
Git Magic
Ben Lynn

Git Magic
Ben Lynn

iii

Table of Contents
Preface .. vii
1. Introduction ... 1

1.1. Version control .. 1
1.2. Distributed version control .. 2
1.3. Distribution is not anarchy .. 3
1.4. Merge conflicts .. 4

2. Basics .. 5
2.1. Saving state .. 5
2.2. Add, delete, rename ... 5
2.3. Advanced undo/redo .. 6
2.4. Reverting .. 7
2.5. Changelog generation .. 8
2.6. Downloading a project .. 8
2.7. The bleeding edge ... 8
2.8. Instant publishing .. 8
2.9. What have I done? ... 9
2.10. Exercise .. 10

3. Clones ... 11
3.1. Staying in sync .. 11
3.2. Classic source control .. 11
3.3. Bare repositories .. 13
3.4. Push versus pull ... 13
3.5. Forking a project ... 13
3.6. Ultimate backups ... 14
3.7. Multitasking ... 14
3.8. Guerilla version control ... 15
3.9. Mercurial .. 15
3.10. Bazaar .. 16
3.11. Why I use Git .. 17

4. Branches ... 18
4.1. My first branch .. 18
4.2. Dirty work ... 19
4.3. Quick fixes ... 20
4.4. Merging .. 21
4.5. Uninterrupted workflow ... 22

Git Magic

iv

4.6. Reorganizing a medley .. 23
4.7. Managing branches .. 23
4.8. Temporary branches .. 24
4.9. Work how you want .. 25

5. History .. 26
5.1. Fixing the last commit ... 26
5.2. Fixing several commits .. 26
5.3. Untangling local from upstream 27
5.4. Rewriting history ... 28
5.5. Making history ... 28
5.6. Where did it all go wrong? .. 30
5.7. Who’s to blame? .. 31
5.8. Personal experience ... 31

6. Social version control ... 33
6.1. Who am I? ... 33
6.2. Git over SSH, HTTP ... 33
6.3. Git over anything ... 34
6.4. Patches ... 35
6.5. Sorry, we’ve moved ... 36
6.6. Remote branches .. 37
6.7. Multiple remotes .. 37
6.8. My preferences .. 38

7. Git grandmastery .. 39
7.1. Archiving projects ... 39
7.2. Commit what changed ... 39
7.3. My commit is too big! ... 39
7.4. The index: Git’s staging area ... 40
7.5. Lost your HEAD? .. 41
7.6. HEAD-hunting ... 41
7.7. Building on Git .. 42
7.8. Overriding safeguards .. 44
7.9. Preventing bad commits .. 45

8. How Git works ... 47
8.1. Invisibility .. 47
8.2. Integrity .. 47
8.3. Rename detection ... 48
8.4. The index ... 48

Git Magic

v

8.5. The object database ... 49
8.6. Blobs .. 49
8.7. Trees .. 50
8.8. Commits ... 51
8.9. Indistinguishable from magic .. 52

Index ... 54

vi

vii

Preface

Git is a version control system initially designed and implemented
by Linus Torvalds in 2005. Git quickly earned a place in my toolkit
because it is fast, robust, flexible, simple, lightweight, scalable, and
powerful.

However, Git has its drawbacks. In particular, it can bewilder
beginners. When I started, I had to don safety gear: at the time, Git
was so scary that I only ran it indirectly via a wrapper script named
“cogito”.

Happily, the situation improved rapidly and dramatically. The user
interface underwent cosmetic surgery, making cogito obsolete.
Volunteers worked hard on documentation, both official and
unofficial. Books from reputable publishers materialized in the blink
of an eye.

Too late for me. I had already learned Git’s advanced features the
hard way, namely through arduous trial and error. As I progressed, I
kept notes on my website, “Git Magic”. They proved unexpectedly
popular: to my chagrin, far more popular than any code I’ve written.
Thus I was motivated to maintain and update my website, which
you’re now reading in book form.

My website is freely accessible, along with its source: search for
“git magic”, install the gitmagic package on any Debian-based
Linux distribution, or clone one of the following repositories:

• git://repo.or.cz/gitmagic.git

• git://github.com/blynn/gitmagic.git

• git://gitorious.org/gitmagic/mainline.git

(No idea what “clone” means? Then read this book!)

Perhaps you’re wondering why I bothered with this quaint old-
fashioned medium. It’s all thanks to Carl Hu. In a gracious email, he

Preface

viii

suggested I convert my notes into a book: despite reading through
a few books, he only truly appreciated Git when he found my
website. As there may be others with a similar mindset, following
his suggestion feels right.

This book is not meant to be a reference. There are help pages for
that, as well as the user manual. And the source code! Instead, we
approach Git as I once did: as a lazy programmer who just wants to
get stuff done. For each task, we try to teach as little Git as possible,
though by the end, you can’t help but develop a good understanding
of this amazing tool.

I’m flattered that others have taken the trouble to translate my
website. Thanks to JunJie, Meng and JiangWei for the Simplified
Chinese translation (I hope to learn your full names one day so I
can acknowledge you properly), Rodrigo Toledo for the Spanish
translation, and Leonardo Siqueira Rodrigues for the Portuguese
translation.

Thanks also to Daniel Baumann and François Marier for
maintaining the Debian package, as well as Dustin Sallings, Alberto
Bertogli, James Cameron, Douglas Livingstone, Michael Budde,
Richard Albury, Tarmigan, Derek Mahar, Frode Aannevik, Keith
Rarick, Andy Somerville, Ralf Recker, Øyvind A. Holm, Miklos
Vajna, Sébastien Hinderer, Thomas Miedema, and Joe Malin for
suggestions, corrections and improvements.

Lastly, my gratitude goes to many others for your support and
praise. I considered quoting some of you on the back cover to
promote this book, but your words might raise expectations to
ridiculous heights!

1

Chapter 1. Introduction

I’ve played video games almost all my life. In contrast, I only
started using version control systems as an adult. I suspect I’m not
alone, and comparing the two may make these concepts easier to
explain and understand.

Think of editing your code, or document, as playing a game. Once
you’ve made a lot of progress, you click on the Save button in your
trusty editor to keep your work.

But this will overwrite the previous version. It’s like those old
school games which only had one save slot: sure you could
save, but you could never go back to an older state. Which was
a shame, because your previous save might have been right at an
exceptionally fun part of the game that you’d like to revisit one day.
Or worse still, your current save is in an unwinnable state, and you
have to start again.

1.1. Version control

When editing, you can Save As… a different file, or copy the file
somewhere first before saving if you want to savour old versions.
You can compress them too to save space. This is a primitive and
labour-intensive form of version control. Computer games improved
on this long ago, many of them providing multiple automatically
timestamped save slots.

Let’s make the problem slightly tougher. Say you have a bunch
of files that go together, such as source code for a project, or files
for a website. Now if you want to keep an old version you have to
archive a whole directory. Keeping many versions around by hand
is inconvenient, and quickly becomes expensive.

With some computer games, a saved game really does consist of a
directory full of files. These games hide this detail from the player
and present a convenient interface to manage various versions of
this directory.

Introduction

2

Version control systems are no different. They all have nice
interfaces to manage a directory of stuff. You can save the state of
the directory every so often, and you can load any one of the saved
states later on. Unlike most computer games, they’re usually smart
about conserving space. Typically, only a few files change between
version to version, and not by much. Storing the differences instead
of entire new copies saves room.

1.2. Distributed version control

Now imagine a very difficult computer game. So difficult to finish
that many experienced gamers all over the world decide to team up
and share their saved games to try to beat it. Speedruns are real-life
examples: players specializing in different levels of the same game
collaborate to produce amazing results.

How would you set up a system so they can get at each other’s saves
easily? And upload new ones?

In the old days, every project used centralized version control. A
server somewhere held all the saved games. Nobody else did. Every
player kept at most a few saved games on their machine. When a
player wanted to make progress, they’d download the latest save
from the main server, play a while, save and upload back to the
server for everyone else to use.

What if a player wanted to get an older saved game for some
reason? Maybe the current saved game is in an unwinnable state
because somebody forgot to pick up an object back in level three,
and they want to find the latest saved game where the game can
still be completed. Or maybe they want to compare two older saved
games to see how much work a particular player did.

There could be many reasons to want to see an older revision, but
the outcome is the same. They have to ask the central server for that
old saved game. The more saved games they want, the more they
need to communicate.

Introduction

3

The new generation of version control systems, of which Git is a
member, are known as distributed systems, and can be thought of
as a generalization of centralized systems. When players download
from the main server they get every saved game, not just the latest
one. It’s as if they’re mirroring the central server.

This initial cloning operation can be expensive, especially if there’s
a long history, but it pays off in the long run. One immediate benefit
is that when an old save is desired for any reason, communication
with the central server is unnecessary.

