

1

The Monte Carlo Method and

Software Reliability Theory

Brian Korver

1

briank@cs.pdx.edu

TR 94-1. February 18, 1994

1.0 Abstract

The Monte Carlo method of reliability prediction is useful
when system complexity makes the formulation of exact
models essentially impossible. The characteristics of the
Monte Carlo method make it ideal for estimating the reli-
ability of software systems. Unlike many other mathemat-
ical models, system complexity is irrelevant to the method.
Not only can the structure of the system be dynamic, but
the precise structure of the software system need not even
be known. Instead, system components need only be
tested for failure during operation, which ensures that
components which are used more often contribute propor-
tionally more to the overall reliability estimate. Combined
with self-checking algorithms which respond to randomly-
generated inputs, the method obviates the need for valid,
nontrivial input data and an external oracle.

2.0 The Monte Carlo Method

The Monte Carlo method of estimating integrals is proba-
bly the best-known Monte Carlo technique. Instead of

attempting to solve integrals analytically, the method esti-
mates an integral by firing random points at the function.
The law of large numbers predicts that as more random
points are chosen, the ratio of points below to points above
the function will approximate the ratio of the area beneath
the function to total area of the sample space from which
the random points are drawn. For instance, in order to
solve the integral for the unit normal distribution,

(EQ 1)

random points are chosen from the range ,
. As can be seen from Figure 1, darts thrown ran-

domly at that range can be expected to fall below the func-
tion

(EQ 2)

proportional to the area that lies beneath this function.
Such factors as the complexity of the function and the
number of variables are essentially irrelevant. Since the
Monte Carlo method does not attempt to solve the integral
analytically, the function need not be known and, in fact,
can be in the form of data since the method only needs to

e

x2

2
()−

dx

2−

2

∫

x y(,) 2− x 2< <
0 y 1≤≤

f x() e

x2

2
()−

=

1. Work supported by NSF grant CCR 9110111. I would like to
thank Dick Hamlet for his considerable insight and patience in
helping me to put together this tech report.

Crude Monte Carlo

2

The Monte Carlo Method and Software Reliability Theory

be informed of whether a given point falls above or below
the function.

3.0 Crude Monte Carlo

The most general version of the Monte Carlo method of
reliability prediction is based on the “structure function”
which says that the state of a system is the product of the
states of its components (Kaufmann, Grouchko, & Cruon,
1977, p. 56; Melchers, 1987, p. 91). Specifically, if

 1 if component is in a good state,
0 otherwise

then the state of the system

y

 is

(EQ 3)

for components in series, and

(EQ 4)

for components in parallel. Since system behavior is
based on the behavior of system components, the possible
error in the resulting reliability estimate is reduced (Kamat
& Riley, 1975, p. 73).

While “crude”—or “direct”—Monte Carlo is statistically
sound and easy to understand, it can be a computationally
expensive technique. Since most systems are highly reli-
able, crude Monte Carlo simulations require large sample
sizes to obtain a sufficient quantity of failures to provide
reliable estimates. Moreover, since the standard error of
the final result is inversely proportional to the square root
of the sample size

n

, the sample size must be increased -
fold to reduce the standard error by a factor of

k

 (Hammer-

FIGURE 1. Monte Carlo Integration

1

0.5

0
-6 -4 0 2 6-2 4

f(
x)

x

xi = { ei

y xi
i 1=

n

∏=

y 1 1 xi−()
i 1=

n

∏−=

k2

sley & Handscomb, 1964, pp. 21-22). Thus, many
improvements—called variance reduction techniques—
have been developed to reduce the required sample sizes.
According to Hammersley and Handsomb,

The so-called variance-reducing techniques, which
lie at the heart of good Monte Carlo work, are tech-
niques which reduce the coefficient of 1/

n

 in the
sampling variance of the final estimator, where

n

 is
the sample size (or, perhaps more generally, the
amount of labour expended on the calculation).

For instance, Kumamoto, Tanaka, Inoue, and Henley
describe a variance reduction technique that increased the
efficiency of a Monte Carlo simulation by 934-fold (1980,
p. 379). However, for the sake of simplicity and without
loss of generality, this paper describes the application of
crude Monte Carlo to the reliability simulation of software
systems.

4.0 Reliability Simulation

Because the reliability of each component is based on
probability distributions, the reliability of each component
in a system flow chart can be modelled by a set of random
numbers. For instance, if the reliability of a component is
0.8, then successful operation of that component can be
represented by the numbers from 0.0 through 0.79 and
failure by the numbers from 0.8 through 0.99 (Amstadter,
1971, p. 176). By generating random numbers as the sys-
tem flow chart is traced, it is possible to simulate the state
of each component. These component states can then be
combined using the structure function to determine the
state of the system. Since “each execution of a simulation
tells only whether a particular set of conditions did or did
not” exist, the Monte Carlo method is an experimental
problem-solving technique such that “many simulation
runs have to be made to understand the relationships
involved in the system” (Gordon, 1978, pp. 42, 43). Each
repetition of the simulation results in another independent
estimate of the reliability of the system. As the number of
simulations increases, the sample mean of these indepen-
dent estimates approaches the actual characteristics of the
system (Amstadter, 1971, p. 176). According to Verma,
Fu, and Moses,

Monte Carlo methods can be used to good advantage
since the required probability of failure is formulated
as a multi-dimensional integral of the probability
density function of the basic variables over the sys-

System Reliability Estimation

The Monte Carlo Method and Software Reliability Theory

3

tem failure domain (which may not have a simple
boundary). (1989, p. 895)

That is, the Monte Carlo method computes the statistical
expectation of the reliability distributions (Zaremba, 1968,
p. 304). Thus, because estimates of system reliability are
based on probability distributions functions representing
the failure rates of components, the Monte Carlo method
will accurately simulate system reliability whatever the
complexity of those distributions, even in the case that
they are entirely empirical.

