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ABSTRACT
In decision support applications, the ability to provide fast
approximate answers to aggregation queries is desirable. One
commonly-used technique for approximate query answering
is sampling. For many aggregation queries, appropriately
constructed biased (non-uniform) samples can provide more
accurate approximations than a uniform sample. The opti-
mal type of bias, however, varies from query to query. In
this paper, we describe an approximate query processing
technique that dynamically constructs an appropriately bi-
ased sample for each query by combining samples selected
from a family of non-uniform samples that are constructed
during a pre-processing phase. We show that dynamic selec-
tion of appropriate portions of previously constructed sam-
ples can provide more accurate approximate answers than
static, non-adaptive usage of uniform or non-uniform sam-
ples.

1. INTRODUCTION
In recent years, advances in data collection and manage-

ment technologies have led to a proliferation of very large
databases. These large data repositories are typically cre-
ated in the hope that through analysis, such as data min-
ing and decision support, they will yield new insights into
the data and the real-world processes that created it. In
practice, however, while the collection and storage of mas-
sive data sets has become relatively straightforward, effec-
tive data analysis has proven more difficult to achieve. One
reason that data analysis successes have proven elusive is
that most analysis queries, by their nature, require aggre-
gation or summarization of large portions of the data being
analyzed. For multi-gigabyte data repositories, this means
that processing even a single analysis query involves access-
ing enormous amounts of data, leading to prohibitively ex-
pensive running times. This severely limits the feasibility
of many types of analysis applications, including those that
require timeliness or interactivity.
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Ad hoc, exploratory data analysis is a cognitively demand-
ing process that typically involves searching for patterns in
the results of a series of queries in order to formulate and
validate a hypothesis. This process is most effective when
it can be performed interactively; long pauses between the
time that a query is asked and the time when the answer
is available are likely to be disruptive to the data explo-
ration process. While keeping query response times short is
very important in many data mining and decision support
applications, exactness in query results is frequently less im-
portant. In many cases, “ballpark estimates” are adequate
to provide the desired insights about the data, at least in
preliminary phases of analysis. For example, knowing the
marginal data distributions for each attribute up to 10% er-
ror will often be enough to identify top-selling products in a
sales database or to determine the best attribute to use at
the root of a decision tree.

The acceptability of inexact query answers coupled with
the necessity for fast query response times has led researchers
to investigate approximate query processing (AQP) techniques
that sacrifice accuracy to improve running time, typically
through some sort of lossy data compression. The New Jer-
sey Data Reduction Report [6] provides an overview of many
of the techniques that have been tried. The general rubric in
which most approximate query processing systems operate
is as follows: first, during the “pre-processing phase”, some
auxiliary data structures are built over the database; then,
during the “runtime phase”, queries are issued to the system
and approximate query answers are quickly returned using
the data structures built during the pre-processing phase.

The requirement for fast answers during the runtime phase
means that scanning a large amount of data to answer a
query is not possible, or else the running time would be un-
acceptably large. Thus, most approximate query processing
schemes have restricted themselves to building only small
auxiliary data structures such as a small sample of the data
(e.g. a random subset of rows of the original database ta-
ble). However, because relatively large running times and
space usage during the pre-processing phase are generally
acceptable as long as the time and space consumed are not
exorbitant, nothing prevents us from scanning or storing sig-
nificantly larger amounts of data during pre-processing than
we are able to access at runtime. Of course, because we are
only able to access a small amount of stored data at runtime,
there is no gain to be had from building large auxiliary data
structures unless they are accompanied by some indexing
technique that allows us to decide, for a given query, which
(small) portion of the data structures should be accessed to



produce the most accurate approximate query answer.
In this paper, we introduce a general system architecture

for approximate query processing that is based on a tech-
nique that we call dynamic sample selection. The basic idea
is to construct during the pre-processing phase a large num-
ber of differently biased samples, and then, for each query
that arrives during the runtime phase, to dynamically select
an appropriate small subset from the samples that can be
used to give a highly accurate approximate answer to the
query. The power of dynamic sample selection stems from
the observation that, for most queries, an appropriately bi-
ased sample can produce more accurate approximate an-
swers than a uniform sample. Previous attempts to exploit
this observation via non-uniform sampling ([2, 10]) sample
using a bias that is carefully chosen with the intent to pro-
vide good accuracy across a particular set of queries. How-
ever, what constitutes an “appropriate” bias can be quite
different from one query to the next, so no single biased
sample can be effective for all queries. In constrast to previ-
ous techniques which relied on a single sample with a fixed
bias, dynamic sample selection constructs an individually
tailored sample for each query in a semi-online fashion: the
creation of the subsamples used as building blocks is per-
formed offline but their assembly into an overall sample is
done online.