1.3. Distribution is not anarchy

A popular misconception is that distributed systems are ill-suited for
projects requiring an official central repository. Nothing could be
further from the truth. Photographing someone does not cause their
soul to be stolen. Similarly, cloning the master repository does not
diminish its importance.

A good first approximation is that anything a centralized version
control system can do, a well-designed distributed system can do
better. Network resources are simply costlier than local resources.
While there are drawbacks to a distributed approach, one is less
likely to make erroneous comparisons with this rule of thumb.

A small project may only need a fraction of the features offered by
such a system, but using systems that scale poorly for tiny projects
is like using Roman numerals for calculations involving small
numbers.

Moreover, your project may grow beyond your original
expectations. Using Git from the outset is like carrying a Swiss
army knife even though you mostly use it to open bottles. On the
day you desperately need a screwdriver you’ll be glad you have
more than a plain bottle-opener.

Introduction

4

1.4. Merge conflicts

 For this topic, our computer game analogy becomes too thinly
stretched. Instead, let us again consider editing a document.

Suppose Alice inserts a line at the beginning of a file, and Bob
appends one at the end of his copy. They both upload their changes.
Most systems will automatically deduce a reasonable course of
action: accept and merge their changes, so both Alice’s and Bob’s
edits are applied.

Now suppose both Alice and Bob have made distinct edits to
the same line. Then it is impossible to proceed without human
intervention. The second person to upload is informed of a merge
conflict, and must choose one edit over another, or revise the line
entirely:

The most hardcore programmers write their own text editors,
expending inordinate amounts of time and effort. Fortunately,
the rest of us can choose from a myriad of free high-quality
offerings. But first, a safety warning about the worst text
editor ever:

<<<<<<< alice:example.txt
Avoid Emacs at all cost. Some joke that Emacs is a great
operating system, lacking only a decent editor. Actually,
this is not far from the truth: Emacs is a bloated abomination
that grudgingly allows the user to edit text.
=======
Whatever you do, never edit with vi. Its interface dates from
the Stone Age. Actually, even before the Stone Age they probably
had better interfaces: even nuanced grunts are more expressive
than the cryptic beeps that accompany every keystroke.
>>>>>>> bob:example.txt

Unpleasantries aside, let us now turn our attention to reasonable
text editors.

More complex situations can arise. Version control systems handle
the simpler cases themselves, and leave the difficult cases for
humans. Usually their behaviour is configurable.

5

Chapter 2. Basics

Rather than diving into a sea of Git commands, use these elementary
examples to get your feet wet. Despite their simplicity, each of them
are useful. Indeed, in my first months with Git I never ventured
beyond these shallow waters.

2.1. Saving state

 About to attempt something drastic? Before you do, take a
snapshot of all files in the current directory with:

$ git init
$ git add .
$ git commit -m "My first backup"

Now if your new edits go awry, restore the pristine version:

$ git reset --hard

To save the state again:

$ git commit -a -m "Another backup"

2.2. Add, delete, rename

The above only keeps track of the files that were present when you
first ran git add. If you add new files or subdirectories, you’ll have
to tell Git:

$ git add readme.txt Documentation

Similarly, if you want Git to forget about certain files:

$ git rm kludge.h obsolete.c
$ git rm -r incriminating/evidence/

Git deletes these files for you if you haven’t already.

Renaming a file is the same as removing the old name and adding
the new name. There’s also the shortcut git mv which has the same
syntax as the mv command. For example:

Basics

6

$ git mv bug.c feature.c

2.3. Advanced undo/redo

 Sometimes you just want to go back and forget about every change
past a certain point because they’re all wrong. Then:

$ git log

shows you a list of recent commits, and their SHA1 hashes:

commit 766f9881690d240ba334153047649b8b8f11c664
Author: Bob <bob@example.com>
Date: Tue Mar 14 01:59:26 2000 -0800

 Replace printf() with write().

commit 82f5ea346a2e651544956a8653c0f58dc151275c
Author: Alice <alice@example.com>
Date: Thu Jan 1 00:00:00 1970 +0000

 Initial commit.

The first few characters of the hash are enough to specify the
commit; alternatively, copy and paste the entire hash. Type:

$ git reset --hard 766f

to restore the state to a given commit and erase all newer commits
from the record permanently.

 Other times you want to hop to an old state briefly. In this case,
type:

$ git checkout 82f5

This takes you back in time, while preserving newer commits.
However, like time travel in a science-fiction movie, if you now edit
and commit, you will be in an alternate reality, because your actions
are different to what they were the first time around.

This alternate reality is called a branch, and we’ll have more to say
about this later. For now, just remember that

$ git checkout master

Basics

7

will take you back to the present. Also, to stop Git complaining,
always commit or reset your changes before running checkout.

To take the computer game analogy again:

• git reset --hard: load an old save and delete all saved games
newer than the one just loaded.

• git checkout: load an old game, but if you play on, the game
state will deviate from the newer saves you made the first time
around. Any saved games you make now will end up in a separate
branch representing the alternate reality you have entered. We
deal with this later.

You can choose only to restore particular files and subdirectories by
appending them after the command:

$ git checkout 82f5 some.file another.file

Take care, as this form of checkout can silently overwrite files. To
prevent accidents, commit before running any checkout command,
especially when first learning Git. In general, whenever you feel
unsure about any operation, Git command or not, first run git
commit -a.

Don’t like cutting and pasting hashes? Then use:

$ git checkout :/"My first b"

to jump to the commit that starts with a given message. You can
also ask for the 5th-last saved state:

$ git checkout master~5

2.4. Reverting

 In a court of law, events can be stricken from the record. Likewise,
you can pick specific commits to undo:

$ git commit -a
$ git revert 1b6d

Basics

8

will undo just the commit with the given hash. The revert is
recorded as a new commit, which you can confirm by running git
log.

2.5. Changelog generation

 Generate a changelog by typing:

$ git log > ChangeLog

2.6. Downloading a project

 Get a copy of a project managed with Git by typing:

$ git clone git://server/path/to/files

For example, to get all the files I used to create this site:

$ git clone git://git.or.cz/gitmagic.git

We’ll have much to say about the clone command soon.

2.7. The bleeding edge

 If you’ve already downloaded a copy of a project using git clone,
you can upgrade to the latest version with:

$ git pull

2.8. Instant publishing

Suppose you’ve written a script you’d like to share with others.
You could just tell them to download from your computer,
but if they do so while you’re improving the script or making
experimental changes, they could wind up in trouble. Of course,
this is why release cycles exist. Developers may work on a project
frequently, but they only make the code available when they feel it
is presentable.

To do this with Git, in the directory where your script resides:

Basics

9

$ git init
$ git add .
$ git commit -m "First release"

Then tell your users to run:

$ git clone your.computer:/path/to/script

to download your script. This assumes they have ssh access. If not,
run git daemon and tell your users to instead run:

$ git clone git://your.computer/path/to/script

From now on, every time your script is ready for release, execute:

$ git commit -a -m "Next release"

and your users can upgrade their version by changing to the
directory containing your script and typing:

$ git pull

Your users will never end up with a version of your script you don’t
want them to see.

2.9. What have I done?

 Find out what changes you’ve made since the last commit with:

$ git diff

Or since yesterday:

$ git diff "@{yesterday}"

Or between a particular version and 2 versions ago:

$ git diff 1b6d "master~2"

 In each case the output is a patch that can be applied with git
apply. Try also:

$ git whatchanged --since="2 weeks ago"

Basics

10

 Often I’ll browse history with qgit instead, due to its slick
photogenic interface, or tig, a text-mode interface that works well
over slow connections. Alternatively, install a web server, run git
instaweb and fire up any web browser.

2.10. Exercise

Let A, B, C, D be four successive commits where B is the same as A
except some files have been removed. We want to add the files back
at D. How can we do this?

There are at least three solutions. Assuming we are at D:

1. The difference between A and B are the removed files. We can
create a patch representing this difference and apply it:

$ git diff B A | git apply

2. Since we saved the files back at A, we can retrieve them:

$ git checkout A foo.c bar.h

3. We can view going from A to B as a change we want to undo:

$ git revert B

Which choice is best? Whichever you prefer most. It is easy to get
what you want with Git, and often there are many ways to get it.

11

Chapter 3. Clones
 In older version control systems, checkout is the standard operation
to get files. You retrieve a bunch of files in a particular saved state.

In Git and other distributed version control systems, cloning is the
standard operation. To get files, you create a clone of the entire
repository. In other words, you practically mirror the central server.
Anything the main repository can do, you can do.

3.1. Staying in sync

 I can tolerate making tarballs or using rsync for backups and basic
syncing. But sometimes I edit on my laptop, other times on my
desktop, and the two may not have talked to each other in between.

Initialize a Git repository and commit your files on one machine.
Then on the other:

$ git clone other.computer:/path/to/files

 to create a second copy of the files and Git repository. From now
on,

$ git commit -a
$ git pull other.computer:/path/to/files HEAD

will pull in the state of the files on the other computer into the one
you’re working on. If you’ve recently made conflicting edits in the
same file, Git will let you know and you should commit again after
resolving them.

