting to solve integral s ana ytically, the method esti-
mates an integral by firing random points at the function.
The law of large numbers predicts that as more random
points are chosen, the ratio of points below to points above
the function will approximate the ratio of the area beneath
the function to total area of the sample space from which
the random points are drawn. For instance, in order to
solve the integral for the unit normal distribution,

2 X2
=(

J’e E)dx

-2

(EQ1)

random points (xy) are chosen from therange -2<x<2,
0<y<1. Ascan be seen from Figure 1, darts thrown ran-
domly at that range can be expected to fall below the func-
tion

2
(E)

f=e (EQ 2)
proportional to the areathat lies beneath this function.
Such factors as the complexity of the function and the
number of variables are essentially irrelevant. Sincethe
Monte Carlo method does not attempt to solve the integral
analytically, the function need not be known and, in fact,
can be in the form of data since the method only needsto

Crude Monte Carlo

be informed of whether a given point falls above or below
the function.

3.0 Crude Monte Carlo

The most general version of the Monte Carlo method of
reliability prediction is based on the “structure function”
which says that the state of a system is the product of the
states of its components (Kaufmann, Grouchko, & Cruon,
1977, p. 56; Melchers, 1987, p. 91). Specifically, if

« = { 1 if component e; isin agood state,
i 0 otherwise

then the state of the systemy s

n
y =[] (EQ3)

i=1

for componentsin series, and

y=1- I_l (1-x)

i=1

(EQ4)

for componentsin parallel. Since system behavior is
based on the behavior of system components, the possible
error intheresulting reliability estimate is reduced (Kamat
& Riley, 1975, p. 73).

While “crude’—or “direct”—Monte Carlo is statistically
sound and easy to understand, it can be a computationally
expensive technique. Since most systems are highly reli-
able, crude Monte Carlo simulations require large sample
sizes to obtain a sufficient quantity of failuresto provide
reliable estimates. Moreover, since the standard error of
the final result isinversely proportional to the square root
of the sample size n, the sample size must be increased K-
fold to reduce the standard error by afactor of k(Hammer-

FIGURE 1. Monte Carlo Integration

sley & Handscomb, 1964, pp. 21-22). Thus, many
improvements—called variance reduction techniques—
have been developed to reduce the required sample sizes.
According to Hammersley and Handsomb,

The so-called variance-reducing techniques, which
lie a the heart of good Monte Carlo work, are tech-
niques which reduce the coefficient of 1/nin the
sampling variance of the final estimator, wherenis
the sample size (or, perhaps more generally, the
amount of labour expended on the calculetion).

For instance, Kumamoto, Tanaka, Inoue, and Henley
describe a variance reduction technique tha increased the
efficiency of aMonte Carlo simulation by 934-fold (1980,
p. 379). However, for the sake of simplicity and without
loss of generality, this paper describes the application of
crude Monte Carlo to thereliability simulation of software
systems.

4.0 Reliability Simulation

Because the reliability of each component is based on
probability distributions, the reliability of each component
in asystem flow chart can be modelled by a set of random
numbers. For instance, if the reliability of acomponent is
0.8, then successful operation of that component can be
represented by the numbers from 0.0 through 0.79 and
failure by the numbers from 0.8 through 0.99 (Amstadter,
1971, p. 176). By generating random numbers as the sys-
tem flow chart istraced, it is possible to simulate the state
of each component. These component states can then be
combined using the structure function to determine the
state of the system. Since“each execution of asimulation
tells only whether a particular set of conditions did or did
not” exist, the Monte Carlo method is an experimental
problem-solving technique such that “many simulation
runs have to be made to understand the rel ationships
involved in the system” (Gordon, 1978, pp. 42, 43). Each
repetition of the simulation results in another independent
estimate of the reliability of the system. Asthe number of
simulations increases, the sample mean of these indepen-
dent estimates approaches the actual characteristics of the
system (Amstadter, 1971, p. 176). According to Verma,
Fu, and Moses,

Monte Carlo methods can be used to good advantage
sincetherequired probability of failureisformulated
asamulti-dimensional integral of the probability
density function of the basic variables over the sys-

The Monte Carlo Method and Software Reliability Theory

System Reliability Estimation

tem failure domain (which may not have asimple
boundary). (1989, p. 895)

That is, the Monte Carlo method computes the stetistical
expectation of the reliability distributions (Zaremba, 1968,
p. 304). Thus, because estimates of system reliability are
based on probability distributions functions representing
the failure rates of components, the Monte Carlo method
will accurately simulate system reliability whatever the
complexity of those distributions, even in the case that
they are entirely empirical.

5.0 System Reliability Estimation

Consider the arbitrary, trivial three-component system
with the failure intensities shown in Figure 2. Listing 1
demonstrates the use of Monte Carlo methods to simulate
the behavior of this system and thus can be used to esti-
mate itsreliability. The failure of one of the two compo-
nents that form the series subsystem causes the failure of
the entire subsystem. A given iteration of the subsystemis
simulated by testing the state of the first component of the
subsystem by generating a random number in the range
[0,1]. If thefirst component does not fail, then the state of
the second component istested. If the series subsystem
fails, then the parallel component istested. If it too fails,
then the entire system fails. After anumber of these sys-
tem simulations have been performed, the failure intensity
of the system is calculated by dividing the number of
observed failures by the total number of simulations. The
actual failure intensity for this system is 0.01925.1 The
results from actual simulation runs of Listing 1 are given
in Figure 3. Asthe number of system simulations
increases, the simulation results cornverage to the actual
mean.