5.0 System Reliability Estimation

Consider the arbitrary, trivial three-component system
with the failure intensities shown in Figure 2. Listing 1
demonstrates the use of Monte Carlo methods to simulate
the behavior of this system and thus can be used to esti-
mate its reliability. The failure of one of the two compo-
nents that form the series subsystem causes the failure of
the entire subsystem. A given iteration of the subsystem is
simulated by testing the state of the first component of the
subsystem by generating a random number in the range
[0,1]. If the first component does not fail, then the state of
the second component is tested. If the series subsystem
fails, then the parallel component is tested. If it too fails,
then the entire system fails. After a number of these sys-
tem simulations have been performed, the failure intensity
of the system is calculated by dividing the number of
observed failures by the total number of simulations. The
actual failure intensity for this system is 0.01925.

1

 The
results from actual simulation runs of Listing 1 are given
in Figure 3. As the number of system simulations
increases, the simulation results converage to the actual
mean.

1. [0.15 + 0.05 - (0.05)(0.15)](0.10) = 0.01925

FIGURE 2. Three-Component System

0.15 0.05

0.10

6.0 MTBF Estimation

Listing 2 demonstrates the use of Monte Carlo methods to
estimate the mean time between failures (MTBF) of the
system shown in Figure 2 by counting the average amount
of time (measured here in iterations) between each failure.
Given sample size

n

 with

t

1

,

 t

2

, ...,

t

n

 being the number of
successful iterations between failures,

(EQ 5)

(Shooman, 1983, pp. 570-571). As each run of successes
until a failure occurs constitutes a geometric experiment,
the actual MTBF of the system in Figure 2 is 51.948.

2

 The
results from actual simulation runs of Listing 2 are given
in Figure 4. Because each sample in a MTBF estimate
consists of the number of Bernoulli trials until a failure
occurs, the variance of the results is less than that of the
single Bernoulli trial simulated failure intensity.

7.0 Self-Checking Algorithms

As mentioned previously, the reliability of each system
component is modelled using probability distributions.

2. 1/(0.01925) = 51.948

FIGURE 3. Results from Listing 1

Number of System Simulations

F
ai

lu
re

 In
te

ns
ity

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 500 1000 1500 2000 2500

Actual Failure Intensity is 0.01925

30 Trial Mean
Standard Deviation

MTBF
1
n

ti

i 1=

n

∑=

Software System Composition

4

The Monte Carlo Method and Software Reliability Theory

Although the reliability characteristics of the components
in software systems are rarely known, it may be possible
to write self-checking algorithms which are able to report
the status of their behavior (Blum & Kannan, 1989; Blum,
Luby, & Rubinfeld, 1990). According to Blum and Kan-
nan, many of these checkers are simpler than the programs
they check (p. 86). Program checkers are concerned with
the task of verifying that a given program returns a correct
answer on a given input rather than all inputs (p. 87).
Therefore, like the Monte Carlo method, self-checking
algorithms only report the state of the component for a
given set of conditions. Listing 3 demonstrates the use of
Monte Carlo methods with self-checking algorithms to
estimate the reliability of a program which generates a
random matrix and then solves it as system of linear equa-
tions. Instead of using random numbers to model the
states of components, checking functions are employed to
report the actual behavior of each component on a given
input.

8.0 Software System Composition

Table 1 descriptions the system components of Listing 3.
The structure of Listing 3 is given in Figure 5. While
these mirror the primary functions of Listing 3, this is
coincidental and irrelevant to the method. According to
Parnas,

the way that the program is divided into subpro-
grams can be rather arbitrary. For

any

 program,
some decompositions into subprograms may reveal a

FIGURE 4. Results from Listing 2

Number of System Simulations

F
ai

lu
re

 In
te

ns
ity

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500

Actual MTBF is 51.948

30 Trial Mean
Standard Deviation

hierarchical structure, while other decompositions
may show a graph with loops in it. (1974, p. 336)

In a software system, two components are structurally in
parallel if the failure of one is not influenced by the failure
of the other. Conversely, two components are structurally
in series if failures are propagated from one to the other.
That is, two components are structurally in series of one
“uses” the other:

The relation “uses” may be defined by USES(p

i

,p

j

) =

iff

 p

i

 calls p

j

and

 p

i

 will be considered incorrect if p

j

does not function properly.

3

 (Parnas, 1974, p. 336)

However, because the structure of a software system is
implicitly expressed in the code itself, software systems
need not be explicitly decomposed into series and parallel
subsystems. Instead, self-checking algorithms must be
placed at the very least at the junctions of parallel compo-
nents, when control passes between components that are
not related by “uses.” In Listing 3, a failure in the Gauss-
ian elimination function will be uncovered when the roots
are checked in the original system of linear equations.
Thus, for a rough estimate of system reliability, it may not
be necessary to verify that the reduced matrix is in echelon

3. The requirement that p

i

 call p

j

 has been ignored.

TABLE 1.

Listing 3 Components

Component Description

1 Generate a system of linear equations
2 Check if the system has been generated ran-

domly
3 Reduce the matrix to echelon form using

Gaussian elimination
4 Check if the matrix is in echelon form
5 Backsolve to obtain the roots
6 Check if the roots are a solution to the system

of linear equations

FIGURE 5. Decomposition of Listing 3

1

4

53

2

6

Software System Composition

The Monte Carlo Method and Software Reliability Theory

5

form. However, to increase accuracy, all component fail-
ures should be included in failure rate calculations. For
serial components, it is important to note that simple sys-
tem composition calculations would result in counting
some component failures more than once since a failure by
component p

j

 causes component p

i

 to fail. Thus, the fail-
ure intensity of component p

i

 is computed by factoring out
those errors caused by component p

j

.