Think of HEAD as a cursor that points at the latest commit and
advances with each new commit. Several commands take HEAD
as the default argument, and until now, we have never needed to
explicitly specify it. In the above pull, it refers to the latest commit
on the other computer.

3.2. Classic source control

Initialize a Git repository for your files:

Clones

12

$ git init
$ git add .
$ git commit -m "Initial commit"

 On the central server, initialize a bare repository in some directory:

$ mkdir proj.git
$ cd proj.git
$ git init --bare
$ # one-line variant: GIT_DIR=proj.git git init

Start the Git daemon if necessary:

$ git daemon --detach # it may already be running

For Git hosting services, follow the instructions to setup the initially
empty Git repository. Typically one fills in a form on a webpage.

 Push your project to the central server with:

$ git push git://central.server/path/to/proj.git HEAD

To check out the source, a developer types:

$ git clone git://central.server/path/to/proj.git

After making changes, the developer saves changes locally:

$ git commit -a

To update to the latest version:

$ git pull

Any merge conflicts should be resolved then committed:

$ git commit -a

To check in local changes into the central repository:

$ git push

If the main server has new changes due to activity by other
developers, the push fails, and the developer should pull the latest
version, resolve any merge conflicts, then try again.

Clones

13

3.3. Bare repositories

A bare repository is so named because it has no working directory;
it only contains files that are normally hidden away in the .git
subdirectory. In other words, it maintains the history of a project,
and never holds a snapshot of any given version.

A bare repository plays a role similar to that of the main server
in a centralized version control system: the home of your project.
Developers clone your project from it, and push the latest official
changes to it. Typically it resides on a server that does little else but
disseminate data. Development occurs in the clones, so the home
repository can do without a working directory.

Many Git commands fail on bare repositories unless the GIT_DIR
environment variable is set to the repository path, or the --bare
option is supplied.

3.4. Push versus pull

 Why did we introduce the push command, rather than rely on the
familiar pull command? Firstly, pulling fails on bare repositories:
instead you must fetch, a command we later discuss. But even if we
kept a normal repository on the central server, pulling into it would
still be cumbersome. We would have to login to the server first, and
give the pull command the network address of the machine we’re
pulling from. Firewalls may interfere, and what if we have no shell
access to the server in the first place?

However, apart from this case, we discourage pushing into a
repository, because confusion can ensue when the destination has a
working directory.

In short, while learning Git, only push when the target is a bare
repository; otherwise pull.

3.5. Forking a project

Sick of the way a project is being run? Think you could do a better
job? Then on your server:

Clones

14

$ git clone git://main.server/path/to/files

Next, tell everyone about your fork of the project at your server.

At any later time, you can merge in the changes from the original
project with:

$ git pull

3.6. Ultimate backups

Want numerous tamper-proof geographically diverse redundant
archives? If your project has many developers, don’t do anything!
Every clone of your code is effectively a backup. Not just of
the current state, but of your project’s entire history. Thanks to
cryptographic hashing, if anyone’s clone becomes corrupted, it will
be spotted as soon as they try to communicate with others.

If your project is not so popular, find as many servers as you can to
host clones.

The truly paranoid should always write down the latest 20-byte
SHA1 hash of the HEAD somewhere safe. It has to be safe, not
private. For example, publishing it in a newspaper would work well,
because it’s hard for an attacker to alter every copy of a newspaper.

3.7. Multitasking

Say you want to work on several features in parallel. Then commit
your project and run:

$ git clone . /some/new/directory

Git exploits hard links and file sharing as much as safely possible
to create this clone, so it will be ready in a flash, and you can now
work on two independent features simultaneously. For example, you
can edit one clone while the other is compiling.

At any time, you can commit and pull changes from the other clone.

$ git pull /the/other/clone HEAD

Clones

15

3.8. Guerilla version control

Are you working on a project that uses some other version control
system, and you sorely miss Git? Then initialize a Git repository in
your working directory:

$ git init
$ git add .
$ git commit -m "Initial commit"

then clone it:

$ git clone . /some/new/directory

Now go to the new directory and work here instead, using Git to
your heart’s content. Once in a while, you’ll want to sync with
everyone else, in which case go to the original directory, sync using
the other version control system, and type:

$ git add .
$ git commit -m "Sync with everyone else"

Then go to the new directory and run:

$ git commit -a -m "Description of my changes"
$ git pull

The procedure for giving your changes to everyone else depends
on the other version control system. The new directory contains
the files with your changes. Run whatever commands of the other
version control system are needed to upload them to the central
repository.

 Subversion, perhaps the best centralized version control system,
is used by countless projects. The git svn command automates the
above for Subversion repositories.

3.9. Mercurial

 Mercurial is a similar version control system that can almost
seamlessly work in tandem with Git. With the hg-git plugin, a
Mercurial user can losslessly push to and pull from a Git repository.

Clones

16

Obtain the hg-git plugin with Git:

$ git clone git://github.com/schacon/hg-git.git

or Mercurial:

$ hg clone http://bitbucket.org/durin42/hg-git/

Sadly, I am unaware of an analogous plugin for Git. For this reason,
I advocate Git over Mercurial for the main repository, even if you
prefer Mercurial. With a Mercurial project, usually a volunteer
maintains a parallel Git repository to accommodate Git users,
whereas thanks to the hg-git plugin, a Git project automatically
accommodates Mercurial users.

Although the plugin can convert a Mercurial repository to a Git
repository by pushing to an empty repository, this job is easier with
the hg-fast-export.sh script, available from:

$ git clone git://repo.or.cz/fast-export.git

To convert, in an empty directory:

$ git init
$ hg-fast-export.sh -r /hg/repo

after adding the script to your $PATH.

3.10. Bazaar

 We briefly mention Bazaar because it is the most popular free
distributed version control system after Git and Mercurial.

Bazaar has the advantage of hindsight, as it is relatively young;
its designers could learn from mistakes of the past, and sidestep
minor historical warts. Additionally, its developers are mindful of
portability and interoperation with other version control systems.

A bzr-git plugin lets Bazaar users work with Git repositories to
some extent. The tailor program converts Bazaar repositories to

Clones

17

Git repositories, and can do so incrementally, while bzr-fast-
export is well-suited for one-shot conversions.

3.11. Why I use Git

I originally chose Git because I heard it could manage the
unimaginably unmanageable Linux kernel source. I’ve never felt a
need to switch. Git has served admirably, and I’ve yet to be bitten
by its flaws. As I primarily use Linux, issues on other platforms are
of no concern.

Also, I prefer C programs and bash scripts to executables such as
Python scripts: there are fewer dependencies, and I’m addicted to
fast running times.

I did think about how Git could be improved, going so far as to
write my own Git-like tool, but only as an academic exercise. Had I
completed my project, I would have stayed with Git anyway, as the
gains are too slight to justify using an oddball system.

Naturally, your needs and wants likely differ, and you may be better
off with another system. Nonetheless, you can’t go far wrong with
Git.

18

Chapter 4. Branches

 Instant branching and merging are the most lethal of Git’s killer
features.

Problem: External factors inevitably necessitate context switching.
A severe bug manifests in the released version without warning. The
deadline for a certain feature is moved closer. A developer whose
help you need is about to leave. In all cases, you must abruptly drop
what you are doing and focus on a completely different task.

Interrupting your train of thought can be detrimental to your
productivity, and the more cumbersome it is to switch contexts, the
greater the loss. With centralized version control we must download
a fresh working copy from the central server. Distributed systems
fare better, as we can clone the desired version locally.

But cloning still entails copying the whole working directory as well
as the entire history up to the given point. Even though Git reduces
the cost of this with file sharing and hard links, the project files
themselves must be recreated in their entirety in the new working
directory.

Solution: Git has a better tool for these situations that is much faster
and more space-efficient than cloning: git branch.

With this magic word, the files in your directory suddenly
shapeshift from one version to another. This transformation can
do more than merely go back or forward in history. Your files
can morph from the last release to the experimental version to the
current development version to your friend’s version and so on.

4.1. My first branch

 Ever played one of those games where at the push of a button
(“the boss key”), the screen would instantly display a spreadsheet
or something? So if the boss walked in the office while you were
playing the game you could quickly hide it away?

Branches

19

In some directory:

$ echo "I'm smarter than my boss" > myfile.txt
$ git init
$ git add .
$ git commit -m "Initial commit"

We have created a Git repository that tracks one text file containing
a certain message. Now type:

$ git checkout -b boss
$ echo "My boss is smarter than me" > myfile.txt
$ git commit -a -m "Another commit"

It looks like we’ve just overwritten our file and committed it. But
it’s an illusion. Type:

$ git checkout master

and hey presto! The text file is restored. And if the boss decides to
snoop around this directory, type:

$ git checkout boss

You can switch between the two versions of the file as much as you
like, and commit to each independently.