FIGURE 2. Three-Component System

0.15 0.05

0.10

1. [0.15 + 0.05 - (0.05)(0.15)](0.10) = 0.01925

FIGURE 3. Results from Listing 1

022: Actual Failure Intensity is 0.01925
0.03
0.025
0.02

0.015

Failure Intensity

0.01

30 Trial Mean

0.005 .
— — - Standard Deviation

0
0 500 1000 1500 2000

Number of System Simulations

2500

6.0 MTBF Estimation

Listing 2 demonstrates the use of Monte Carlo methods to
estimate the mean time between failures (MTBF) of the
system shown in Figure 2 by counting the average amount
of time (measured herein iterations) between each failure.
Given sample size n with ty, ty, ..., t, being the number of
successful iterations between failures,

n
2"
i=1

(Shooman, 1983, pp. 570-571). Aseach run of successes
until afailure occurs constitutes a geometric experiment,
the actual MTBF of the system in Figure 2is51.948.2 The
results from actual simulation runs of Listing 2 are given
in Figure 4. Because each sample in aMTBF estimate
consists of the number of Bernoulli trials until afailure
occurs, the variance of the resultsis less than tha of the
single Bernoulli trial simulated failure intensity.

1

MTBF = (EQ5)

S

7.0 Self-Checking Algorithms

As mentioned previously, the reliability of each system
component is modelled using probability distributions.

2. 1/(0.01925) = 51.948

The Monte Carlo Method and Software Reliability Theory

Software System Composition

FIGURE 4. Results from Listing 2 TABLE 1. Listing 3 Components
80 Component Description
Actual MTBF is 51.948
20 1 Generate a system of linear equations
2 Check if the system has been generated ran-
2 o domly
% 3 Reduce the matrix to echelon form using
£ 50 Gaussian elimination
o 4 Check if the matrix isin echelon form
72:5 40 5 Backsolve to obtain the roots
I8 6 Check if the roots are a solution to the system
30 —— 30 Trial Mean of linear equations
— — - Standard Deviation
20 hierarchical structure, while other decompositions

0 500 1000 1500 2000
Number of System Simulations

2500

Although the reliability characteristics of the components
in software systems are rarely known, it may be possible
to write self-checking a gorithms which are able to report
the status of their behavior (Blum & Kannan, 1989; Blum,
Luby, & Rubinfeld, 1990). According to Blum and Kan-
nan, many of these checkers are simpler than the programs
they check (p. 86). Program checkers are concerned with
the task of verifying tha a given program returns a correct
answer on a given input rather than all inputs (p. 87).
Therefore, like the Monte Carlo method, self-checking
algorithms only report the state of the component for a
given set of conditions. Listing 3 demonstrates the use of
Monte Carlo methods with self-checking algorithms to
estimate the reliability of a program which generates a
random matrix and then solves it as system of linear equa
tions. Instead of using random numbers to model the
states of components, checking functions are employed to
report the actual behavior of each component on a given
input.

8.0 Software System Composition

Table 1 descriptions the system components of Listing 3.
The structure of Listing 3isgivenin Figure5. While
these mirror the primary functions of Listing 3, thisis
coincidental and irrelevant to the method. According to
Parnas,

the way that the program is divided into subpro-
grams can be rather arbitrary. For any program,
some decompositionsinto subprogramsmay reveal a

may show agraph with loopsinit. (1974, p. 336)

In a software system, two components are structurally in
parallel if thefailure of oneis not influenced by the failure
of the other. Conversely, two components are structurally
in seriesif failures are propagated from one to the other.
That is, two components are structurally in series of one
“uses’ the other:

Therelaion “uses’ may be defined by USES(p;,p;) =
iff p calls p; and p; will be considered incorrect i%
does not function properly.2 (Parnas, 1974, p. 336)

However, because the structure of a software systemis
implicitly expressed in the code itself, software systems
need not be explicitly decomposed into series and parallel
subsystems. Instead, self-checking algorithms must be
placed at the very least at the junctions of parallel compo-
nents, when control passes between components that are
not related by “uses” In Listing 3, afailure in the Gauss-
ian elimination function will be uncovered when the roots
are checked in the original system of linear equations.
Thus, for arough estimate of system reliability, it may not
be necessary to verify that the reduced matrix isin echelon

FIGURE 5. Decomposition of Listing 3

3. The requirement that p; call p; has been ignored.

The Monte Carlo Method and Software Reliability Theory

Software System Composition

FIGURE 6. Results from Listing 3

0.0006

0.0004

0.0002

Failure Intensity

-0.0002 —— 30 Trial Mean

— — - Standard Deviation
-0.0004
0 500 1000 1500 2000

Number of System Simulations

2500

form. However, to increase accuracy, al component fail-
ures should beincluded in failure rate calculations. For
serial components, it isimportant to note that simple sys-
tem composition cal culations would result in counting
some component failures more than once since afailure by
component p; causes component p; to fail. Thus, the fail-
ureintensity of component p; is computed by factoring out
those errors caused by component p; A

The technique employed in Listing 3 can be used to deter-
mine if components not related by “uses’ are effecting
each other. By conducting a number of one-run simula-
tions, the number of times each component fails indepen-
dently and the number of times they fail together can be
counted. Whether one is causing the other to fail can be
determined by the standard test of independence.®

Although several arbitrary constraints have been coded
into Listing 3—for instance, only generaing linear sys-
tems of twenty variables or less—these constraints provide
an analogue to the requisite operational profile. AsHam-
let states, “unless random tests are drawn as the software
will be actually used, the tests are not a representative
sample and all statistical bets are off” (1993, p. 4).