The philosophy behind dynamic sample selection is to ac-
cept greater disk usage for summary structures than other
sampling-based AQP methods in order to increase accuracy
in query responses while holding query response time con-
stant (or alternatively, to reduce query response time while
holding accuracy constant). We believe that for many AQP
applications, response time and accuracy are more impor-
tant considerations than disk usage. For these applications,
the trade-off chosen by dynamic sample selection is the right
one.

Besides the generic dynamic sample selection architecture,
a significant contribution of this paper is the development
of a particular instantiation of dynamic sample selection
that we call small group sampling. Small group sampling
is designed to answer a standard class of analysis queries,
aggregation queries with “group-bys”. We give a detailed
exposition of the small group sampling algorithm and study
its performance through an extensive set of experiments on
real and synthetic datasets. Our experimental comparisons
demonstrate that small group sampling outperforms previ-
ously known approximate query processing techniques.

The organization of the remainder of the paper is as fol-
lows: First, in Section 2, we provide an overview of previous
work in approximate query processing. Then, in Section 3,
we describe the dynamic sample selection architecture in
detail. In Section 4 we describe small group sampling and
provide analytical justification for the approach, while in
Section 5 we give experimental validation of its effective-
ness. We conclude with a summary of our contributions in
Section 6.

2. RELATED WORK
Some of the most studied methods for addressing the long

running times of data analysis queries are not AQP tech-
niques at all, but rather OLAP query processing techniques
designed to more efficiently produce exact answers to anal-
ysis queries. Examples of this class of techniques include
constructing materialized views of “data cubes” [17] over

commonly-queried attributes as in [18, 20] and building in-
dexes targeted at analysis queries [4, 14, 19]. These physical
data design techniques typically make use of significant pre-
processing time and space, but they are often quite effective
at speeding up specific queries, particularly when the query
workload is known in advance and can be leveraged during
pre-processing. However, since it is prohibitively expensive
to build indexes or materialized views sufficient to cover all
possible queries, such techniques are of limited value for an-
swering ad hoc analysis queries; inevitably there will be cer-
tain unanticipated queries that “fall through the cracks” and
are not aided by physical design, particularly in exploratory
data mining and decision support applications. Therefore
application of physical database design technology does not
eliminate the need for AQP technology; rather, the two are
complementary.

The area of approximate answering of aggregate queries
has been the subject of extensive research. Hellerstein et al.
[22, 26] describe techniques for online aggregation in which
approximate answers for queries are produced during early
stages of query processing and gradually refined until all the
data has been processed. The online aggregation approach
has some compelling advantages. For example, it does not
require pre-processing, and it allows progressive refinement
of approximate answers at runtime. However, there are two
important systems considerations that represent practical
obstacles to the integration of online aggregation into con-
ventional database systems. First, stored relations are fre-
quently clustered by some attribute, so accessing tuples in
a random order as required for online aggregation requires
(slow) random disk accesses. Second, online aggregation ne-
cessitates significant changes to the query processor of the
database system.

Due to the difficulty of purely online approaches to AQP,
most research has focused on systems that make use of data
structures built by pre-processing the database. Sophisti-
cated data structures such as wavelets [8] and histograms
[23] have been proposed as useful tools for AQP. Work in
these areas is of great theoretical interest, but as with on-
line aggregation, its practical impact is often limited by the
extensive modifications to query processors and query opti-
mizers that are often needed to make use of these technolo-
gies. Partly for this reason, sampling-based systems have in
recent years been the most heavily studied type of AQP sys-
tem. Sampling-based systems have the advantage that they
can be implemented as a thin layer of middleware which
re-writes queries to run against sample tables stored as or-
dinary relations in a standard, off-the-shelf database server.