4

The technique employed in Listing 3 can be used to deter-
mine if components not related by “uses” are effecting
each other. By conducting a number of one-run simula-
tions, the number of times each component fails indepen-
dently and the number of times they fail together can be
counted. Whether one is causing the other to fail can be
determined by the standard test of independence.

5

Although several arbitrary constraints have been coded
into Listing 3—for instance, only generating linear sys-
tems of twenty variables or less—these constraints provide
an analogue to the requisite operational profile. As Ham-
let states, “unless random tests are drawn as the software
will be actually used, the tests are not a representative
sample and all statistical bets are off” (1993, p. 4).

Encountering an error (ie executing an error-embed-
ded instruction) does not necessarily cause a failure;
it merely provides an opportunity, the degree of
which depends on the probability of simultaneously
processsing failure-inducing input. (Trachteberg,
1990, p. 93)

4. Actual

i

 = Reported

i

 – Reported

j

 + (Reported

i

 * Reported

j

)

5. P(EF) = P(E)P(F)

FIGURE 6. Results from Listing 3

Number of System Simulations

F
ai

lu
re

 In
te

ns
ity

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0 500 1000 1500 2000 2500

30 Trial Mean
Standard Deviation

That is, if you are trying to empirically determine the
probability that a king will come up in a poker deck, a
pinochle deck will not suffice. More importantly, these
arbitrary limits facilitated the random testing of the indi-
vidual components which was necessary in order to com-
pare the analytically computed failure intensity with the
results of the Monte Carlo simulation. The results of these
tests demonstrate that Monte Carlo simulation techniques
match the analytically computed failure intensities. The
results from actual simulation runs of Listing 3 are given
in Figure 6. However, these results could not be compared
to the “actual” failure intensity since there is no reliable
method of analytically calculating the failure intensity of
software systems.

Similarly, “bugs” which were triggered by calls to a ran-
dom number generator were inserted into each of the com-
ponents. For 500 system simulations, the results of the
analytically-computed failure intensity and the results of
the Monte Carlo reliability simulation were relatively
close. Example results from these tests are shown in
Table 2.

It is important to note that failures in the checking compo-
nents will either increase or decrease the reported system
failure intensity, depending upon whether it is more likely
for the checking routine to incorrectly report, respectively,
“failure” or “success.” See Table 3 for an example of
when a checking routine fails.

TABLE 2.

Monte Carlo Simulation Tests

Component
Failure Intensity

System
Failure Intensity

1 3 5 Actual Simulated % Error

0.25 0.10 0.05 0.03625 0.03041 16.11
0.03 0.10 0.05 0.00435 0.00459

0

5.52
0.03 0.20 0.05 0.00720 0.00837 16.25
0.03 0.20 0.10 0.00840 0.00726 13.57

TABLE 3.

Example Checking Routine Failures

Actual
Failure
Intensity

Checker
Failure
Intensity

Checker
Incorrectly
Reports

Reported
Failure
Intensity

0.20 0.05 failure 0.24
0.20 0.05 success 0.19
0.20 0.05 50/50 either 0.215

Conclusion

6

The Monte Carlo Method and Software Reliability Theory

9.0 Conclusion

Although these examples are trivial, the complexity of a
dynamic software system is essentially irrelevant to the
Monte Carlo method of reliability prediction thus making
the method ideal for estimating the reliability of software
systems. Most importantly, the results of the Monte Carlo
method of reliability prediction match those obtained by
analytical methods.

10.0 References and Bibliography

Amstadter, B.L. (1971).

Reliability mathematics: Funda-
mentals; practices; procedures

. New York: McGraw-
Hill Book Company.

Babbit, A., Powell, S.T., & Hamlet, D. (1990). Prototype
testing tools. In

Proceedings of the 9th Annual Pacific
Northwest Software Quality Conference

 (pp. 264-
280). Portland, OR : [The Conference].

Barlow, R.E., & Proschan, F. (1965).

Mathematical theory
of reliability.

New York: John Wiley & Sons.

Binder, K., & Heermann, D.W. (1988).

Monte Carlo sim-
ulation in statistical physics: An introduction.

New
York: Springer-Verlag.

Birnbaum, Z.W. (1955). On a use of the Mann-Whitney
statistic.

Proceedings of the Third Berkeley Sympo-
sium on Mathematical Statistics and Reliability

 (pp.
13-17). Berkeley and Los Angeles: University of Cal-
ifornia Press.

Birolini, A. (1985).

On the use of stochastic processes in
modeling reliability problems.

New York: Springer-
Verlag.

Blum, M., & Kannan, S. (1989). Designing programs that
check their work.

Proceedings of the 21st Annual
ACM Symposium on Theory of Computing

 (pp. 86-
97). New York: Association for Computing Machin-
ery.

Blum, M., Luby, M., & Rubinfeld, R. (1990). Self-testing/
correcting with applications to numerical problems.

Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing

 (pp. 73-83). New York: Associ-
ation for Computing Machinery.

Bratley, P., Fox, B.L., & Schrage, L.E. (1993).

A guide to
simulation.

New York: Springer-Verlag.

Fluendy, M. (1970). Monte Carlo methods. In G.G.
Lowry (Ed.),

Markov chains and Monte Carlo calcu-
lations in polymer science

 (pp. 46-90). New York:
Marcel Dekker, Inc.

Gordon, G. (1978).

System simulation

 (2nd ed.). Engle-
wood Cliffs, NJ: Prentice-Hall, Inc.

Hammersley, J.M., & Handscomb, D.C. (1964).

Monte
Carlo methods

. New York: John Wiley & Sons, Inc.

Hamlet, D. (1992, July). Are we testing for true reliabil-
ity?

IEEE Software

, pp. 21-27.

Hamlet, D. (1993).

Random testing

 (PSU TR 93-10).
Portland, OR: Portland State University Computer
Science Department.