Encountering an error (ie executing an error-embed-
ded instruction) does not necessarily cause afailure;
it merely provides an opportunity, the degree of
which depends on the probability of simultaneously
processsing failure-inducing input. (Trachteberg,
1990, p. 93)

4. Actual; = Reported; — Reported, + (Reported; * Reported)
5. P(EF) = P(E)P(F)

That is, if you aretrying to empirically determine the
probability that aking will come up in a poker deck, a
pinochle deck will not suffice. More importantly, these
arbitrary limits facilitated the random testing of the indi-
vidual components which was necessary in order to com-
pare the analytically computed failure intensity with the
results of the Monte Carlo simulation. The results of these
tests demonstrate that Monte Carlo simulation techniques
match the analytically computed failure intensities. The
results from actual simulation runs of Listing 3 are given
in Figure 6. However, these results could not be compared
to the “actual” failure intensity since thereisno reliable
method of analytically calculating the failure intensity of
software systems.

Similarly, “bugs’ which were triggered by callsto aran-
dom number generator were inserted into each of the com-
ponents. For 500 system simulations, the results of the
analytically-computed failure intensity and the results of
the Monte Carlo reliability simulation were relatively
close. Example results from these tests are shown in
Table 2.

TABLE 2. Monte Carlo Simulation Tests
Component System
FailureIntensity FailureIntensity
1 3 5 Actual Simulated % Error
025 010 0.05 0.03625 0.03041 16.11
0.03 010 0.05 0.00435 0.00459 5.52
0.03 020 0.05 0.00720 0.00837 16.25
0.03 020 010 0.00840 0.00726 13.57

It isimportant to note that failures in the checking compo-
nents will either increase or decrease the reported system
failure intensity, depending upon whether it ismore likely
for the checking routine to incorrectly report, respectively,
“failure” or “success.” See Table 3 for an example of
when a checking routine fails.

TABLE 3. Example Checking Routine Failures
Actual Checker Checker Reported
Failure Failure Incorrectly Failure
Intensity Intensity Reports Intensity
0.20 0.05 failure 0.24
0.20 0.05 success 0.19
0.20 0.05 50/50 either 0.215

The Monte Carlo Method and Software Reliability Theory

Conclusion

9.0 Conclusion

Although these examples are trivial, the complexity of a
dynamic software system is essentially irrelevant to the
Monte Carlo method of reliability prediction thus making
the method ideal for estimating the reliability of software
systems. Most importantly, the results of the Monte Carlo
method of reliability prediction match those obtained by
analytical methods.

10.0 References and Bibliography

Amstadter, B.L. (1971). Reliability mathematics: Funda-
mentals; practices; procedures. New York: McGraw-
Hill Book Company.

Babbit, A., Powell, ST., & Hamlet, D. (1990). Prototype
testing tools. In Proceedings of the 9th Annual Pacific
Northwest Software Quality Conference (pp. 264-
280). Portland, OR : [The Conference].

Barlow, R.E., & Proschan, F. (1965). Mathematical theory
of reliability. New York: John Wiley & Sons.

Binder, K., & Heermann, D.W. (1988). Monte Carlo sim-
ulation in statistical physics: Anintroduction. New
York: Springer-Verlag.

Birnbaum, Z.W. (1955). On ause of the Mann-Whitney
statistic. Proceedings of the Third Berkeley Sympo-
sium on Mathematical Statistics and Reliability (pp.
13-17). Berkeley and LosAngeles: University of Cal-
ifornia Press.

Birolini, A. (1985). On the use of stochastic processesin
modeling reliability problems. New York: Springer-
Verlag.

Blum, M., & Kannan, S. (1989). Designing programs that
check their work. Proceedings of the 21st Annual
ACM Symposium on Theory of Computing (pp. 86-
97). New York: Association for Computing Machin-
ery.

Blum, M., Luby, M., & Rubinfeld, R. (1990). Self-testing/
correcting with applications to numerical problems.
Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing (pp. 73-83). New York: Associ-
ation for Computing Machinery.

Bratley, P, Fox, B.L., & Schrage, L.E. (1993). A guideto
simulation. New York: Springer-Verlag.

Fluendy, M. (1970). Monte Carlo methods. In G.G.
Lowry (Ed.), Markov chains and Monte Carlo calcu-
lationsin polymer science (pp. 46-90). New York:
Marcel Dekker, Inc.

Gordon, G. (1978). Systemsimulation (2nd ed.). Engle-
wood Cliffs, NJ Prentice-Hall, Inc.

Hammersley, JM., & Handscomb, D.C. (1964). Monte
Carlo methods. New York: John Wiley & Sons, Inc.

Hamlet, D. (1992, July). Arewetesting for true reliabil-
ity? |EEE Software, pp. 21-27.

Hamlet, D. (1993). Randomtesting (PSU TR 93-10).
Portland, OR: Portland State University Computer
Science Department.

Hamlet, D., & Voas, J. (1993). Faultsonits sleeve: Ampli-
fying software reliability testing. 1n Proceedings of
the International Symposium on Software Testing and
Analysis (pp. 89-98). Cambridge, MA: [The Confer-
encel.

Kamat, S.J,, & Riley, M.W. (1975). Determination of reli-
ability using event-based Monte Carlo simulation.
| EEE Transactions on Reliability, R-24(1), pp. 73-75.

Kaufmann, A., Grouchko, D., & Cruon, R. (1977). Mathe-
matical models for the study of the reliability of sys-
tems. New York: Academic Press.

Kumamoto, H. Tanaka, K., Inoue, K., & Henley, E.
(1980). State-transition Monte Carlo for evaluating
large, repairable systems. |EEE Transactions on Reli-
ability, R-29(5), pp. 376-380.

Kleijnen, JP.C. (1974). Satistical techniquesin simula-
tion (Part 2). New York: Marcel Dekker, Inc.