The AQUA project at Bell Labs ([1, 2, 3]) developed a
sampling-based system for approximate query answering.
Techniques used in AQUA included join synopses [3], which
allow approximate answers to be provided for certain types
of join queries, and congressional sampling [2], discussed fur-
ther in Section 4.1. The problem of sampling-based approx-
imate answers for join queries was also addressed in [12],
which includes several strong negative results showing that
many join queries are infeasibile to approximate using un-
weighted sampling.

Besides congressional sampling, several other weighted sam-
pling techniques have been proposed that outperform uni-
form random sampling for certain types of queries. The
use of workload information to construct biased samples to
optimize performance on queries drawn from a known work-



load was considered in [10]. Workload information was also
used in [15] to construct “self-tuning” biased samples that
adapt to the query workload. The paper [9] proposes a tech-
nique called outlier indexing for improving sampling-based
approximations for aggregate queries when the attribute be-
ing aggregated has a skewed distribution. Our small group
sampling technique is similar to outlier indexing in that both
augment ordinary uniform random samples with a small
number of carefully chosen additional tuples.

The sample selection architecture proposed in this paper
is dynamic in the sense that the sample used to answer a
particular query is assembled dynamically at the time that
the query is issued, rather than using a static, precomputed
sample. This is in contrast to two other classes of techniques
that are sometimes termed “dynamic” in the literature: in-
cremental maintenance techniques [16, 25] that efficiently
update data structures in response to changes in data, and
adaptive query execution strategies [21, 24] that modify exe-
cution plans for long-running queries in respose to changing
conditions.

3. DYNAMIC SAMPLE SELECTION
In this section, we describe the dynamic sample selec-

tion architecture for approximate query processing. Stan-
dard sampling-based AQP strategies are not able to take
advantage of extra disk space when it is available because
increasing the size of a sample stored on disk increases the
running time of a query executing against that sample. Dy-
namic sample selection gets around this problem by creat-
ing a large sample containing a family of differently biased
subsamples during the pre-processing phase but only using a
small portion of the sample to answer each query at runtime.
Because there are many different subsamples with different
biases available to choose from at runtime, the chances in-
crease that one of them will be a “good fit” for any par-
ticular query that is issued. Because only a small portion
of the overall sample is used in answering any given query,
however, the query response time is kept low.

To see why biased sampling is useful, consider the follow-
ing example:

Example 3.1. Consider a database consisting of 90 tu-
ples with Product=“Stereo” and 10 tuples with Product=“TV”.
Let us compare two different ways of selecting a ten-tuple
random sample:

1. Select 10% of the tuples uniformly, each with weight 10.

2. Select 0% of the Product tuples and 100% of the TV tu-
ples, and give each TV tuple weight 1.

The weight of a tuple is the inverse of the sampling rate
that was used for the partition of the database from which
that tuple was drawn. To answer a count query using a
sample, one scales each sample tuple by its weight.

Consider the query asking for the count of tuples where
Product is TV. The second sample will always give the exact
answer. The first sample will give the right answer only if
exactly one of the TV tuples was chosen for the sample; this
occurs only with probability 0.41. With probability 0.59, the
estimate is off by at least a factor of two.

As the example shows, when portions of the database that
are more heavily represented in a biased sample match with
the portions of the database that are selected in a query, that

sample will give a better estimate for that query than a sam-
ple where the reverse is true. Other factors can also cause
a biased sample to be a “good fit” for a query. For exam-
ple, when a measure attribute being summed has a skewed
data distribution, more accurate approximate answers can
be obtained by allocating a disproportionately large sample
share to outlier values of the distribution [9].

3.1 Pre-Processing Phase
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Figure 1: Pre-Processing Phase

In the dynamic sample selection architecture, the pre-
processing of the database proceeds in two steps. In the
first step, the data distribution of the database is examined
to identify a set of biased samples to be created. The re-
sult of this step is a division of the database into (possibly
overlapping) strata. If reliable query distribution informa-
tion is available (e.g. a query workload), it can also be taken
into account in this step. In the second step, the samples
are created (potentially using a different sampling rate for
each stratum) and stored in the database along with meta-
data that identifies the characteristics of each sample. This
process is illustrated in Figure 1.