4.2. Dirty work

Say you’re working on some feature, and for some reason, you
need to go back three versions and temporarily put in a few print
statements to see how something works. Then:

$ git commit -a
$ git checkout HEAD~3

Now you can add ugly temporary code all over the place. You can
even commit these changes. When you’re done,

$ git checkout master

to return to your original work. Observe that any uncommitted
changes are carried over.

Branches

20

What if you wanted to save the temporary changes after all? Easy:

$ git checkout -b dirty

and commit before switching back to the master branch. Whenever
you want to return to the dirty changes, simply type

$ git checkout dirty

We touched upon this command in an earlier chapter, when
discussing loading old states. At last we can tell the whole story:
the files change to the requested state, but we must leave the master
branch. Any commits made from now on take your files down a
different road, which can be named later.

In other words, after checking out an old state, Git automatically
puts you in a new, unnamed branch, which can be named and saved
with git checkout -b.

4.3. Quick fixes

You’re in the middle of something when you are told to drop
everything and fix a newly discovered bug in commit 1b6d...:

$ git commit -a
$ git checkout -b fixes 1b6d

Then once you’ve fixed the bug:

$ git commit -a -m "Bug fixed"
$ git push # to the central repository
$ git checkout master

and resume work on your original task.

 You can even merge in the bugfix you just made, either by typing:

$ git merge fixes

or:

$ git pull

Branches

21

since you have already pushed the bugfix to the main repository.

4.4. Merging

 With some version control systems, creating branches is easy but
merging them back together is tough. With Git, merging is so trivial
that you might be unaware of it happening.

Indeed, though we have just introduced git merge, we encountered
merging long ago. The pull command in fact fetches commits and
then merges them into your current branch. If you have no local
changes, then the merge is a fast forward, a degenerate case akin to
fetching the latest version in a centralized version control system.
But if you do have local changes, Git will automatically merge, and
report any conflicts.

Ordinarily, a commit has exactly one parent commit, namely, the
previous commit. Merging branches together produces a commit
with at least two parents. This begs the question: what commit does
HEAD~10 really refer to? A commit could have multiple parents, so
which one do we follow?

It turns out this notation chooses the first parent every time. This is
desirable because commits in the current branch become the first
parents during a merge; frequently you’re only concerned with the
changes you made in the current branch, as opposed to changes
merged in from other branches.

You can refer to a specific parent with a caret. For example, to show
the logs from the second parent:

$ git log HEAD^2

You may omit the number for the first parent. For example, to show
the differences with the first parent:

$ git diff HEAD^

You can combine this notation with other types. For example:

Branches

22

$ git checkout 1b6d^^2~10 -b ancient

starts a new branch “ancient” representing the state 10 commits
back from the second parent of the first parent of the commit
starting with 1b6d.

4.5. Uninterrupted workflow

Often in hardware projects, the second step of a plan must await
the completion of the first step. A car undergoing repairs might sit
idly in a garage until a particular part arrives from the factory. A
prototype might wait for a chip to be fabricated before construction
can continue.

Software projects can be similar. The second part of a new feature
may have to wait until the first part has been released and tested.
Some projects require your code to be reviewed before accepting it,
so you might wait until the first part is approved before starting the
second part.

Thanks to painless branching and merging, we can bend the rules
and work on Part II before Part I is officially ready. Suppose you
have committed Part I and sent it for review. Let’s say you’re in the
master branch. Then branch off:

$ git checkout -b part2

Next, work on Part II, committing your changes along the way. To
err is human, and often you’ll want to go back and fix something in
Part I. If you’re lucky, or very good, you can skip these lines.

$ git checkout master # Go back to Part I.
$ edit files # Fix Part I.
$ git checkout part2 # Go back to Part II.
$ git merge master # Merge in those fixes.

Eventually, Part I is approved:

$ git checkout master # Go back to Part I.
$ submit files # Release to the world!

Branches

23

$ git merge part2 # Merge in Part II.
$ git branch -d part2

Now you’re in the master branch again, with Part II in the working
directory.

It’s easy to extend this trick for any number of parts. It’s also easy
to branch off retroactively: suppose you belatedly realize you should
have created a branch 7 commits ago. Then type:

$ git branch -m master part2
$ # Rename "master" branch to "part2".
$ git checkout HEAD~7 -b master

The master branch now contains just Part I, and the part2 branch
contains the rest.

4.6. Reorganizing a medley

 Perhaps you like to work on all aspects of a project in the same
branch. You want to keep works-in-progress to yourself and want
others to see your commits only when they have been neatly
organized. Start a couple of branches:

$ git checkout -b sanitized
$ git checkout -b medley

Next, work on anything: fix bugs, add features, add temporary code,
and so forth, committing often along the way. Then:

$ git checkout sanitized
$ git cherry-pick medley^^

applies the grandparent of the head commit of the “medley” branch
to the “sanitized” branch. With appropriate cherry-picks you can
construct a branch that contains only permanent code, and has
related commits grouped together.

4.7. Managing branches

 List all branches by typing:

Branches

24

$ git branch

By default, you start in a branch named “master”. Some advocate
leaving the “master” branch untouched and creating new branches
for your own edits.

The -d and -m options allow you to delete and move (rename)
branches. See git help branch.

The “master” branch is a useful custom. Others may assume that
your repository has a branch with this name, and that it contains
the official version of your project. Although you can rename
or obliterate the “master” branch, you might as well respect this
convention.

4.8. Temporary branches

 After a while you may realize you are creating short-lived branches
frequently for similar reasons: every other branch merely serves to
save the current state so you can briefly hop back to an older state to
fix a high-priority bug or something.

It’s analogous to changing the TV channel temporarily to see what
else is on. But instead of pushing a couple of buttons, you have to
create, check out, merge, and delete temporary branches. Luckily,
Git has a shortcut that is as convenient as a TV remote control:

$ git stash

This saves the current state in a temporary location (a stash) and
restores the previous state. Your working directory appears exactly
as it was before you started editing, and you can fix bugs, pull in
upstream changes, and so on. When you want to go back to the
stashed state, type:

$ git stash apply # May need to resolve conflicts.

You can have multiple stashes, and manipulate them in various
ways. See git help stash. As you may have guessed, Git maintains
branches behind the scenes to perform this magic trick.

Branches

25

4.9. Work how you want

You might wonder if branches are worth the bother. After all, clones
are almost as fast, and you can switch between them with cd instead
of esoteric Git commands.

Consider web browsers. Why support multiple tabs as well as
multiple windows? Because allowing both accommodates a wide
variety of styles. Some users like to keep only one browser window
open, and use tabs for multiple webpages. Others might insist on
the other extreme: multiple windows with no extra tabs anywhere.
Others still prefer something in between.

Branching is like tabs for your working directory, and cloning is like
opening a new browser window. These operations are fast and local,
so why not experiment to find the combination that best suits you?
Git lets you work exactly how you want.

26

Chapter 5. History
A consequence of Git’s distributed nature is that history can be
edited easily. But if you tamper with the past, take care: only rewrite
that part of history which you alone possess. Just as nations forever
argue over who committed what atrocity, if someone else has a
clone whose version of history differs to yours, you will have
trouble reconciling when your trees interact.

Some developers strongly feel history should be immutable, warts
and all. Others feel trees should be made presentable before they
are unleashed in public. Git accommodates both viewpoints. Like
cloning, branching and merging, rewriting history is simply another
power Git gives you. It is up to you to use it wisely.

5.1. Fixing the last commit

Did you just commit, but wish you had typed a different message?
Then run:

$ git commit --amend

to change the last message. Realized you forgot to add a file? Run
git add to add it, and then run the above command.

Want to include a few more edits in that last commit? Then make
those edits and run:

$ git commit --amend -a

5.2. Fixing several commits

 Let’s suppose the previous problem is ten times worse. After a
lengthy session you’ve made a bunch of commits. But you’re not
quite happy with the way they’re organized, and some of those
commit messages could use rewording. Then type:

$ git rebase -i HEAD~10

and the last 10 commits will appear in your favourite $EDITOR. A
sample excerpt:

History

27

pick 5c6eb73 Added repo.or.cz link
pick a311a64 Reordered analogies in "Work How You Want"
pick 100834f Added push target to Makefile

Then:

• Remove commits by deleting lines.

• Reorder commits by reordering lines.

• Replace pick with:

• edit to mark a commit for amending.

• reword to change the log message.

• squash to merge a commit with the previous one.

• fixup to merge a commit with the previous one and discard the
log message.

Save and quit. If you marked a commit for editing, then run:

$ git commit --amend

Otherwise, run:

$ git rebase --continue

So commit early and commit often: you can tidy up later with
rebase.

5.3. Untangling local from upstream

You’re working on an active project. You make some local commits
over time, and then you sync with the official tree with a merge.
This cycle repeats itself a few times before you’re ready to push to
the central tree.