Levy, L.L, & Moore, A.H. (1967). A Monte Carlo tech-
nique for obtaining system reliability confidence lim-

The Monte Carlo Method and Software Reliability Theory

References and Bibliography

its from component test data. Transactions on
Reliability, R-16(2), pp. 69-72.

Mann, N.R., Schafer, R.E., & Singpurwalla, N.D. (1974).
Methods for statistical analysis of reliability and life
data. New York: John Wiley & Sons.

Melchers, R.E. (1987). Structural reliability: Analysisand
prediction. New York: John Wiley and Sons.

Miyakawa, M. (1984). On stochastic coherent systems. In
M. Beckman & W. Krelle (Eds.), Stochastic modelsin
reliability theory (pp. 1-11). New York: Springer-Ver-
lag.

Moore, A.H., Harter, H.L., & Snead, R.C. (1980). Com-
parison of Monte Carlo techniques for obtaining sys-
tem-reliability confidence limits. |EEE Transactions
of Reliability, R-29(4), pp. 327-331.

Parnas, D. (1972). On the criteriato be used in decompos-
ing systems into modules. Communications of the
ACM 15(12), pp. 1053-1058.

Parnas, D. (1974). On a‘buzzword’: Hierarchical struc-
ture. InJ.L. Rosenfeld (Ed.), Proceedings of IFIP
Congress 74 (pp. 336-339). New York: North-Hol-
land Publishing Company.

Ross, S. (1988). Afirst coursein probability (3rd ed.).
New York: Macmillan Publishing Company.

Shannon, R.E. (1975). Systems simulation: The art and
science. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Shooman, M.L. (1983). Software engineering: Design,
reliability, and management. New York: McGraw-
Hill Book Company.

Sobol, I.M. (1974). The Monte Carlo method (R. Messer,
J. Stone, & P. Fortini, Trans.). Chicago: University of
Chicago Press.

Trachtenberg, M. (1990). A general theory of software-
reliability modeling. 1EEE Transactions on Reliabil-
ity, 39(2), pp. 92-96.

Verma, D., Fu, G., & Moses, F. (1989). Efficient structural
system reliability assessment by Monte-Carlo meth-

ods. InA.H-S. Ang, M. Shinozuka, & G.I. Schueller
(Eds.), Sructural Safety & Reliability: Proceedings of
ICOSSAR * 89, the 5th International Conference on
Sructural Safety and Reliability (pp. 895-901). New
York: American Society of Civil Engineers.

Walpole, R.E., & Myers, R.H. (1989). Probability and
statistics for engineers and scientists (4th ed.). New
York: Macmillan Publishing Company.

Zaremba, SK. (1968). The mathematical basis of Monte
Carlo and quasi-Monte Carlo methods. SSAM Review
10(3), pp. 303-314.

The Monte Carlo Method and Software Reliability Theory

The Monte Carlo Method and Software Reliability Theory

LISTING 1. Estimate of Reliability

LISTING 1. Estimate of Reliability

enumstates { FALURE = 0, SUOCESS = 1 };

/**

*

* FUNCTI ON systemt est

* AUTHR Bri an Korver
* PURPCBE Performa Bernoul li trial, conputing the state of the three-conponent system
* usi ng the structure function.

* #2 #3
* [------ \ [------ \
L | 0.15 |---------- | 0.05 |-----
* | \------ / #1 \------ I
* | [------ \ |
L | 010 |------------
* \a-eo-- /
*
* ARAMENTS. -
* RETURN 0 = FALURE, 1 = SUOCESS
* | NPUT: -
* QUTPUT: -
* EXT QE -
* CALLS drand48()
*/
i nt
systemtest ()
{
if ((drand48() >= 0.90) && /* if conponent 1 fails and */
((drand48() >= 0.85) || /* either conponent 2 or */
(drand48() >= 0.95))) /* conponent 3 fails, */
return FA LURE /* then the systemfails */
return SUQCESS, /* otherw se, the systemdoesn’'t fail */
}

/**

*

* FUNCTI ON estimate reliability

* AUTHR Bri an Korver
* PURPCBE Gonduct a Binomial experinent of a nunber of independent Bernoul li trials.
* Gount the nunber of systemfailures. Conpute the failure intensity by

9 The Monte Carlo Method and Software Reliability Theory

LISTING 1. Estimate of Reliability

* dividing the nunber of failures by the nunber of Bernoulli trials.
* ARAUMENTS. nunber_of trials -- the nunber of bernoulli trials to conduct
* RETURN -
* | NPUT: -
* QJTPUT: the nunber of failed Bernoulli trials, the nunber of trials conducted, and
* the conputed failure intensity.
* EXT QDE -
* CALLS seed(), systemtest() (the systemto test), printf()
*/
voi d
estimate_reliability (int nunber_of trials)
{
int failures = 0; /* Bernoulli trials that failed */
int trials_conducted; /* for |oop index */
float failure_intensity; /* reliability estinmate */
seed(); /* seed random nunber generator */
for (trials_conducted = O;
trials_conducted < nunber_of trials;
++rial s_conduct ed
) if (systemtest() == FALURE) ++ailures;
failure_intensity = (float) failures / nunber_of trials;
printf(“%\t%N\to%\n", failures, nunber_of trials, failure_intensity);
}

/**

* FUNCTI ON main (listingl)

* AUTHR Brian Korver
* PURPCBE estimate the reliability of a sinple system
* ARAUMENTS. argv[l] -- the nunber of systemsinulations to run

* RETURN -
* | NPUT: -
* QUTPUT: -
* EXT QDE -
* CALLS atoi (), estimate reliability()
*/
voi d
nai n(int argc, char *argv[])
{
if (argc == 2) estinate reliability(atoi(argv[1]));
}

The Monte Carlo Method and Software Reliability Theory

LISTING 2. Estimate of Mean Time Between Failures

LISTING 2. Estimate of Mean Time Between Failures

enumstates { FALURE = 0, SUOCESS = 1 };

/**

*

* FUNCTI ON systemt est

* AUTHR Bri an Korver
* PURPCBE Performa Bernoul li trial, conputing the state of the three-conponent system
* usi ng the structure function.