Hamlet, D., & Voas, J. (1993). Faults on its sleeve: Ampli-
fying software reliability testing. In

Proceedings of
the International Symposium on Software Testing and
Analysis

 (pp. 89-98). Cambridge, MA: [The Confer-
ence].

Kamat, S.J., & Riley, M.W. (1975). Determination of reli-
ability using event-based Monte Carlo simulation.

IEEE Transactions on Reliability, R-24

(1), pp. 73-75.

Kaufmann, A., Grouchko, D., & Cruon, R. (1977).

Mathe-
matical models for the study of the reliability of sys-
tems.

New York: Academic Press.

Kumamoto, H. Tanaka, K., Inoue, K., & Henley, E.
(1980). State-transition Monte Carlo for evaluating
large, repairable systems.

IEEE Transactions on Reli-
ability, R-29

(5), pp. 376-380.

Kleijnen, J.P.C. (1974).

Statistical techniques in simula-
tion

 (Part 2). New York: Marcel Dekker, Inc.

Levy, L.L, & Moore, A.H. (1967). A Monte Carlo tech-
nique for obtaining system reliability confidence lim-

References and Bibliography

The Monte Carlo Method and Software Reliability Theory

7

its from component test data.

Transactions on
Reliability, R-16

(2), pp. 69-72.

Mann, N.R., Schafer, R.E., & Singpurwalla, N.D. (1974).

Methods for statistical analysis of reliability and life
data.

New York: John Wiley & Sons.

Melchers, R.E. (1987).

Structural reliability: Analysis and
prediction

. New York: John Wiley and Sons.

Miyakawa, M. (1984). On stochastic coherent systems. In
M. Beckman & W. Krelle (Eds.),

Stochastic models in
reliability theory

 (pp. 1-11). New York: Springer-Ver-
lag.

Moore, A.H., Harter, H.L., & Snead, R.C. (1980). Com-
parison of Monte Carlo techniques for obtaining sys-
tem-reliability confidence limits.

IEEE Transactions
of Reliability, R-29

(4), pp. 327-331.

Parnas, D. (1972). On the criteria to be used in decompos-
ing systems into modules.

Communications of the
ACM 15

(12), pp. 1053-1058.

Parnas, D. (1974). On a ‘buzzword’: Hierarchical struc-
ture. In J.L. Rosenfeld (Ed.),

Proceedings of IFIP
Congress 74

 (pp. 336-339). New York: North-Hol-
land Publishing Company.

Ross, S. (1988).

A first course in probability

 (3rd ed.).
New York: Macmillan Publishing Company.

Shannon, R.E. (1975).

Systems simulation: The art and
science.

Englewood Cliffs, NJ: Prentice-Hall, Inc.

Shooman, M.L. (1983).

Software engineering: Design,
reliability, and management.

New York: McGraw-
Hill Book Company.

Sobol, I.M. (1974).

The Monte Carlo method

 (R. Messer,
J. Stone, & P. Fortini, Trans.). Chicago: University of
Chicago Press.

Trachtenberg, M. (1990). A general theory of software-
reliability modeling.

IEEE Transactions on Reliabil-
ity, 39

(1), pp. 92-96.

Verma, D., Fu, G., & Moses, F. (1989). Efficient structural
system reliability assessment by Monte-Carlo meth-

ods. In A.H-S. Ang, M. Shinozuka, & G.I. Schueller
(Eds.),

Structural Safety & Reliability: Proceedings of
ICOSSAR ‘89, the 5th International Conference on
Structural Safety and Reliability

 (pp. 895-901). New
York: American Society of Civil Engineers.

Walpole, R.E., & Myers, R.H. (1989).

Probability and
statistics for engineers and scientists

 (4th ed.). New
York: Macmillan Publishing Company.

Zaremba, S.K. (1968). The mathematical basis of Monte
Carlo and quasi-Monte Carlo methods.

SIAM Review
10

(3), pp. 303-314.

References and Bibliography

8

The Monte Carlo Method and Software Reliability Theory

LISTING 1. Estimate of Reliability

9

The Monte Carlo Method and Software Reliability Theory

LISTING 1.

Estimate of Reliability

enum states { FAILURE = 0, SUCCESS = 1 };

/* *
 *
 * FUNCTION: system_test
 *
 * AUTHOR: Brian Korver
 * PURPOSE: Perform a Bernoulli trial, computing the state of the three-component system
 * using the structure function.
 *
 * #2 #3
 * /------\ /------\
 * -----| 0.15 |----------| 0.05 |-----
 * | \------/ #1 \------/ |
 * | /------\ |
 * ------------| 0.10 |------------
 * \------/
 *
 * ARGUMENTS: -
 * RETURN: 0 = FAILURE, 1 = SUCCESS
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: drand48()
 */
int
system_test()
{
 if ((drand48() >= 0.90) && /* if component 1 fails and */
 ((drand48() >= 0.85) || /* either component 2 or */
 (drand48() >= 0.95))) /* component 3 fails, */
 return FAILURE; /* then the system fails */

 return SUCCESS; /* otherwise, the system doesn’t fail */
}

/* *
 *
 * FUNCTION: estimate_reliability
 *
 * AUTHOR: Brian Korver
 * PURPOSE: Conduct a Binomial experiment of a number of independent Bernoulli trials.
 * Count the number of system failures. Compute the failure intensity by