But now the history in your local Git clone is a messy jumble of
your changes and the official changes. You’d prefer to see all
your changes in one contiguous section, and after all the upstream
commits.

History

28

This is a job for git rebase as described above. In many cases you
can use the --onto flag and avoid interaction.

Also see git help rebase for detailed examples of this amazing
command. You can split commits. You can even rearrange branches
of a tree.

5.4. Rewriting history

 Occasionally, you need the source control equivalent of airbrushing
people out of official photos, erasing them from history in a
Stalinesque fashion. For example, suppose we intend to release a
project, but it involves a file that should be kept private for some
reason. Perhaps I left my credit card number in a text file and
accidentally added it to the project. Deleting the file is insufficient,
for the file can be accessed from older commits. We must remove
the file from all commits:

$ git filter-branch --tree-filter 'rm secret/file' HEAD

See git help filter-branch, which discusses this example and
gives a faster method. In general, filter-branch lets you alter large
sections of history with a single command.

Afterwards, the .git/refs/original directory describes the state
of affairs before the operation. Check the filter-branch command did
what you wanted, then delete this directory if you wish to run more
filter-branch commands.

Lastly, replace clones of your project with your revised version if
you want to interact with them later.

5.5. Making history

Want to migrate a project to Git? If it’s managed with one of the
more well-known systems, then chances are someone has already
written a script to export the whole history to Git.

Otherwise, look up git fast-import, which reads text input in a
specific format to create Git history from scratch. Typically a

History

29

script using this command is hastily cobbled together and run once,
migrating the project in a single shot.

As an example, paste the following listing into temporary file, such
as /tmp/history:

commit refs/heads/master
committer Alice <alice@example.com> Thu, 01 Jan 1970 00:00:00 +0000
data <<EOT
Initial commit.
EOT

M 100644 inline hello.c
data <<EOT
#include <stdio.h>

int main() {
 printf("Hello, world!\n");
 return 0;
}
EOT

commit refs/heads/master
committer Bob <bob@example.com> Tue, 14 Mar 2000 01:59:26 -0800
data <<EOT
Replace printf() with write().
EOT

M 100644 inline hello.c
data <<EOT
#include <unistd.h>

int main() {
 write(1, "Hello, world!\n", 14);
 return 0;
}
EOT

 Then create a Git repository from this temporary file by typing:

$ mkdir project; cd project; git init
$ git fast-import --date-format=rfc2822 < /tmp/history

You can checkout the latest version of the project with:

$ git checkout master .

The git fast-export command converts any repository to the
git fast-import format, whose output you can study for writing

History

30

exporters, and also to transport repositories in a human-readable
format. Indeed, these commands can send repositories of text files
over text-only channels.

5.6. Where did it all go wrong?

You’ve just discovered a broken feature in your program which you
know for sure was working a few months ago. Argh! Where did
this bug come from? If only you had been testing the feature as you
developed.

 It’s too late for that now. However, provided you’ve been
committing often, Git can pinpoint the problem:

$ git bisect start
$ git bisect bad HEAD
$ git bisect good 1b6d

Git checks out a state halfway in between. Test the feature, and if
it’s still broken:

$ git bisect bad

If not, replace "bad" with "good". Git again transports you to a state
halfway between the known good and bad versions, narrowing
down the possibilities. After a few iterations, this binary search
will lead you to the commit that caused the trouble. Once you’ve
finished your investigation, return to your original state by typing:

$ git bisect reset

Instead of testing every change by hand, automate the search by
running:

$ git bisect run my_script

Git uses the return value of the given command, typically a one-
off script, to decide whether a change is good or bad: the command
should exit with code 0 when good, 125 when the change should
be skipped, and anything else between 1 and 127 if it is bad. A
negative return value aborts the bisect.

History

31

You can do much more: the help page explains how to visualize
bisects, examine or replay the bisect log, and eliminate known
innocent changes for a speedier search.

5.7. Who’s to blame?

 Like many other version control systems, Git has a blame
command:

$ git blame bug.c

which annotates every line in the given file showing who last
changed it, and when. Unlike many other version control systems,
this operation works offline, reading only from local disk.

5.8. Personal experience

In a centralized version control system, history modification
is a difficult operation, and only available to administrators.
Cloning, branching, and merging are impossible without network
communication. So are basic operations such as browsing history,
or committing a change. In some systems, users require network
connectivity just to view their own changes or open a file for
editing.

Centralized systems preclude working offline, and need more
expensive network infrastructure, especially as the number of
developers grows. Most importantly, all operations are slower
to some degree, usually to the point where users shun advanced
commands unless absolutely necessary. In extreme cases this is
true of even the most basic commands. When users must run slow
commands, productivity suffers because of an interrupted work
flow.

I experienced these phenomena first-hand. Git was the first version
control system I used. I quickly grew accustomed to it, taking many
features for granted. I simply assumed other systems were similar:
choosing a version control system ought to be no different from
choosing a text editor or web browser.

History

32

I was shocked when later forced to use a centralized system.
A flaky internet connection matters little with Git, but makes
development unbearable when it needs to be as reliable as local
disk. Additionally, I found myself conditioned to avoid certain
commands because of the latencies involved, which ultimately
prevented me from following my desired work flow.

When I had to run a slow command, the interruption to my train of
thought dealt a disproportionate amount of damage. While waiting
for server communication to complete, I’d do something else to pass
the time, such as check email or write documentation. By the time
I returned to the original task, the command had finished long ago,
and I would waste more time trying to remember what I was doing.
Humans are bad at context switching.

There was also an interesting tragedy-of-the-commons effect:
anticipating network congestion, individuals would consume more
bandwidth than necessary on various operations in an attempt to
reduce future delays. The combined efforts intensified congestion,
encouraging individuals to consume even more bandwidth next time
to avoid even longer delays.

33

Chapter 6. Social version control

Initially I used Git on a private project where I was the sole
developer. Amongst the commands related to Git’s distributed
nature, I needed only pull and clone so could I keep the same
project in different places.

Later I wanted to publish my code with Git, and include changes
from contributors. I had to learn how to manage projects with
multiple developers from all over the world. Fortunately, this is
Git’s forte, and arguably its raison d'être.

6.1. Who am I?

 Every commit has an author name and email, which is shown by git
log. By default, Git uses system settings to populate these fields. To
set them explicitly, type:

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Omit the global flag to set these options only for the current
repository.

6.2. Git over SSH, HTTP

 Suppose you have SSH access to a web server, but Git is not
installed. Though less efficient than its native protocol, Git can
communicate over HTTP.

Download, compile and install Git in your account, and create a
repository in your web directory:

$ GIT_DIR=proj.git git init
$ cd proj.git
$ git --bare update-server-info
$ cp hooks/post-update.sample hooks/post-update

For older versions of Git, instead of the copy command, run:

$ chmod a+x hooks/post-update

Social version control

34

Now you can publish your latest edits via SSH from any clone:

$ git push web.server:/path/to/proj.git master

and anybody can get your project with:

$ git clone http://web.server/proj.git

6.3. Git over anything

 Want to synchronize repositories without servers, or even a
network connection? Need to improvise during an emergency?
We’ve seen git fast-export and git fast-import can convert
repositories to a single file and back. We could shuttle such files
back and forth to transport git repositories over any medium, but a
more efficient tool is git bundle.

The sender creates a bundle:

$ git bundle create somefile HEAD

then transports the bundle, somefile, to the other party somehow:
email, thumb drive, an xxd printout and an OCR scanner, reading
bits over the phone, smoke signals, etc. The receiver retrieves
commits from the bundle by typing:

$ git pull somefile

The receiver can even do this from an empty repository. Despite its
size, somefile contains the entire original git repository.

In larger projects, eliminate waste by bundling only changes the
other repository lacks. For example, suppose the commit “1b6d…”
is the most recent commit shared by both parties:

$ git bundle create somefile HEAD ^1b6d

If done frequently, one could easily forget which commit was last
sent. The help page suggests using tags to solve this. Namely, after
you send a bundle, type:

$ git tag -f lastbundle HEAD

Social version control

35

and create new refresher bundles with:

$ git bundle create newbundle HEAD ^lastbundle

6.4. Patches

Patches are text representations of your changes that can be easily
understood by computers and humans alike. This gives them
universal appeal. You can email a patch to developers no matter
what version control system they’re using. As long as your audience
can read their email, they can see your edits. Similarly, on your
side, all you require is an email account: there’s no need to setup an
online Git repository.

 Recall from the first chapter:

$ git diff 1b6d > my.patch

 outputs a patch which can be pasted into an email for discussion. In
a Git repository, type:

$ git apply < my.patch

to apply the patch.