* #2 #3
* [------ \ [------ \
L | 0.15 |---------- | 0.05 |-----
* | \------ / #1 \------ I
* | [------ \ |
L | 010 |------------
* \a-eo-- /
*
* ARAMENTS. -
* RETURN 0 = FALURE, 1 = SUOCESS
* | NPUT: -
* QUTPUT: -
* EXT QE -
* CALLS drand48()
*/
i nt
systemtest ()
{
if ((drand48() >= 0.90) && /* if conponent 1 fails and */
((drand48() >= 0.85) || /* either conponent 2 or */
(drand48() >= 0.95))) /* conponent 3 fails, */
return FA LURE /* then the systemfails */
return SUQCESS, /* otherw se, the systemdoesn’'t fail */
}

/**

* FUNCTI ON esti mat e_MIBF

* AUTHR Bri an Korver
* PURPCBE Gonduct a nunber of Geonetric experinents, which consist of conducting
* Bernoulli trials until the first systemfailure occurs. Conpute the MBF--

11 The Monte Carlo Method and Software Reliability Theory

LISTING 2. Estimate of Mean Time Between Failures

* in nunber of iterations--by conputing the mean nunber of iterations between
* failures.

* ARAUMENTS. nunber _of _experinents -- the nunber of geonetric experinents to conduct

* RETURN -

* | NPUT: -
* QUTPUT: the nunber of successful Bernoulli trials, the nunber of experinents
* conducted, and the conputed MBF
* EXT QDE -
* CALLS seed(), systemtest() (the systemto test), printf()
*/
voi d
estimate_MBF (int nunber_of _experinents)
{
int successful iterations = 0; /* Bernoulli trials that succeeded */
i nt experinents_conduct ed,; /* for |oop index */
fl oat MBF, /* mean tinme between failures estinate */
seed(); /* seed random nunber generator */
for (experinments_conducted = O;
experinents_conduct ed < nunber_of _experi nents;
++exper i nent s_conduct ed
) while (systemtest() == SUXESS) ++successful _iterations;
MBF = (float) successful _iterations / nunber_of _experinents;
printf(“%\t%Nto%\n", successful _iterations, nunber_of experinents, MBF);
}

/**

* FUNCTI ON main (listing2)

* AUTHR Brian Korver
* PURPCBE estimate the MIBF of a system
* ARAUMENTS. argv[l] -- the nunber of systemsinulations to run

* RETURN -
* | NPUT: -
* QUTPUT: -
* EXT QDE -
* CALLS atoi (), estimate MBF()
*/
voi d
nai n(int argc, char *argv[])
{

if (argc == 2) estinate MBR(atoi (argv[1]));
}

The Monte Carlo Method and Software Reliability Theory

12

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

/**
*

* Function prototypes for a matrix ADI, the code is not included in this listing
*

nmatrix *initmatrix(int rows, int cols);

void del matrix(matrix *m;

matrix *dupmatrix(nmatrix *n;

int ncol s(const natrix *n;

int nrows(const natrix *n;

el enent getel (const matrix *m int row int col);

void putel (element el, matrix *m int row int col);

/**

* FUNCTI ON paral | el

* AUTHR Bri an Korver
* PURPCBE to conpute the failure intensity of two parallel conponents given the failure
* intensity of the two conponents. The parallel subsystemfails if both
* conponents fail.
* ARAUMENTS. cl, c2 -- the failure intensity of two conponents which are in parall el
* RETURN the parallel failure intensity of the two conponents
* | NPUT: -
* QUTPUT: -
* EXT QDE -
* CALLS -
*/
f1 oat
parallel (float cl, float c2)
{

return (cl * c2);

}

/**

* FUNCTI ON serial

* AUTHR Bri an Korver
* PURPCBE to conpute the failure intensity of two serial conponents given the failure
* intensity of the two conponents. The series subsystemfails when one of the

13 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

two conponents fail.

Note: the second argurment *nust* be the second conponent in the series
subsystem Snce a failure by cl causes a failure in c2, failures would be
overestinated if all of the c2 failures were counted in addition to the cl
failures. Thus, the failure intensity of c2 is conputed as:

c2 < ¢c2 - ¢l + (c(c2
while the failure intensity of the series subsystemis is conputed as:
cl + c2 - (cl)(c2

This function conbi nes both of these conputations.
cl, c2 -- the failure intensity of two conponents which are in series
the series failure intensity of the two conponents

serial (float c1, float c2)

return (¢l * ¢l * (1 - c2) +c2);

* ARAUMENTS:
* RETURN
* | NPUT:
* QJTPUT:
* EXT QDE
* CALLS
*/
fl oat
{
}

/**

* FUNCTI O\
*
* PURPCBE
* ARAUMENTS
* RETURN
* | NPUT:
* QUTPUT:
* BEXT QDE
* CALLS
*/
voi d

r andom ze

fill a matrix wth random nunbers
m-- a pointer to the matrix

nrand48()

randoni ze(nmatri x *m

{

regi ster el enent rnunber;
register int c, r;

The Monte Carlo Method and Software Reliability Theory

14

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

for (r =m>rows; r >=1; --r) {
for (c =1, c <= m>cols; ++) {
rnunber = (el enent) (nrand48() >> 16);
put el (rnunber, mr,c);