3.2 Runtime Phase
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Figure 2: Runtime Phase

When queries are issued at runtime, the dynamic sample
selection system re-writes the queries to run against sample
tables rather than the original base tables referenced in the
queries. The appropriate sample table(s) to use for a given
query Q are determined by comparing Q with the metadata
annotations for the samples. Figure 2 depicts this process.

The specific algorithms for choosing which samples are
to be built during pre-processing and which samples are to
be used for query answering during runtime are left unspeci-
fied in this abstract description of dynamic sample selection.
The same generic system architecture can be used with a va-
riety of different choices for these algorithms. Next, we give
some examples of candidate algorithms that could be used.

3.3 Policies for Sample Selection
For dynamic sample selection to be successful, the samples

that are created must be chosen in such a way that, when
given a query, it is possible to quickly determine which of



the various samples to use to answer that query.
The simplest and most efficient class of dynamic sample

selection strategies is one where the choice of samples is
guided by the syntax of the incoming query. Some simple
syntactic properties of queries have been used for sample
selection in previous work. In [3], separate samples are cre-
ated for each table in a database and the appropriate sam-
ple is chosen based on the table(s) referenced in the query’s
FROM clause, while in [9] a separate sample is created for
use with each of a pre-specified list of aggregate expressions
and the appropriate sample is chosen based on the aggregate
expression in the query’s SELECT clause.

The rest of this paper focuses on a powerful application
of query syntax-based dynamic sample selection that we call
small group sampling. In small group sampling, the sample
tuples that are used for a query Q are determined by the
grouping attributes from Q. We focus on small group sam-
pling because it targets the most common type of analysis
queries, aggregation queries with “group-bys”. It also ex-
emplifies the flexibility of dynamic sample selection because
it selects from a large space of overlapping subsets of the
precomputed sample when answering queries. In contrast,
previous syntax-based schemes merely choose from a small
number of non-overlapping partitions of the precomputed
sample.

In principle, more complex policies for dynamic sample
selection are possible that utilize information in addition
to the query syntax. For example, in a workload-based
AQP scheme, multiple samples may be created for work-
loads that differ from one another in characteristics that are
not captured in syntax, e.g., overlap in the set of tuples ac-
cessed. In such a case, the choice of an appropriate sample
for an incoming query may be determined by its relative
“distance” from the samples for different workloads. Such
distance computation can be based on analysis of query
execution plans and workload-compression techniques dis-
cussed in [11]. Such techniques are likely to have higher
overhead than syntax-based dynamic sample selection and
will be studied in future work.

4. SMALL GROUP SAMPLING
Small group sampling is a specific dynamic sample se-

lection technique that is designed for answering a common
and useful class of queries: aggregation queries with “group-
bys”, the prototypical OLAP queries. In this section, we
begin by describing the small group sampling technique in
detail, then provide analytical justification for the technique.

We will consider the typical cases where (1) the queries
are against a single fact table without any joins or (2) the
queries are over a “star schema” where a fact table is joined
to a number of dimension tables using foreign-key joins. We
do not consider queries involving arbitrary joins because the
results from [3, 12] demonstrate that random sampling ap-
proaches are futile for such queries; however, foreign-key
joins represent the majority of joins in actual data analysis
applications, so this restriction is not unduly limiting.

4.1 Motivation for Small Group Sampling
One of the shortcomings of uniform random sampling for

answering group-by queries is that uniform samples give
weight to each group in proportion to the number of tu-
ples falling into that group. When the distribution of the
sizes (measured in number of tuples) of the groups in the

query is skewed, as is frequently the case in practice, this
results in over-sampling of some groups and under-sampling
of others. In contrast, the most accurate approximate an-
swers to a group-by query are given when sample space is
divided as equally as possible among the groups in the query
(cf. Theorem 4.2 in [2]).