 In more formal settings, when author names and perhaps signatures
should be recorded, generate the corresponding patches past a
certain point by typing:

$ git format-patch 1b6d

The resulting files can be given to git-send-email, or sent by hand.
You can also specify a range of commits:

$ git format-patch 1b6d..HEAD^^

 On the receiving end, save an email to a file, then type:

$ git am < email.txt

This applies the incoming patch and also creates a commit,
including information such as the author.

Social version control

36

With a browser email client, you may need to click a button to see
the email in its raw original form before saving the patch to a file.

There are slight differences for mbox-based email clients, but if you
use one of these, you’re probably the sort of person who can figure
them out easily without reading tutorials!

6.5. Sorry, we’ve moved

After cloning a repository, running git push or git pull will
automatically push to or pull from the original URL. How does Git
do this? The secret lies in config options created with the clone.
Let’s take a peek:

$ git config --list

The remote.origin.url option controls the source URL; “origin”
is a nickname given to the source repository. As with the “master”
branch convention, we may change or delete this nickname but there
is usually no reason for doing so.

If the original repository moves, we can update the URL via:

$ git config remote.origin.url git://new.url/proj.git

The branch.master.merge option specifies the default remote
branch in a git pull. During the initial clone, it is set to the current
branch of the source repository, so even if the HEAD of the source
repository subsequently moves to a different branch, a later pull will
faithfully follow the original branch.

This option only applies to the repository we first cloned from,
which is recorded in the option branch.master.remote. If we pull
in from other repositories we must explicitly state which branch we
want:

$ git pull git://example.com/other.git master

The above explains why some of our earlier push and pull examples
had no arguments.

Social version control

37

6.6. Remote branches

 When you clone a repository, you also clone all its branches. You
may not have noticed this because Git hides them away: you must
ask for them specifically. This prevents branches in the remote
repository from interfering with your branches, and also makes Git
easier for beginners.

List the remote branches with:

$ git branch -r

You should see something like:

origin/HEAD
origin/master
origin/experimental

These represent branches and the HEAD of the remote repository,
and can be used in regular Git commands. For example, suppose
you have made many commits, and wish to compare against the
last fetched version. You could search through the logs for the
appropriate SHA1 hash, but it’s much easier to type:

$ git diff origin/HEAD

Or you can see what the “experimental” branch has been up to:

$ git log origin/experimental

6.7. Multiple remotes

Suppose two other developers are working on our project, and we
want to keep tabs on both. We can follow more than one repository
at a time with:

$ git remote add other git://example.com/some_repo.git
$ git pull other some_branch

Now we have merged in a branch from the second repository, and
we have easy access to all branches of all repositories:

Social version control

38

$ git diff origin/experimental^ other/some_branch~5

But what if we just want to compare their changes without affecting
our own work? In other words, we want to examine their branches
without having their changes invade our working directory. Then
rather than pull, run:

$ git fetch # Fetch from origin, the default.
$ git fetch other # Fetch from the second programmer.

This just fetches histories. Although the working directory remains
untouched, we can refer to any branch of any repository in a Git
command because we now possess a local copy.

Recall that behind the scenes, a pull is simply a fetch then merge.
Usually we pull because we want to merge the latest commit after a
fetch; this situation is a notable exception.

See git help remote for how to remove remote repositories, ignore
certain branches, and more.

6.8. My preferences

For my projects, I like contributors to prepare repositories from
which I can pull. Some Git hosting services let you host your own
fork of a project with the click of a button.

After I fetch a tree, I run Git commands to navigate and examine
the changes, which ideally are well-organized and well-described.
I merge my own changes, and perhaps make further edits. Once
satisfied, I push to the main repository.

Staying in the Git world is slightly more convenient than patch files,
as it saves me from converting them to Git commits. Furthermore,
Git handles details such as recording the author’s name and email
address, as well as the time and date, and asks the author to describe
their own change.

39

Chapter 7. Git grandmastery
By now, you should be able to navigate the git help pages and
understand almost everything. However, pinpointing the exact
command required to solve a given problem can be tedious. Perhaps
I can save you some time: below are some recipes I have needed in
the past.

7.1. Archiving projects

For my projects, Git tracks exactly the files I’d like to archive and
release to users. To create a tarball of the source code, I run:

$ git archive --format=tar --prefix=proj-1.2.3/ HEAD

7.2. Commit what changed

Telling Git when you’ve added, deleted and renamed files is
troublesome for certain projects. Instead, you can type:

$ git add .
$ git add -u

Git will look at the files in the current directory and work out the
details by itself. Instead of the second add command, run git
commit -a if you also intend to commit at this time. See git help
ignore for how to specify files that should be ignored.

You can perform the above in a single pass with:

$ git ls-files -dmo -z \
 | xargs -0 git update-index --add --remove

The -z and -0 options prevent ill side-effects from filenames
containing strange characters. As this command adds ignored files,
you may want to use the -x or -X option.

7.3. My commit is too big!

Have you neglected to commit for too long? Been coding furiously
and forgotten about source control until now? Made a series of
unrelated changes, because that’s your style?

Git grandmastery

40

No worries. Run:

$ git add -p

For each edit you made, Git will show you the hunk of code that
was changed, and ask if it should be part of the next commit.
Answer with "y" or "n". You have other options, such as postponing
the decision; type "?" to learn more.

Once you’re satisfied, type

$ git commit

 to commit precisely the changes you selected (the staged changes).
Make sure you omit the -a option, otherwise Git will commit all the
edits.

What if you’ve edited many files in many places? Reviewing each
change one by one becomes frustratingly mind-numbing. In this
case, use git add -i, whose interface is less straightforward, but
more flexible. With a few keystrokes, you can stage or unstage
several files at a time, or review and select changes in particular
files only. Alternatively, run git commit --interactive which
automatically commits after you’re done.

7.4. The index: Git’s staging area

 So far we have avoided Git’s famous index, but we must now
confront it to explain the above. The index is a temporary staging
area. Git seldom shuttles data directly between your project and its
history. Rather, Git first writes data to the index, and then copies the
data in the index to its final destination.

For example, commit -a is really a two-step process. The first step
places a snapshot of the current state of every tracked file into the
index. The second step permanently records the snapshot now in the
index. Committing without the -a option only performs the second
step, and only makes sense after running commands that somehow
change the index, such as git add.

Git grandmastery

41

Usually we can ignore the index and pretend we are reading
straight from and writing straight to the history. On this occasion,
we want finer control, so we manipulate the index. We place a
snapshot of some, but not all, of our changes into the index, and
then permanently record this carefully rigged snapshot.

7.5. Lost your HEAD?

 Recall the HEAD tag normally points at the latest commit. Some
Git commands let you move it. For example:

$ git reset HEAD~3

will move the HEAD three commits back. Thus all Git commands
now act as if you hadn’t made those last three commits, while your
files remain in the present. See the help page for some applications.

But how can you go back to the future? The past commits know
nothing of the future.

If you have the SHA1 of the original HEAD then:

$ git reset 1b6d

 But suppose you never took it down? Don’t worry: for
commands like these, Git saves the original HEAD as a tag called
ORIG_HEAD, and you can return safe and sound with:

$ git reset ORIG_HEAD

7.6. HEAD-hunting

Perhaps ORIG_HEAD isn’t enough. Perhaps you’ve just realized
you made a monumental mistake and you need to go back to an
ancient commit in a long-forgotten branch.

By default, Git keeps a commit for at least two weeks, even if
you ordered Git to destroy the branch containing it. The trouble is
finding the appropriate hash. You could look at all the hash values
in .git/objects and use trial and error to find the one you want.
But there’s a much easier way.

Git grandmastery

42

Git records every hash of a commit it computes in .git/logs. The
subdirectory refs contains the history of all activity on all branches,
while the file HEAD shows every hash value it has ever taken. The
latter can be used to find hashes of commits on branches that have
been accidentally lopped off.

 The reflog command provides a friendly interface to these log files.
Try

$ git reflog

Instead of cutting and pasting hashes from the reflog, try:

$ git checkout "@{10 minutes ago}"

Or checkout the 5th-last visited commit via:

$ git checkout "@{5}"

See the “Specifying Revisions” section of git help rev-parse for
more.

 You may wish to configure a longer grace period for doomed
commits. For example:

$ git config gc.pruneexpire "30 days"

means a deleted commit will only be permanently lost once 30 days
have passed and git gc is run.

You may also wish to disable automatic invocations of git gc:

$ git config gc.auto 0

in which case commits will only be deleted when you run git gc
manually.

7.7. Building on Git

In true UNIX fashion, Git’s design allows it to be easily used as
a low-level component of other programs, such as GUI and web

Git grandmastery

43

interfaces, alternative command-line interfaces, patch managements
tools, importing and conversion tools and so on. In fact, some Git
commands are themselves scripts standing on the shoulders of
giants. With a little tinkering, you can customize Git to suit your
preferences.