LISTING 1. Estimate of Reliability

The Monte Carlo Method and Software Reliability Theory

10

 * dividing the number of failures by the number of Bernoulli trials.
 * ARGUMENTS: number_of_trials -- the number of bernoulli trials to conduct
 * RETURN: -
 * INPUT: -
 * OUTPUT: the number of failed Bernoulli trials, the number of trials conducted, and
 * the computed failure intensity.
 * EXIT CODE: -
 * CALLS: seed(), system_test() (the system to test), printf()
 */
void
estimate_reliability (int number_of_trials)
{
 int failures = 0; /* Bernoulli trials that failed */
 int trials_conducted; /* for loop index */
 float failure_intensity; /* reliability estimate */

 seed(); /* seed random number generator */

 for (trials_conducted = 0;
 trials_conducted < number_of_trials;
 ++trials_conducted
) if (system_test() == FAILURE) ++failures;

 failure_intensity = (float) failures / number_of_trials;

 printf(“%d\t%d\t%f\n”, failures, number_of_trials, failure_intensity);
}

/* *
 *
 * FUNCTION: main (listing1)
 *
 * AUTHOR: Brian Korver
 * PURPOSE: estimate the reliability of a simple system
 * ARGUMENTS: argv[1] -- the number of system simulations to run
 * RETURN: -
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: atoi(), estimate_reliability()
 */
void
main(int argc, char *argv[])
{
 if (argc == 2) estimate_reliability(atoi(argv[1]));
}

LISTING 2. Estimate of Mean Time Between Failures

11

The Monte Carlo Method and Software Reliability Theory

LISTING 2.

Estimate of Mean Time Between Failures

enum states { FAILURE = 0, SUCCESS = 1 };

/* *
 *
 * FUNCTION: system_test
 *
 * AUTHOR: Brian Korver
 * PURPOSE: Perform a Bernoulli trial, computing the state of the three-component system
 * using the structure function.
 *
 * #2 #3
 * /------\ /------\
 * -----| 0.15 |----------| 0.05 |-----
 * | \------/ #1 \------/ |
 * | /------\ |
 * ------------| 0.10 |------------
 * \------/
 *
 * ARGUMENTS: -
 * RETURN: 0 = FAILURE, 1 = SUCCESS
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: drand48()
 */
int
system_test()
{
 if ((drand48() >= 0.90) && /* if component 1 fails and */
 ((drand48() >= 0.85) || /* either component 2 or */
 (drand48() >= 0.95))) /* component 3 fails, */
 return FAILURE; /* then the system fails */

 return SUCCESS; /* otherwise, the system doesn’t fail */
}

/* *
 *
 * FUNCTION: estimate_MTBF
 *
 * AUTHOR: Brian Korver
 * PURPOSE: Conduct a number of Geometric experiments, which consist of conducting
 * Bernoulli trials until the first system failure occurs. Compute the MTBF--

LISTING 2. Estimate of Mean Time Between Failures

The Monte Carlo Method and Software Reliability Theory

12

 * in number of iterations--by computing the mean number of iterations between
 * failures.
 * ARGUMENTS: number_of_experiments -- the number of geometric experiments to conduct
 * RETURN: -
 * INPUT: -
 * OUTPUT: the number of successful Bernoulli trials, the number of experiments
 * conducted, and the computed MTBF
 * EXIT CODE: -
 * CALLS: seed(), system_test() (the system to test), printf()
 */
void
estimate_MTBF (int number_of_experiments)
{
 int successful_iterations = 0; /* Bernoulli trials that succeeded */
 int experiments_conducted; /* for loop index */
 float MTBF; /* mean time between failures estimate */

 seed(); /* seed random number generator */

 for (experiments_conducted = 0;
 experiments_conducted < number_of_experiments;
 ++experiments_conducted
) while (system_test() == SUCCESS) ++successful_iterations;

 MTBF = (float) successful_iterations / number_of_experiments;

 printf(“%d\t%d\t%f\n”, successful_iterations, number_of_experiments, MTBF);
}

/* *
 *
 * FUNCTION: main (listing2)
 *
 * AUTHOR: Brian Korver
 * PURPOSE: estimate the MTBF of a system
 * ARGUMENTS: argv[1] -- the number of system simulations to run
 * RETURN: -
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: atoi(), estimate_MTBF()
 */
void
main(int argc, char *argv[])
{
 if (argc == 2) estimate_MTBF(atoi(argv[1]));
}

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

13

The Monte Carlo Method and Software Reliability Theory

LISTING 3.

Estimate Reliability of Solving a System of Linear Equations

/* *
 *
 * Function prototypes for a matrix ADT, the code is not included in this listing
 *
matrix *initmatrix(int rows, int cols);
void delmatrix(matrix *m);
matrix *dupmatrix(matrix *m);
int ncols(const matrix *m);
int nrows(const matrix *m);
element getel(const matrix *m, int row, int col);
void putel(element el, matrix *m, int row, int col);

/* *
 *
 * FUNCTION: parallel
 *
 * AUTHOR: Brian Korver
 * PURPOSE: to compute the failure intensity of two parallel components given the failure
 * intensity of the two components. The parallel subsystem fails if both
 * components fail.
 * ARGUMENTS: c1, c2 -- the failure intensity of two components which are in parallel
 * RETURN: the parallel failure intensity of the two components
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: -
 */
float
parallel(float c1, float c2)
{
 return (c1 * c2);
}

/* *
 *
 * FUNCTION: serial
 *
 * AUTHOR: Brian Korver
 * PURPOSE: to compute the failure intensity of two serial components given the failure
 * intensity of the two components. The series subsystem fails when one of the

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

14

 * two components fail.
 *
 * Note: the second argument *must* be the second component in the series
 * subsystem. Since a failure by c1 causes a failure in c2, failures would be
 * overestimated if all of the c2 failures were counted in addition to the c1
 * failures. Thus, the failure intensity of c2 is computed as:
 *
 * c2 <- c2 - c1 + (c1)(c2)
 *
 * while the failure intensity of the series subsystem is is computed as:
 *
 * c1 + c2 - (c1)(c2)
 *
 * This function combines both of these computations.
 * ARGUMENTS: c1, c2 -- the failure intensity of two components which are in series
 * RETURN: the series failure intensity of the two components
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: -
 */
float
serial(float c1, float c2)
{
 return (c1 * c1 * (1 - c2) + c2);
}