Unfortunately, the number of possible group-by aggrega-
tion queries is immense, so achieving the ideal sample al-
location for each query by creating a separate sample per
query is infeasible. Instead, what is required is some heuris-
tic for choosing a set of samples that does a reasonable job
on most group-by queries. Acharya, Gibbons, and Poosala
[2] suggest such a heuristic, which they call congressional
sampling. The basic idea behind congressional sampling is
to consider the set of all possible group-by queries without
any selection conditions and to calculate for each tuple t and
each query Q the probability p(t, Q) with which the tuple
should be included in the optimal biased sample for Q, as-
suming some fixed sample size. Each tuple t is assigned a
weight equal to maxQ∈G p(t, Q) and a single stratified sample
is constructed that includes each tuple with probability pro-
portional to its weight. In essence, congressional sampling
attempts to build a single sample that balances between all
possible combinations of grouping columns.

In this paper, we propose the alternate small group sam-
pling heuristic that improves on two shortcomings of con-
gressional sampling. The first shortcoming is that since
congressional sampling only creates a single sample, that
sample must necessarily be very general-purpose in nature
and only loosely appropriate for any particular query. Small
group sampling uses the dynamic sample selection architec-
ture and thus can realize the benefits of more specialized
samples that are each tuned for a narrower, more specific
class of queries. The second shortcoming is that the pre-
processing time required by congressional sampling is pro-
portional to the number of different combinations of group-
ing columns, which is exponential in the number of columns.
This renders it impractical for typical data warehouses that
have dozens or hundreds of potential grouping columns. In
contrast, the pre-processing time for small group sampling
is linear in the number of columns in the database.

The intuition behind small group sampling is that uni-
form sampling does a satisfactory job at providing good es-
timates for the larger groups in a group-by query since those
groups will be well represented in the sample. It is the small
groups that are the problem case for uniform sampling; how-
ever, precisely because the groups are small, it would not be
excessively expensive to actually scan all the records con-
tributing to small groups, assuming that we could identify
them. The small group sampling approach uses a combina-
tion of a uniform random sample, which we call the overall
sample, that provides estimates for large groups and one or
more “sample” tables, which we call small group tables, that
contain only rows from small groups. The small group tables
are not downsampled — 100% of the rows from the small
groups are included to ensure that the aggregate values for
these groups can be given with complete accuracy.

Of course, the rows that fall into groups that are small
will depend on the query that is asked. The set of groups
in the query answer and their sizes depend on the grouping
columns and the selection predicates of the query. The small
group sampling heuristic builds tables containing the small
groups from a specific set of aggregation queries: queries



with a single grouping column and no selection predicates.
Each query’s small groups are stored in a different table.
This set of queries was chosen for several reasons:

• It is of manageable size, linear in the number of columns
in the database.

• Determining which sample tables to use for any query
Q is straightforward: besides the overall sample, the
small groups tables for each grouping column in Q are
queried, and a final approximate answer is composed
out of the results of these queries.

• The tuples from small groups in a query that groups
on a single column C and has no selection predicates
will also be in small groups in all other queries (in the
class that we consider) that include C in their group-by
list.1 Therefore the small group tables we build using
single-column group-by queries without predicates will
be broadly applicable to other group-by queries.

4.2 Description of Small Group Sampling
4.2.1 Pre-Processing Phase

The pre-processing algorithm for small group sampling
takes two input parameters, the base sampling rate r, which
determines the size of the uniform random sample that is
created (i.e., the overall sample), and the small group frac-
tion t, which determines the maximum size of each small
group sample table. The parameters r and t are expressed
as fractions of the total database size. For the purpose of
understanding this section, “the database” means either the
single fact table (for the single table schema) or the view
resulting from joining the fact table to the dimension ta-
bles (for the star schema). We let N denote the number
of rows in the database and C denote the set of columns in
the database. The pre-processing produces three outputs:
(a) an overall sample table with Nr rows; (b) a set of small
group tables, one for each column in some set S ⊆ C deter-
mined by the algorithm, with at most Nt rows in each table;
and (c) a metadata table that lists the members of S and
assigns a numeric index to each one. Such preprocessing can
be implemented quite efficiently by making just two scans of
the database. The purpose of the first scan is to identify the
frequently occurring values for each column and their ap-
proximate frequencies. In the second scan, the small group
tables for each column in S are constructed, along with the
overall sample. The first scan may be omitted if sufficient
information is already available in the database metadata,
e.g. as histograms built for the query optimizer.