 One easy trick is to use built-in Git aliases to shorten your most
frequently used commands:

$ git config --global alias.co checkout
$ # display current aliases
$ git config --global --get-regexp alias
alias.co checkout
$ git co foo # same as 'git checkout foo'

 One easy trick is to use built-in Git aliases to shorten your most
frequently Another is to print the current branch in the prompt, or
window title. Invoking

$ git symbolic-ref HEAD

shows the current branch name. In practice, you most likely want to
remove the "refs/heads/" and ignore errors:

$ git symbolic-ref HEAD 2> /dev/null | cut -b 12-

The contrib subdirectory is a treasure trove of tools built on Git.
In time, some of them may be promoted to official commands. On
Debian and Ubuntu, this directory lives at /usr/share/doc/git-
core/contrib.

 One popular resident is workdir/git-new-workdir. Via clever
symlinking, this script creates a new working directory whose
history is shared with the original repository:

$ git-new-workdir an/existing/repo new/directory

The new directory and the files within can be thought of as a clone,
except since the history is shared, the two trees automatically stay in
sync. There’s no need to merge, push or pull.

Git grandmastery

44

7.8. Overriding safeguards

These days, Git makes it difficult for the user to accidentally destroy
data. But if you know what you are doing, you can destroy data on
purpose.

Checkout: Uncommitted changes cause checkout to fail. To destroy
your changes, and checkout a given commit anyway, use the force
flag:

$ git checkout -f HEAD^

On the other hand, if you specify particular paths for checkout,
then there are no safety checks. The supplied paths are quietly
overwritten. Take care if you use checkout in this manner.

Reset: Reset also fails in the presence of uncommitted changes. To
force it through, run:

$ git reset --hard 1b6d

Branch: Deleting branches fails if this causes changes to be lost. To
force a deletion, type:

$ git branch -D dead_branch # instead of -d

Similarly, attempting to overwrite a branch via a move fails if data
loss would ensue. To force a branch move, type:

$ git branch -M source target # instead of -m

Unlike checkout and reset, these two commands defer data
destruction. The changes are still stored in the .git subdirectory, and
can be retrieved by recovering the appropriate hash from .git/logs
(see "HEAD-hunting" above). By default, they will be kept for at
least two weeks.

 Clean: Some git commands refuse to proceed because they’re
worried about clobbering untracked files. If you’re certain that all
untracked files and directories are expendable, then delete them
mercilessly with:

Git grandmastery

45

$ git clean -f -d

Next time, that pesky command will work!

7.9. Preventing bad commits

Stupid mistakes abound in the histories of many of my projects.
The most frightening are missing files due to a forgotten git add.
Luckily I have yet to lose crucial data though accidental omission
because I rarely delete original working directories. I typically
notice the error a few commits later, so the only damage is a bit of
missing history and a sheepish admission of guilt.

I also regularly commit (literally and git-erally) the lesser
transgression of trailing whitespace. Though harmless, I wish these
also never appeared on the public record.

In addition, though unscathed so far, I worry about leaving merge
conflicts unresolved. Usually I catch them when I build a project,
but this can miss some cases.

 If only I had bought idiot insurance by using a hook to alert me
about these problems:

$ cd .git/hooks
$ cp pre-commit.sample pre-commit

Now Git aborts a commit if useless whitespace or unresolved merge
conflicts are detected.

 For this guide, I eventually added the following to the beginning of
the pre-commit hook to guard against absent-mindedness:

if git ls-files -o | grep '\.txt$'; then
 echo FAIL! Untracked .txt files.
 exit 1
fi

Several git operations support hooks; see git help hooks. One
can write hooks to complain about spelling mistakes in commit

Git grandmastery

46

messages, add new files, indent paragraphs, append an entry to a
webpage, play a sound, and so on.

We activated the sample post-update hook earlier when discussing
Git over HTTP; this causes Git to run this script whenever the
head has moved. The sample post-update script updates a few files
Git needs for communication over Git-agnostic transports such as
HTTP.

47

Chapter 8. How Git works
We take a peek under the hood and explain how Git performs its
miracles. It’s akin to learning how a skilled conjurer performs a
mind-blowing magic trick: on the one hand, the secrets are almost
disappointingly straightforward, but on the other hand, you are in
awe that so much can be achieved with so little.

8.1. Invisibility

How can Git be so unobtrusive? Aside from occasional commits and
merges, you can work as if you were unaware that version control
exists. That is, until you need it, and that’s when you’re glad Git
was watching over you the whole time.

Other version control systems force you to constantly struggle with
red tape and bureaucracy. Permissions of files may be read-only
unless you explicitly tell a central server which files you intend to
edit. The most basic commands may slow to a crawl as the number
of users increases. Work grinds to a halt when the network or the
central server goes down.

In contrast, Git simply keeps the history of your project in the .git
directory in your working directory. This is your own copy of the
history, so you can stay offline until you want to communicate with
others. You have total control over the fate of your files because Git
can easily recreate a saved state from .git at any time.

8.2. Integrity

Most people associate cryptography with keeping information
secret, but another equally important goal is keeping information
safe. Proper use of cryptographic hash functions can prevent
accidental or malicious data corruption.

A SHA1 hash can be thought of as a unique 160-bit ID number for
every string of bytes you’ll encounter in your life. Actually more
than that: every string of bytes that any human will ever use over
many lifetimes.

How Git works

48

As a SHA1 hash is itself a string of bytes, we can hash strings
of bytes containing other hashes. This simple observation is
surprisingly useful: look up hash chains. We’ll later see how Git
uses it to efficiently guarantee data integrity.

Briefly, Git keeps your data in the .git/objects subdirectory,
where instead of normal filenames, you’ll find only IDs. By using
IDs as filenames, as well as a few lockfiles and timestamping tricks,
Git transforms any humble filesystem into an efficient and robust
database.

8.3. Rename detection

How does Git know you renamed a file, even though you never
mentioned the fact explicitly? Sure, you may have run git mv, but
that is exactly the same as a git rm followed by a git add.

Git heuristically ferrets out renames and copies between successive
versions. In fact, it can detect chunks of code being moved or copied
around between files! Though it cannot cover all cases, it does a
decent job, and this feature is always improving. If it fails to work
for you, try options enabling more expensive copy detection, and
consider upgrading.

8.4. The index

 For every tracked file, Git records information such as its size,
creation time and last modification time in a file known as the index.
To determine whether a file has changed, Git compares its current
stats with those cached in the index. If they match, then Git can skip
reading the file again.

Since stat calls are considerably faster than file reads, if you only
edit a few files, Git can update its state in almost no time.

We stated earlier that the index is a staging area. Then how can the
index just be a bunch of file stats?

The index can be thought of as a staging area because the add
command puts files into Git’s database and updates the index

How Git works

49

accordingly, while the commit command, without options, creates a
commit based on the state of the index.

8.5. The object database

 Every version of your data is kept in the object database, which
lives in the subdirectory .git/objects; the other residents of
.git/ hold lesser data: the index, branch names, tags, configuration
options, logs, the current location of the head commit, and so on.
The object database is elementary yet elegant, and the source of
Git’s power.

Each file within .git/objects is an object. There are 3 kinds
of objects that concern us: blob objects, tree objects, and commit
objects.

8.6. Blobs

 First, a magic trick. Pick a filename, any filename. In an empty
directory:

$ echo sweet > FILENAME
$ git init
$ git add .
$ find .git/objects -type f

You’ll see .git/objects/
aa/823728ea7d592acc69b36875a482cdf3fd5c8d.

How do I know this without knowing the filename? It’s because the
SHA1 hash of:

"blob" SP "6" NUL "sweet" LF

is aa823728ea7d592acc69b36875a482cdf3fd5c8d, where SP is a
space, NUL is a zero byte and LF is a linefeed. You can verify this
by typing:

$ printf "blob 6\000sweet\n" | sha1sum

Git is content-addressable: files are not stored according to their
filename, but rather by the hash of the data they contain, in a file

How Git works

50

we call a blob object. We can think of the hash as a unique ID for a
file’s contents, so in a sense we are addressing files by their content.
The initial blob 6 is merely a header consisting of the object type
and its length in bytes; it simplifies internal bookkeeping.

Thus I could easily predict what you would see. The file’s name is
irrelevant: only the data inside is used to construct the blob object.

You may be wondering what happens to identical files. Try adding
copies of your file, with any filenames whatsoever. The contents of
.git/objects stay the same no matter how many you add. Git only
stores the data once.

 By the way, the files within .git/objects are compressed with
zlib so you should not stare at them directly. Filter them through
zpipe -d (see the zlib library), or type:

$ git cat-file -p aa82

which pretty-prints the given object.