/* *
 *
 * FUNCTION: randomize
 *
 * PURPOSE: fill a matrix with random numbers
 * ARGUMENTS: m -- a pointer to the matrix
 * RETURN: -
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: mrand48()
 */
void
randomize(matrix *m)
{

 register element rnumber;
 register int c, r;

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

15

The Monte Carlo Method and Software Reliability Theory

 for (r = m->rows; r >= 1; --r) {
 for (c = 1; c <= m->cols; ++c) {
 rnumber = (element) (mrand48() >> 16);
 putel(rnumber,m,r,c);
 }
 }
}

/* *
 *
 * FUNCTION: report_failure
 *
 * AUTHOR: Brian Korver
 * PURPOSE: for “reporting” that a failure occured. Reports to the file pointer OUT
 * which is defined globally.
 * ARGUMENTS: component -- the number of the failured component
 * RETURN: -
 * INPUT: -
 * OUTPUT: prints the component number (in ascii) to the file attached to the global file
 * pointer OUT
 * EXIT CODE: -
 * CALLS: fprintf()
 */
void
report_failure(int component)
{
 extern FILE *OUT;
 fprintf(OUT,”%d\n”,component);
}

/* *
 *
 * FUNCTION: seed
 *
 * PURPOSE: seed random number generator with system time times the process id
 * ARGUMENTS: -
 * RETURN: -
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: lcong48(), seed48(), srand48(), ftime(), getpid()
 */
void
seed()

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

16

{
 extern pid_t getppid();
 extern ftime();
 long s;
 struct timeb tp;

 (void) ftime(&tp);
 s = (long) tp.millitm * getpid();

 lcong48((unsigned short *) &s);
 (void) seed48((unsigned short *) &s);
 srand48((long) s);

}

/* *
 *
 * FUNCTION: generate_system_of_equations
 *
 * AUTHOR: Brian Korver
 * PURPOSE: generate a system of linear equations in a random n x n+1 matrix. The
 * matrix size is being arbitrarily limited to 0 < n < n_max.
 * ARGUMENTS: n_max -- the maximum value for n
 * RETURN: a random matrix
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: mrand48(), abs(), initmatrix(), randomize()
 */
matrix *
generate_system_of_equations(int n_max)
{
 extern long int mrand48();
 register int size;
 register matrix *m;

 size = (abs(mrand48()) % n_max) + 1;

 m = initmatrix(size,size + 1);

 randomize(m);

 return(m);
}

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

17

The Monte Carlo Method and Software Reliability Theory

const element VARIANCE_THRESHOLD = 2.0E+8; /* arbitrary value that the */
 /* variance of the elements must */
 /* be above */

/* *
 *
 * FUNCTION: matrix_is_random
 *
 * AUTHOR: Brian Korver
 * PURPOSE: check to see if the matrix being passed qualifies as a random matrix
 * ARGUMENTS: m -- a pointer to a matrix
 * RETURN: 1 if the matrix is random, 0 otherwise
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: nrows(), ncols(), fabs(), getel()
 */
int
matrix_is_random(const matrix *m)
{
 register int r, c; /* row, column loop index */
 register long double mean, variance;
 register int size;

 if (!m) return(0); /* matrix doesn’t exist */

 if ((nrows(m) + 1) != ncols(m)) return(0); /* invalid size */

 mean = 0; /* compute the mean of the elements */
 size = (nrows(m) * ncols(m));
 for (r = 1; r <= nrows(m); ++r) {
 for (c = 1; c <= ncols(m); ++c) {
 mean += getel(m,r,c) / size;
 }
 }
 variance = 0; /* compute the variance */
 --size;
 for (r = 1; r <= nrows(m); ++r) {
 for (c = 1; c <= ncols(m); ++c) {
 variance += (getel(m,r,c) - mean) * ((getel(m,r,c) - mean) / size);
 }
 }

 if (variance <= VARIANCE_THRESHOLD) { /* not random enough */
 return(0);
 }

 return(1); /* the matrix is random */

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

18

}

/* *
 *
 * FUNCTION: gaussian_elimination
 *
 * AUTHOR: Brian Korver
 * PURPOSE: reduce a matrix to echelon form using gaussian elimination (see pp. 330-333
 * of Burden, R.L., & Faires, J.D. (1993), _Numerical Analysis_ (5th Ed.).
 * Boston: PWS Publishing Company or for a description of this algorithm)
 * ARGUMENTS: orig -- a pointer to a n x n+1 matrix containing a system of linear equations
 * RETURN: a pointer to the reduced echelon matrix, or 0 if no unique solution exists
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: dupmatrix(), initmatrix(), ncols(), nrows(), getel(), putel(), fabs(),
 * delmatrix()
 */
matrix *
gaussian_elimination(const matrix *orig)
{
 register matrix *m, *A;
 register int i, j, p, n, k;
 int NROW[n];
 register element NCOPY;

 if (!orig) return (0); /* matrix doesn’t exist */

 n = nrows(orig);

 if ((n + 1) != ncols(orig)) return(0); /* wrong size matrix */

 A = dupmatrix(orig);
 m = initmatrix(nrows(A),ncols(A));

 for (i = 1; i <= n; ++i) NROW[i] = i;

 for (i = 1; i < n; ++i) {
 p = i;
 for (j = i + 1; j <= n; ++j) {
 if (fabs(getel(A,NROW[p],i)) < fabs(getel(A,NROW[j],i)))
 p = j;
 }

 if (getel(A,NROW[p],i) == 0) { /* no unique solution exists */
 delmatrix(A);