/**

*

* FUNCTI QN report _failure

* AUTHCR Brian Korver
* PURPCBE for “reporting” that a failure occured. Reports to the file pointer QJT
* whi ch is defined gl obally.
* ARGMENTS. conponent -- the nunber of the failured conponent
* RETURN -
* | NPUT: -
* QJTPUT: prints the conponent nunber (in ascii) to the file attached to the global file
* poi nter QJT
* EXT OE -
* CALLS fprintf()
*/
voi d
report_failure(int conponent)
{
extern FILE *QUT;
fprintf(QJT,”%l\n", conponent) ;
}

/**

*

* FUNCTI ON seed

* PURPCBE seed random nunber generator with systemtine tines the process id
* ARAUMENTS. -
* RETURN -
* | NPUT: -
* QUTPUT: -
* EXT QCE -
* CALLS | cong48(), seed48(), srand48(), ftine(), getpid()
*
/
voi d
seed()

15 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

{
extern pid_t getppid();
extern ftine();
long s;
struct tineb tp;
(void) ftinme(&p);
s =(long) tp.mllitm* getpid();
| cong48((unsi gned short *) &s);
(voi d) seed48((unsigned short *) &s);
srand48((long) s);

}

/**

* FUNCTI ON gener at e_syst em of _equat i ons

* AUTHR Bri an Korver
* PURPCBE generate a systemof linear equations in a randomn x n+l natrix. The
* matrix size is being arbitrarily limted to 0 < n < n_nax.
* ARAUMENTS. n_nax -- the maxi numval ue for n
* RETURN a randommatri x
* | NPUT: -
* QUTPUT: -
* EXT QDE -
* CALLS mand48(), abs(), initmatrix(), random ze()
*/
matrix *
gener at e_syst emof _equati ons(i nt n_nax)
{
extern long int mrand48();
register int size;
register matrix *m
size = (abs(mrand48()) %n_nmax) + 1;
m=initmatrix(size, size + 1);
randonm ze(n);
return(m;
}

The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

const el enent VAR ANCE THRESHOLD = 2. OE#S; /* arbitrary value that the */
/* variance of the el enents nust */
/* be above */

/**

* FUNCTI QN nmat ri x_i s_random

* AUTHCR Brian Korver
* PURPCBE check to see if the matrix being passed qualifies as a randommatri x
* ARQUMENTS m-- a pointer to a matrix
* RETURN 1if the natrix is random O ot herw se
* I NPUT: -
* QUTPUT: -
* EXTOCE -
* CALLS nrows(), ncols(), fabs(), getel ()
*/
i nt
matri x_i s_randonmf{const matrix *nj)
{
register int r, c; /* row colum |oop index */

regi ster long doubl e nean, variance;
register int size;

if ('nm) return(0); [* matrix doesn’'t exist */

if ((nrows(m) + 1) !'=ncols(m) return(0); /* invalid size */

nean = 0; /* conpute the nean of the elenents */
size = (nrows(m * ncols(m);

for (r =1; r <= nrows(n); ++) {
for (c =1, c <= ncols(n); +c) {
nean += getel (mr,c) / size;
}
}

variance = 0; /* conpute the variance */
--si ze;
for (r =1; r <= nrows(n); ++) {
for (c =1, c <= ncols(n); +c) {
variance += (getel (mr,c) - nean) * ((getel (mr,c) - nean) / size);

}

}

if (variance <= VAR ANCE THRESHOLD { /* not random enough */
return(0);

}

return(1); [* the matrix is random*/

17 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

/**

*

* FUNCTI ON gaussi an_el imnation

* AUTHR Brian Korver

* PURPCBE reduce a matrix to echel on formusing gaussian elinination (see pp. 330-333
* of Burden, RL., &Faires, J.D (1993), MNunerical Analysis_ (5th K.).

* Bost on: PWS Publ i shing Conpany or for a description of this al gorithm)

* ARAUMENTS. orig -- a pointer toan x ntl matrix containing a systemof |inear equations
* RETURN a pointer to the reduced echelon natrix, or O if no unique solution exists
* | NPUT: -

* QUTPUT: -

* EXT QDE -

* CALLS dupnatrix(), initmatrix(), ncols(), nrows(), getel (), putel (), fabs(),

* del matrix()

*/

matrix *

gaussi an_el imnation(const matrix *orig)

{
register matrix *m *A
register int i, j, p, n, k;
int NRONN];
regi ster el enent NOCPY;
if (torig) return (0); /* matrix doesn’t exist */
n = nrows(orig);

if ((n+121 !'=ncols(orig)) return(0); /* wong size matrix */

A = dupnatrix(orig);
m=initmatrix(nrows(A), ncols(A));

for (i =1; i <=n; +H) NRWi] =i;

for (i =1; i <n; +H) {
p=1;
for (j =i +1; j <=n; +4) {
if (fabs(getel (A NRONp],i)) < fabs(getel (ANOKNj],i)))
P=1i;
}

if (getel (ANRONP],i) =0) { /* no unique solution exists */
del matri x(A);

The Monte Carlo Method and Software Reliability Theory 18

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

del matrix(n);
return(0);
}
if (NROYI] = NRONp]) {
NOCPY = NROWi 1;
NROi] = NRONp];
NRONp] = NOPY,
}
for (j =i +1;] <=n; +4) {
putel ((getel (ANRONj],i) / getel (ANROWi],i)), mNONj],i);
for (k =1, k<=n+1; +k) {
putel ((getel (A NROKj], k) -
(getel (MNROWYj],i) * getel (ANONI], K))),
ANONj T, K);
}
}
}
if (getel (A NRONN],n) = 0) { /* no uni que sol ution exists */
del matrix(A);
del matrix(n);
return(0);
}
for (i =1; i <=n; +H) {
for (j =1, j <=n+1; +) {
putel (getel (ANOKiI],j), m i, j);
}
}
del matrix(A);
return(nm;
}
const el enent ZERO = 1. Oe-9; /* arbitrary limt bel owwhich a nunber is 0 */