Initially, the set S is initialized to C. In the first pass over
the data, the small group sampling algorithm counts the
number of occurrences of each distinct value in each column
of the database in order to determine the common values for
each column. This can be done using a separate hashtable
for each column. For columns that have very large numbers
of distinct values, the memory required to maintain such a
hashtable could grow rather large. However, such columns
are unlikely candidates to be grouping columns in the type of

1For COUNT and SUM, the aggregation functions that we
consider in this paper, “smallness” is a monotonic condition
in the number of grouping columns and in the number of
selection predicates, meaning that if a group g is small in
some query Q, then it remains small even if Q is modified
by adding more grouping columns or additional selection
predicates.

analysis queries that would be targeted at an AQP system,
and furthermore small group sampling is not likely to be
an effective strategy for such columns. Therefore, once the
number of distinct values for a column exceeds a threshold
τ (which we set to 5000 in our experiments), we remove that
column from S and cease to maintain its counts. The mem-
ory required to maintain the hashtable of counts for each
column is thus quite small. Since typical database columns
have even fewer distinct values (e.g. dozens), the total mem-
ory required to simultaneously maintain the hashtables of all
database columns is relatively modest.

After the first pass, the algorithm determines the set of
common values L(C) for each column C. L(C) is defined
as the mininum set of values from C whose frequencies sum
to at least N(1 − t), and it is easily constructed by sorting
the distinct values from C by frequency. Rows with values
from the set L(C) will not be included in the small group
table for C, but rows with all other values will be; there
are at most Nt such rows. It may be that a column C has
no small groups, in which case it is removed from S. After
computing L(C) for every C ∈ S, the algorithm creates a
metadata table which contains a mapping from each column
name to an unique index between 0 and |S| − 1.

The final step in pre-processing is to make a second scan
of the the database to construct the sample tables. Each
row containing an uncommon value for one or more columns
(i.e. a value not in the set L(C)) is added to the small group
sample table for the appropriate columns. At the same time
as the small group tables are being constructed, the pre-
processing algorithm also creates the overall sample, using
reservoir sampling [28] to maintain a uniform random sam-
ple of rN tuples. Each row that is added to either a small
group table or the overall sample is tagged with an extra bit-
mask field (of length |S|) indicating the set of small group
tables to which that row was added. This field is used dur-
ing runtime query processing to avoid double-counting rows
that are assigned to multiple sample tables.

Although the overall sample is described in the preceding
paragraph as being a uniform random sample, it is also pos-
sible to use a non-uniform sampling technique to construct
the overall sample; for example, in one of the experiments
that we conduct in Section 5, we use outlier indexing [9]
to construct the overall sample. In this respect, the small
group sampling technique is orthogonal to other weighted
sampling techniques and can be used in conjunction with
them. For the remainder of this paper, the term “small
group sampling” will refer to small group sampling with a
uniform overall sample unless explicitly stated otherwise;
e.g., we will refer to the aforementioned variant as “small
group sampling enhanced with outlier indexing”.

4.2.2 Runtime Phase
When a query arrives at runtime, it is re-written to run

against the sample tables instead of the base fact table. Each
query is executed against the overall sample, scaling the
aggregate values by the inverse of the sampling rate r. In
addition, for each column C ∈ S in the query’s group-by
list, the query is executed against that column’s small group
table. The aggregate values are unscaled when executing
against the small group sample tables. Finally, the results
from the various sample queries are aggregated together into
a single approximate query answer.

Since a row can be included in multiple sample tables, the
re-written queries include filters that avoid double-counting



rows. When the query is re-written to run against the
first small group table, no additional filtering is applied.
When running against the second small group table, rows
that were already included in the first small group table
are filtered out, and so on. The rows to be filtered can
be efficiently identified by applying an appropriate mask to
the bitmask field that is present in all the sample tables.
For example, consider the following single-table database
query: SELECT A, C, COUNT(*) AS cnt FROM T GROUP BY

A, C. Assume that small group preprocessing has been com-
pleted with a base sampling rate of 1%, and that small group
tables exist for both column A and column C, and that these
columns are assigned the indexes 0 and 2, respectively. Then
the re-written query looks like:

SELECT A, C, COUNT(*) AS cnt FROM s A

GROUP BY A, C

UNION ALL

SELECT A, C, COUNT(*) AS cnt FROM s C

WHERE bitmask & 1 = 0

GROUP BY A, C

UNION ALL

SELECT A, C, COUNT(*) * 100 AS cnt

FROM s overall

WHERE bitmask & 5 = 0 /*Since 5 = 20 + 22*/
GROUP BY A, C

To aid the user in interpreting the reliability of the ap-
proximate query answer, we also compute confidence inter-
vals (not shown in above example) for each aggregate value
in the query answer. Answers for groups that result from
querying small group tables are marked as being exact, and
confidence intervals for the other groups are provided using
standard statistical methods, e.g. [5, 7]. Note that confi-
dence interval calculation is very simple when using small
group sampling because the source of inaccuracy can be re-
stricted to a single stratum. In contrast, other stratified
sampling techniques need to perform complex calculations
involving the sampling rates for various strata to provide
accurate confidence intervals.

4.2.3 Variations
The small group sampling technique admits several varia-

tions and extensions beyond the basic algorithm described.
We briefly discuss a few variations as possible directions for
future work. As an alternative to using single-column group-
by queries, one could generate small group tables based on
selected group-by queries over pairs of columns, or based
on other more complex queries. The number of pairs of
columns for an m-column database is m(m−1)/2, however,
so some judgment would have to be exercised in selecting
a small subset of pairs when m is large. Query workload
information could also be used to trim the set of columns
for which small group tables are built by identifying rarely-
queried columns.

Small group sampling creates a two-level hierarchy: small
groups are sampled at a 100% rate, while large groups are
sampled at the base sampling rate r. This approach could be
extended to a multi-level hierarchy. For example, one could
sample 100% of rows from small groups, 10% of rows from
“medium-sized” groups, and 1% of rows from large groups.

More sophistication could be added to the runtime se-
lection of which small group samples to use. For example,
for queries with a large number of grouping columns, using
all relevant small group tables might result in unacceptably
large query execution times; in this case, a heuristic for pick-

ing a subset of the relevant small group tables to query could
improve performance.

Having described small group sampling, we now proceed
with an evaluation of its effectiveness. We will first define
the accuracy metrics we will use in our evaluation, then
describe the results of analytical modeling, and complete
the evaluation by giving experimental results.

4.3 Accuracy Metrics
Following [2], we consider two different accuracy criteria

for approximate answers to group-by queries. First, as many
of the groups as possible that are present in the exact answer
should be preserved in the approximate answer. Second, the
error in the aggregate value for each group should be small.
In order to formalize these accuracy criteria as measurable
error metrics, we introduce some notation. Given an aggre-
gation query Q, let G = {g1 . . . gn} be the set of n groups in
the answer to Q, and let xi denote the aggregate value for
group gi. In the special case where Q is a simple aggregation
without grouping, n = 1. Consider an approximate answer
A for Q consisting of a set of m groups G′ = {gi1 . . . gim}
with aggregate values x′

i1
. . . x′

im
. Since we are concerned

in this paper with sampling-based estimators, which never
introduce spurious groups into the answer, we assume that
G′ ⊆ G.

Definition 4.1. The percentage of groups from Q missed
by A is defined as:

PctGroups(Q, A) =
n − m

n
× 100

Definition 4.2. The average relative error on Q of A is
defined as:

RelErr(Q, A) =
1

n

(

(n − m) +
m

∑

j=1

|xij
− x′

ij
|

xij

)

In other words, to compute the average relative error on Q
of A, take the average relative error in the aggregate value,
averaging across the groups in the exact answer and taking
the relative error for each of the n−m groups omitted from
the approximate answer A to be 100%.

For analytical convenience, we define one additional met-
ric, SqRelErr(Q,A), the average squared relative error on Q
of A. We use SqRelErr in place of RelErr in our analytical
comparison of uniform random sampling with small group
sampling because it measures the same general objective (er-
rors in aggregate values should be small for all groups) and
is much more analytically tractable.