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

19

The Monte Carlo Method and Software Reliability Theory

 delmatrix(m);
 return(0);
 }

 if (NROW[i] != NROW[p]) {
 NCOPY = NROW[i];
 NROW[i] = NROW[p];
 NROW[p] = NCOPY;
 }

 for (j = i + 1; j <= n; ++j) {
 putel((getel(A,NROW[j],i) / getel(A,NROW[i],i)), m,NROW[j],i);

 for (k = 1; k <= n + 1; ++k) {
 putel((getel(A,NROW[j],k) -
 (getel(m,NROW[j],i) * getel(A,NROW[i],k))),
 A,NROW[j],k);
 }
 }
 }

 if (getel(A,NROW[n],n) == 0) { /* no unique solution exists */
 delmatrix(A);
 delmatrix(m);
 return(0);
 }

 for (i = 1; i <= n; ++i) {
 for (j = 1; j <= n + 1; ++j) {
 putel (getel(A,NROW[i],j), m, i, j);
 }
 }

 delmatrix(A);
 return(m);
}

const element ZERO = 1.0e-9; /* arbitrary limit below which a number is 0 */

/* *
 *
 * FUNCTION: matrix_is_reduced
 *
 * AUTHOR: Brian Korver
 * PURPOSE: check to determine if the passed matrix e is in echelon form
 * ARGUMENTS: m -- a pointer to a matrix

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

20

 * e -- a pointer to the matrix in echelon form
 * RETURN: 0 if the matrix is not in echelon form, 1 otherwise
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: getel(), ncols(), nrows()
 */
int
matrix_is_reduced(const matrix *m, const matrix *e)
{
 register int r, c; /* loop indices */
 register int n; /* column pointer */

 if (!m && !e) return (1); /* no matrix */

 if (!m || !e) return (0); /* one is missing */

 n = 0;
 for (r = 1; r <= nrows(e); ++r) { /* loop through rows & cols */
 c = 1;
 while ((c <= ncols(e)) && (fabs(getel(e,r,c)) < ZERO))
 /* look for 1st non-0 in row */
 ++c;

 if ((c <= n) && (c <= ncols(e))) return(0); /* not in echelon form */
 n = c;
 }

 return(1); /* in echelon form */
}

/* *
 *
 * FUNCTION: roots_from_backsubstitution
 *
 * AUTHOR: Brian Korver
 * PURPOSE: get root from backsubstituting using an echelon matrix
 * ARGUMENTS: A -- a pointer to a matrix in echelon form
 * RETURN: a pointer to a n x 1 vector (matrix) containing the roots [x1,x2,...,xN]
 * or a null pointer if the vector A is not valid
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: nrows(), initmatrix(), getel(), putel()
 */
matrix *

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

21

The Monte Carlo Method and Software Reliability Theory

roots_from_backsubstitution(const matrix *A)
{

 register element ncopy;
 register int i, j, n;
 register matrix *roots;

 if (A == 0) return (0);
 n = nrows(A);
 roots = initmatrix(nrows(A),1);

 putel((getel(A,n,n+1) / getel(A,n,n)),roots,n,1);

 for (i = n-1; i >= 1; --i) {
 ncopy = 0;
 for (j = i+1; j <= n; ++j)
 ncopy += getel(A,i,j) * getel(roots,j,1);
 putel(((getel(A,i,n+1) - ncopy) / getel(A,i,i)),roots,i,1);
 }

 return(roots);
}

const double SOLUTION_THRESHOLD = 1.0E-9;

/* *
 *
 * FUNCTION: roots_are_solution
 *
 * AUTHOR: Brian Korver
 * PURPOSE: substitute roots into a system of linear equations to see if they are
 * actually the solution to the system [given the tolerance SOLUTION_THRESHOLD].
 * ARGUMENTS: M -- a pointer to a system of linear equations
 * R -- a pointer to a matrix containing the roots [x1,x2,...,xN]
 * RETURN: 0 if any of the equations are off by more than 1.0E-9, otherwise 1 (success)
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: nrows(), ncols(), getel(), fabs()
 */
int
roots_are_solution(const matrix *M, const matrix *R)
{
 register int r, c;
 register element sum;
 register int rows, cols;

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

22

 if (M == 0 && R == 0) return(1); /* no matrix means no roots */
 else if (M == 0 || R == 0) return(0); /* else, either missing == failure */

 rows = nrows(M);
 cols = ncols(M);

 for (r = 1; r <= rows; ++r) {
 sum = 0;
 for (c = 1; c < cols; ++c) {
 sum += (getel(M,r,c) * getel(R,c,1));
 }

 if (fabs((element) sum - getel(M,r,cols)) > SOLUTION_THRESHOLD) return(0);
 /* the roots were off by too much */
 }

 return 1; /* the roots are the solution */
}

/* *
 *
 * FUNCTION: solve_linear_system
 *
 * AUTHOR: Brian Korver
 * PURPOSE: solve a system of linear equations
 * ARGUMENTS: m -- a pointer to a n x n+1 matrix to treat as the system of linear equations
 * RETURN: a pointer to a n x 1 vector (matrix) containing the roots [x1,x2,...,xN]
 * or a null pointer if no solution is possible (for whatever reason)
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: gaussian_elimination(), matrix_is_reduced(), report_failure(),
 * roots_from_backsubstitution(), roots_are_solution()
 */
matrix *
solve_linear_system(const matrix *m)
{
 matrix *echelon_matrix, *roots;

 echelon_matrix = gaussian_elimination(m);

 if (!matrix_is_reduced(m,echelon_matrix)) /* elimination failed */
 report_failure(3);

 if (echelon_matrix == 0) { /* ignore when no unique */

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

23

The Monte Carlo Method and Software Reliability Theory

 /* solution exists */
 return ((matrix *) 0); /* successful termination */
 }

 roots = roots_from_backsubstitution(echelon_matrix); /* compute roots */

 if (!roots_are_solution(m,roots)) /* backsolving failed */
 report_failure(5);

 return(roots);