/**

*

* FUNCTI O\ matrix_is_reduced

*

* AUTHCR Bri an Korver

* PURPCBE check to determine if the passed natrix e is in echelon form
*

ARAUMENTS: m-- a pointer to a matrix

19 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

* e -- apointer to the matrix in echelon form
* RETURN Oif the mtrix is not in echelon form 1 otherw se
* | NPUT: -
* QUTPUT: -
* EXT QDE -
* CALLS getel (), ncols(), nrows()
*/
i nt
matri x_i s_reduced(const matrix *m const natrix *e)
{
register int r, c; /* 1oop indices */
register int n; /* colum pointer */
if ('mé&k!e) return (1); /* no matrix */
if (!m]|| 'e) return (0); /* one is missing */
n =0
for (r =1, r <=nrows(e); ++) { /* loop through rows & cols */
c =1

while ((c <= ncols(e)) & (fabs(getel (e, r,c)) < ZER))
/* look for 1st non-0 in row */
++C;

if ((c <=n) & (c <= ncols(e))) return(0); /* not in echelon form*/
n=c;

}

return(l); /* in echelon form?*/

/**

* FUNCTI ON root s_from backsubstitution

* AUTHR Brian Korver

* PURPCBE get root frombacksubstituting using an echel on matrix
* ARAUMINTS. A-- apointer to a matrix in echelon form

* RETURN a pointer toanx 1 vector (matrix) containing the roots [x1,x2,...,xN
* or anull pointer if the vector Ais not valid

* | NPUT: -

* QUTPUT: -

* EXT QDE -

* CALLS nrows(), initmatrix(), getel (), putel ()

*/

matrix *

The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

roots_frombacksubstitution(const natrix *A)

{
regi ster el enent ncopy;
register int i, j, nm
regi ster nmatrix *roots;
if (A==0) return (0);
n= nrows(A;
roots = initnatrix(nrows(A),1);
putel ((getel (A n,n+tl) / getel (A n,n)),roots,n,1);
for (i =n-1; i >=1; --i) {
ncopy = 0;
for (j =i+L j <=n; +4)
ncopy += getel (Ai,j) * getel(roots,j,1);
putel (((getel (Ai,n+l) - ncopy) / getel (Ai,i)),roots,i,1);
}
return(roots);
}

const doubl e SCLUTION THRESHOLD = 1. 0E- 9;

/**

* FUNCTI O\ roots_are_sol ution

* AUTHCR Brian Korver
* PURPCBE substitute roots into a systemof |linear equations to see if they are
* actual ly the solution to the system|[given the tol erance SCLUTI ON THRESHOLD) .
* ARQMENTS M-- a pointer to a systemof |inear equations
* R-- apointer to a matrix containing the roots [x1,x2,...,xN
* RETURN 0if any of the equations are off by more than 1.0E9, otherwi se 1 (success)
* | NPUT: -
* QUTPUT: -
* EXT OE -
* CALLS nrows(), ncols(), getel (), fabs()
*/
i nt
roots_are solution(const natrix *M const matrix *R
{

register int r, c;
regi ster el enent sum
register int rows, cols;

21 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

if (M= 0& R=0) return(l); /* no matrix neans no roots */

elseif (M= 0]| R=10) return(0); /* else, either missing == failure */

rons = nrows(M;
cols = ncols(V;

for (r =1, r <=rows; ++) {
sum = 0;
for (c =1, c <cals; ++) {
sum+= (getel (Mr,c) * getel (Rc,1));
}

if (fabs((element) sum- getel (Mr,cols)) > SALUTI N THRESHOLD) return(0);
/* the roots were off by too nuch */

}

return 1; /* the roots are the sol ution */

/**

* FUNCTI ON sol ve_| i near _system

* AUTHR Bri an Korver
* PURPCBE sol ve a systemof linear equations
* ARAUMENTS. m-- apointer toanx ntl matrix to treat as the systemof |inear equations
* RETURN a pointer toanx 1 vector (matrix) containing the roots [x1,x2,...,xN
* or anull pointer if no solution is possible (for whatever reason)
* | NPUT: -
* QUTPUT: -
* EXT QDE -
* CALLS gaussi an_elimnation(), nmatrix_is_reduced(), report_failure(),
* roots_frombacksubstitution(), roots_are_sol ution()
*/
matrix *
sol ve_| i near _systen{const matrix *m
{

matrix *echel on_matrix, *roots;

echel on_natri x = gaussi an_elimnation(n;

if (!matrix_is_reduced(mechel on_matrix)) /* elimnation failed */

report_failure(3);

if (echelon nmatrix == 0) { /* ignore when no uni que */

The Monte Carlo Method and Software Reliability Theory

22

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

/* solution exists */

return ((natrix *) 0); /* successful ternination */
}
roots = roots_frombacksubstitution(echel on_natrix); /* conpute roots */
if ('roots_are solution(mroots)) /* backsol ving failed */

report_failure(5);

return(roots);

/**

* FUNCTITON fgetd

* AUTHCR Brian Korver
* PURPCBE like return(atoi (fgets(...,iop))) except it breaks on any
* non-nuneric (provided by isdigit())
* See K&R Il p. 165 for the inspiration for this function
* ARGQUMENTS. iop -- the file pointer to read from
* RETURN the nunber if a nunber was read, otherw se ECGF (fromstdio.h)
* I NPUT: reads fromiop
* QUTPUT: -
* EXT OE -
* CALLS getc(), isdigit(), atoi()
*/
i nt
fget d(Fl LE *i op)
{

register int ¢, n=(sizeof(int) * sizeof(int) + 2);
regi ster char *cs;

char s[(sizeof(int) * sizeof(int) + 2)];

int r;