8.7. Trees

 But where are the filenames? They must be stored somewhere at
some stage. Git gets around to the filenames during a commit:

$ git commit # Type some message.
$ find .git/objects -type f

You should now see 3 objects. This time I cannot tell you what the 2
new files are, as it partly depends on the filename you picked. We’ll
proceed assuming you chose “rose”. If you didn’t, you can rewrite
history to make it look like you did:

$ git filter-branch --tree-filter 'mv FILENAME rose'
$ find .git/objects -type f

Now you should see the file .git/objects/05/
b217bb859794d08bb9e4f7f04cbda4b207fbe9, because this is the
SHA1 hash of its contents:

"tree" SP "32" NUL "100644 rose" NUL

How Git works

51

0xaa823728ea7d592acc69b36875a482cdf3fd5c8d

Check this file does indeed contain the above by typing:

$ echo 05b217bb859794d08bb9e4f7f04cbda4b207fbe9 \
 | git cat-file --batch

We can verify the hash with zpipe:

$ zpipe -d < .git/objects/05/b2* | sha1sum

Hash verification is trickier via cat-file because its output contains
more than the raw uncompressed object file.

This file is a tree object: a list of tuples consisting of a file type,
a filename, and a hash. In our example, the file type is 100644,
which means ‘rose` is a normal file, and the hash is the blob object
that contains the contents of `rose’. Other possible file types are
executables, symlinks or directories. In the last case, the hash points
to a tree object.

If you ran filter-branch, you’ll have old objects you no longer need.
Although they will be jettisoned automatically once the grace period
expires, we’ll delete them now to make our toy example easier to
follow:

$ rm -r .git/refs/original
$ git reflog expire --expire=now --all
$ git prune

 For real projects you should typically avoid commands like this,
as you are destroying backups. If you want a clean repository, it is
usually best to make a fresh clone. Also, take care when directly
manipulating .git: what if a Git command is running at the same
time, or a sudden power outage occurs? In general, refs should be
deleted with git update-ref -d, though usually it’s safe to remove
refs/original by hand.

8.8. Commits

 We’ve explained 2 of the 3 objects. The third is a commit object. Its
contents depend on the commit message as well as the date and time

How Git works

52

it was created. To match what we have here, we’ll have to tweak it a
little:

$ # Change the commit message.
$ git commit --amend -m Shakespeare
$ # Rig timestamps and authors.
$ git filter-branch --env-filter 'export
GIT_AUTHOR_DATE="Fri 13 Feb 2009 15:31:30 -0800"
GIT_AUTHOR_NAME="Alice"
GIT_AUTHOR_EMAIL="alice@example.com"
GIT_COMMITTER_DATE="Fri, 13 Feb 2009 15:31:30 -0800"
GIT_COMMITTER_NAME="Bob"
GIT_COMMITTER_EMAIL="bob@example.com"'
$ find .git/objects -type f

You should now see .git/
objects/49/993fe130c4b3bf24857a15d7969c396b7bc187 which
is the SHA1 hash of its contents:

"commit 158" NUL
"tree 05b217bb859794d08bb9e4f7f04cbda4b207fbe9" LF
"author Alice <alice@example.com> 1234567890 -0800" LF
"committer Bob <bob@example.com> 1234567890 -0800" LF
LF
"Shakespeare" LF

As before, you can run zpipe or cat-file to see for yourself.

This is the first commit, so there are no parent commits, but later
commits will always contain at least one line identifying a parent
commit.

8.9. Indistinguishable from magic

Git’s secrets seem too simple. It looks like you could mix together a
few shell scripts and add a dash of C code to cook it up in a matter
of hours: a melange of basic filesystem operations and SHA1
hashing, garnished with lock files and fsyncs for robustness. In fact,
this accurately describes the earliest versions of Git. Nonetheless,
apart from ingenious packing tricks to save space, and ingenious
indexing tricks to save time, we now know how Git deftly changes a
filesystem into a database perfect for version control.

How Git works

53

For example, if any file within the object database is corrupted by
a disk error, then its hash will no longer match, alerting us to the
problem. By hashing hashes of other objects, we maintain integrity
at all levels. Commits are atomic, that is, a commit can never only
partially record changes: we can only compute the hash of a commit
and store it in the database after we already have stored all relevant
trees, blobs and parent commits. The object database is immune to
unexpected interruptions such as power outages.

We defeat even the most devious adversaries. Suppose somebody
attempts to stealthily modify the contents of a file in an ancient
version of a project. To keep the object database looking healthy,
they must also change the hash of the corresponding blob object
since it’s now a different string of bytes. This means they’ll have
to change the hash of any tree object referencing the file, and in
turn change the hash of all commit objects involving such a tree,
in addition to the hashes of all the descendants of these commits.
This implies the hash of the official head differs to that of the bad
repository. By following the trail of mismatching hashes we can
pinpoint the mutilated file, as well as the commit where it was first
corrupted.

In short, so long as the 20 bytes representing the last commit are
safe, it’s impossible to tamper with a Git repository.

What about Git’s renowned features? Branching? Merging? Tags?
Mere details. The current head is kept in the file .git/HEAD, which
contains a hash of a commit object. The hash gets updated during
a commit as well as many other commands. Branches are almost
the same: they are files in .git/refs/heads. Tags too: they live
in .git/refs/tags but they are updated by a different set of
commands.

54

Index

A
add command, 5
aliases, 43
am command, 35
apply command, 9, 35
archive command, 39

B
bare repository, 12
Bazaar, 16
bisect command, 30
blame command, 31
blob object, 49
branch, 18
branch command, 23
branch creation, 18
branch management, 23
bundle command, 34

C
cat-file command, 50
centralized version control, 2
checkout command, 6
cherry-pick command, 23
clean command, 44
clone, 11
clone command, 8
commit command, 5
commit object, 51
config command, 33, 43

D
daemon command, 12
diff command, 9, 35
distributed version control, 2

F
fast-import command, 29
fetch command, 38
filter-branch command, 28
format-patch command, 35

G
garbage collection, 42
gc command, 42
git-new-workdir script, 43

H
HEAD tag, 11, 41
hg-git plugin, 15
hook, 45
HTTP transport, 33

I
index, 40, 48
init command, 5
instaweb command, 10

L
log command, 6, 8
ls-files command, 39

M
Mercurial, 15
merge command, 20
merge conflict, 4
merging branches, 21
mv command, 5

O
object database, 49
ORIG_HEAD tag, 41

Index

55

P
post-update hook, 33
pre-commit hook, 45
pull, 11
pull command, 8
push, 13
push command, 12

Q
qgit program, 10

R
rebase command, 26
reflog command, 42
remote branch, 37
reset command, 5
revert command, 7
rm command, 5

S
SSH transport, 33
staged changes, 40
staging area, 40
stash command, 24
Subversion, 15
svn command, 15
symbolic-ref command, 43

T
tag command, 34
tig program, 10
tree object, 50

U
update-ref command, 51

V
version control, 1

W
whatchanged command, 9

Z
zpipe program, 50

	Git Magic
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Version control
	1.2. Distributed version control
	1.3. Distribution is not anarchy
	1.4. Merge conflicts

	Chapter 2. Basics
	2.1. Saving state
	2.2. Add, delete, rename
	2.3. Advanced undo/redo
	2.4. Reverting
	2.5. Changelog generation
	2.6. Downloading a project
	2.7. The bleeding edge
	2.8. Instant publishing
	2.9. What have I done?
	2.10. Exercise

	Chapter 3. Clones
	3.1. Staying in sync
	3.2. Classic source control
	3.3. Bare repositories
	3.4. Push versus pull
	3.5. Forking a project
	3.6. Ultimate backups
	3.7. Multitasking
	3.8. Guerilla version control
	3.9. Mercurial
	3.10. Bazaar
	3.11. Why I use Git

	Chapter 4. Branches
	4.1. My first branch
	4.2. Dirty work
	4.3. Quick fixes
	4.4. Merging
	4.5. Uninterrupted workflow
	4.6. Reorganizing a medley
	4.7. Managing branches
	4.8. Temporary branches
	4.9. Work how you want

	Chapter 5. History
	5.1. Fixing the last commit
	5.2. Fixing several commits
	5.3. Untangling local from upstream
	5.4. Rewriting history
	5.5. Making history
	5.6. Where did it all go wrong?
	5.7. Who’s to blame?
	5.8. Personal experience

	Chapter 6. Social version control
	6.1. Who am I?
	6.2. Git over SSH, HTTP
	6.3. Git over anything
	6.4. Patches
	6.5. Sorry, we’ve moved
	6.6. Remote branches
	6.7. Multiple remotes
	6.8. My preferences

	Chapter 7. Git grandmastery
	7.1. Archiving projects
	7.2. Commit what changed
	7.3. My commit is too big!
	7.4. The index: Git’s staging area
	7.5. Lost your HEAD?
	7.6. HEAD-hunting
	7.7. Building on Git
	7.8. Overriding safeguards
	7.9. Preventing bad commits

	Chapter 8. How Git works
	8.1. Invisibility
	8.2. Integrity
	8.3. Rename detection
	8.4. The index
	8.5. The object database
	8.6. Blobs
	8.7. Trees
	8.8. Commits
	8.9. Indistinguishable from magic

	Index