}

/* *
 *
 * FUNCTION: fgetd
 *
 * AUTHOR: Brian Korver
 * PURPOSE: like return(atoi(fgets(...,iop))) except it breaks on any
 * non-numeric (provided by isdigit())
 * See K&R II p. 165 for the inspiration for this function
 * ARGUMENTS: iop -- the file pointer to read from
 * RETURN: the number if a number was read, otherwise EOF (from stdio.h)
 * INPUT: reads from iop
 * OUTPUT: -
 * EXIT CODE: -
 * CALLS: getc(), isdigit(), atoi()
 */
int
fgetd(FILE *iop)
{
 register int c, n = (sizeof(int) * sizeof(int) + 2);
 register char *cs;
 char s[(sizeof(int) * sizeof(int) + 2)];
 int r;

 cs = s;

 while (--n && isdigit(c = getc(iop)))
 *cs++ = (char) c;

 *cs = ‘\0’;

 if (cs == s) {
 r = EOF;
 } else {
 r = atoi(s);

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

24

 }

 return r;
}

/* *
 *
 * FUNCTION: linear_system_software
 *
 * AUTHOR: Brian Korver
 * PURPOSE: solve a randomly-generated system of linear equations while checking for
 * software system failures
 * ARGUMENTS: error_report -- a file (or pipe) to report where errors occured
 * RETURN: -
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: 0 (success) as long as both subsystems didn’t fail, otherwise 1 (failure)
 * the error
 * CALLS: seed(), generate_system_of_equations(), matrix_is_random(),
 * solve_linear_system()
 */
void
linear_system_software()
{
 matrix *random_matrix, *roots;
 int generation_failure, solution_failure;

 seed(); /* random number generator */

 random_matrix = generate_system_of_equations(20); /* limit size to 20 x 21 */

 if (!matrix_is_random(random_matrix)) /* generation failed */
 report_failure(1);

 roots = solve_linear_system(random_matrix); /* solve the system */

 exit(0); /* successful termination */

}

#define COMPONENTS 6 /* number of system components */

FILE *IN, *OUT; /* ends of an interprocess pipe */

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

25

The Monte Carlo Method and Software Reliability Theory

/* *
 *
 * FUNCTION: estimate_software_reliability
 *
 * AUTHOR: Brian Korver
 * PURPOSE: Conduct an experiment of a number of independent trials. Count the number of
 * failures attributed to each component. Compute the system failure intensity by
 * treating components related by USES() as serial components, and those not
 * related by USES() as parallel components.
 * ARGUMENTS: number_of_trials -- the number of independent trials to conduct
 * RETURN: -
 * INPUT: -
 * OUTPUT: the number of failures attributed to each component, the number of trials
 * conducted, and the computed system failure intensity.
 * EXIT CODE: -
 * CALLS: pipe(), fdopen(), fork(), fclose(), linear_system_software(),
 * wait(), feof(), fgetd(), printf(), parallel(), serial()
 */
void
estimate_software_reliability(int number_of_trials)
{
 register int failure = 0; /* Bernoulli trials that failed */
 register int trials_conducted; /* for loop index */
 register int component_number; /* failed component_number */
 float system_failure_intensity; /* reliability estimate */
 int component_failures[COMPONENTS + 1]; /* component failure counts */
 float failure_intensity[COMPONENTS + 1]; /* component failure intensities */
 int statusp; /* status of child process */
 int fd[2]; /* pipe file descriptors */

 for (component_number = 0; component_number <= COMPONENTS; ++component_number)
 component_failures[component_number] = 0;
 /* initialize # of failures to 0 */

 for (trials_conducted = 0;
 trials_conducted < number_of_trials;
 ++trials_conducted) {

 pipe(fd); /* create a pipe */

 IN = fdopen(fd[0],”r”); /* grab the ends of the pipe */
 OUT = fdopen(fd[1],”w”);

 if (fork() == 0) { /* fork a child process */
 /* if we are that child process */
 linear_system_software(); /* conduct a test */
 exit(9); /* (should never reach this point) */
 }

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

The Monte Carlo Method and Software Reliability Theory

26

 fclose(OUT); /* don’t need this end */

 wait(&statusp); /* wait until the child is finished */

 while (!feof(IN) && ((component_number = fgetd(IN)) != EOF))
 ++component_failures[component_number];
 /* count the failures by each */
 /* component */

 fclose(IN); /* close the pipe */

 if (statusp) ++component_failures[0]; /* if exit code not 0 or a signal */
 /* stopped the child */
 }

 for (component_number = 0; component_number <= COMPONENTS; ++component_number) {
 failure_intensity[component_number]
 = (float) component_failures[component_number]
 / number_of_trials; /* compute the failure intensity of */
 /* each component */
 printf(“%f\t”, failure_intensity[component_number]);
 }

 system_failure_intensity =
 parallel(failure_intensity[1],serial(failure_intensity[3],failure_intensity[5]));

 system_failure_intensity = serial(system_failure_intensity,failure_intensity[0]);
 /* include signal failures and */
 /* failures in which exit() was used. */
 /* Actually, these should be trapped */
 /* and traced to their source. */

 printf(“%d\t%f\n”, number_of_trials, system_failure_intensity);
}

/* *
 *
 * FUNCTION: main (listing3)
 *
 * AUTHOR: Brian Korver
 * PURPOSE: estimate the reliability of a software system
 * ARGUMENTS: argv[1] -- the number of system simulations to run
 * RETURN: -
 * INPUT: -
 * OUTPUT: -
 * EXIT CODE: -

LISTING 3. Estimate Reliability of Solving a System of Linear Equations

27

The Monte Carlo Method and Software Reliability Theory

 * CALLS: atoi(), estimate_software_reliability()
 */
void
main(int argc, char *argv[])
{
 if (argc == 2) estimate_software_reliability(atoi(argv[1]));
}