CS = S;

vhile (--n & isdigit(c = getc(iop)))
*cs++ = (char) c;

*cs = '\0";
if (cs ==5s) {
r = ECF
} else {
r =atoi(s);

23 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

}

return r;

/**

* FUNCTI ON I'i near_systemsoftware
*
* AUTHR Bri an Korver
* PURPCBE sol ve a randonm y-generated systemof |inear equations while checking for
* software systemfail ures
* ARAUMENTS. error_report -- afile (or pipe) to report where errors occured
* RETURN -
* | NPUT: -
* QUTPUT: -
* BEXT QDE 0 (success) as long as both subsystens didn't fail, otherwise 1 (failure)
* the error
* CALLS seed(), generate_systemof_equations(), natrix_is_randon(),
* sol ve_| i near _systent)
*/
voi d
Ii near _syst em sof t war e()
{
matrix *randomnmatrix, *roots;
int generation_failure, solution_failure;
seed(); /* random nunber generator */
randomnatri X = generate_systemof _equations(20); /* limt size to 20 x 21 */
if (!matrix_is_randon{randomnatrix)) /* generation failed */
report_failure(l);
roots = sol ve_|inear_systen{randomnatri x); /* solve the system*/
exit(0); /* successful termnation */
}

#def i ne COVMPONENTS 6

FILE *IN *QJT,

/* nunber of system conponents */

/* ends of an interprocess pipe */

The Monte Carlo Method and Software Reliability Theory

24

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

/**

*

FUNCTI ON estinate software reliability

*
*
* AUTHCR Brian Korver

* PURPCBE Gonduct an experinent of a nunber of independent trials. Gount the nunber of

* failures attributed to each conponent. Conpute the systemfailure intensity by
* treating conponents related by USES() as serial conponents, and those not

* related by USES() as paral |l el conponents.

* ARGQUMENTS. nunber_of trials -- the nunber of independent trials to conduct

* RETURN -

* | NPUT: -

* QJTPUT: the nunber of failures attributed to each conponent, the nunber of trials

* conducted, and the conputed systemfailure intensity.

* EXTOCE -

* CALLS pi pe(), fdopen(), fork(), fclose(), linear_systemsoftware(),

* wait(), feof(), fgetd(), printf(), parallel(), serial()

*/

voi d

estimate_software_reliability(int nunber_of trials)

{
register int failure = 0; [* Bernoulli trials that failed */
register int trials_conducted, [* for loop index */
regi ster int conponent_nunber; /* failed conponent _nunber */
float systemfailure_ intensity; /[* reliability estinmate */
int conponent _fail ures| COMPONENTS + 1] ; /* conponent failure counts */
float failure_intensity] COPONENTS + 1] ; /* conponent failure intensities */
int statusp; /* status of child process */
int fd[2]; /* pipe file descriptors */

for (conponent_nunber = 0; conponent nunber <= COMPONENTS; -++conponent _nunber)
conponent _f ai | ur es[conponent _nunber] = 0;
/[* initialize # of failures to 0 */

for (trials_conducted = 0;
trials_conducted < nunber_of trials;

++trial s_conduct ed) {
pi pe(fd); [* create a pipe */
IN = fdopen(fd(O],"r"); /[* grab the ends of the pipe */
QJT = fdopen(fd[1],"wW);
if (fork() == 0) { [* fork a child process */
/* if we are that child process */
I i near_systemsoftware(); /* conduct a test */
exit(9); /* (shoul d never reach this point) */

25 The Monte Carlo Method and Software Reliability Theory

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

fcl ose(QJN); /* don't need this end */
wai t (&st at usp) ; /* wait until the child is finished */

while (!feof (IN &% ((conponent _nunber = fgetd(IN) !'= EGF))
++conponent _f ai | ur es[conponent _nunber] ;
/* count the failures by each */
/* conponent */

fclose(IN; /* close the pipe */

if (statusp) ++conmponent failures[0]; /* if exit code not O or a signal */
/* stopped the child */

}

for (conponent_nunber = 0; conponent nunber <= COMPONENTS; ++conponent _nunber) {
failure_intensity[conponent _nunber]
= (float) conponent _fail ures[conponent _nunber]
/ nunber_of trials; /* conpute the failure intensity of */
/* each conponent */
printf(“%\t”, failure_intensity[conponent_nunber]);

}

systemfailure_intensity =
parallel (failure_intensity[1],serial (failure_intensity[3],failure_intensity[5])

systemfailure_intensity = serial (systemfailure_intensity,failure_intensity[0]);
/* include signal failures and */

)

/* failures in which exit() was used. */

/* Actually, these shoul d be trapped */
/* and traced to their source. */

printf(“%\t%\n", nunber_of trials, systemfailure_intensity);

/**

*

* FUNCTI ON mai n (listing3)

* AUTHR Brian Korver

* PURPCBE estimate the reliability of a software system

* ARAUMENTS. argv[l] -- the nunber of systemsinulations to run
* RETURN -

* | NPUT: -

* QUTPUT: -

* EXT QDE -

The Monte Carlo Method and Software Reliability Theory

26

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

* CALLS atoi (), estimate software reliability()
*/

voi d

mai n(int argc, char *argv[])

{

if (argc == 2) estimate_software reliability(atoi(argv[1]));

}

27 The Monte Carlo Method and Software Reliability Theory