Definition 4.3. The average squared relative error on Q
of A is defined as:

SqRelErr(Q, A) =
1

n

(

(n − m) +

m
∑

j=1

(

xij
− x′

ij

xij

)2)

4.4 Analysis
To quantify the benefits that we might expect to achieve

from small group sampling, we conduct an analytical com-
parison of the expected performance of small group sampling
and uniform random sampling on count queries over an ide-
alized database. As mentioned in Section 4.3, for analytical
convenience we use the SqRelErr metric instead of the Rel-
Err metric. We also make the simplifying assumption that
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Figure 3: Analytical model of small group sampling

Bernoulli sampling is performed, so each tuple is indepen-
dently included in the sample with probability p. (In actu-
ality, we produce a fixed-size sample that has a p fraction of
the overall rows.)

We first derive equations for SqRelErr for uniform random
sampling and small group sampling. Given a count query Q
over a database with N tuples, let G = {g1 . . . gn} be the set
of n groups in the answer, and let pi denote the fraction of
the N tuples that belong to group gi. Let C denote the set of
grouping columns in the query Q and let [vC,gi

∈ L(C)] de-
note the indicator function that equals 1 when the value for
grouping column C in group gi is one of the common values
L(C) and 0 otherwise. Consider Au, an approximate answer
for Q produced using uniform random sampling at sampling
rate s/N , and Asg, an approximate answer for Q produced
using small group sampling with an overall sample gener-
ated at sampling rate s′/N . Let Eu = E[SqRelErr(Q, Au)]
and Esg = E[SqRelErr(Q, Asg)] denote the expected values
of the average squared relative error on Q of Au and of Asg,
respectively.

Theorem 4.1.

Eu =
1

sn

∑

gi∈G

1 − pi

pi

(1)

Esg =
1

s′n

∑

gi∈G

(

1 − pi

pi

∏

C∈C

[vC,gi
∈ L(C)]

)

(2)

Proof. Consider a particular group gi in the answer to
Q. If a uniform random sample S is created by including
each tuple with probability s/N , then the number of tuples
Si from group gi that are included in the sample will be bino-
mially distributed with mean spi and variance spi(1−pi). To
estimate the number of tuples in group gi using the sample
S, we scale Si by the inverse sampling rate N/s. The result-

ing random variable has mean Npi and variance N2pi(1−pi)
s

.
The squared relative error is equal to the squared error di-
vided by the square of the actual group count Npi, and the
expected squared error is just the variance, so the expected
squared relative error in the estimate of the count for group
gi is equal to 1−pi

spi
. To compute Eu, then, we take the av-

erage of 1−pi

spi
over all groups gi ∈ G, giving Equation 1.

When small group sampling is used, for those groups that
are captured by the small group sample tables, there will be
no error whatsoever because no downsampling is performed

when constructing these tables. For all other groups, the
expected squared relative error will be 1−pi

s′pi
. Averaging over

all groups yields Equation 2.
To ensure a fair comparision between different AQP sys-

tems, we allow each system to use the same amount of sam-
ple space per query at runtime. If small group sampling
and uniform random sampling are both allowed to query
s sample rows at runtime, then the size s′ of the overall
sample queried by small group sampling will be less than
s since some of the s rows will come from small group ta-
bles. Small group sampling will be perfectly accurate on
the groups covered by small group tables, but since s′ < s,
small group sampling will make somewhat larger errors than
uniform random sampling on the other groups. Whether
small group sampling will be preferrable to uniform random
sampling depends on whether its precise accuracy on small
groups compensates for its increased error on large groups.

The values of Eu and Esg depend on the data distribution,
the queries, and the allocation of available sample space be-
tween the overall sample and the small group tables. In
order to understand when small group sampling excels and
when it does poorly, we applied Equations 1 and 2 to a num-
ber of different query scenarios. Because Equations 1 and 2
are not in closed form, we computed the summations using
a computer program and plotted the results graphically.

We assume that attributes are distributed according to a
(truncated) Zipfian distribution, i.e. the frequency of the ith
most common value for an attribute is proportional to i−z

for some constant z (called the skew parameter), except that
the frequency is 0 if i > c for some constant c that regulates
the number of distinct attribute values. (We also assume
for simplicity that the attributes are independent of one an-
other.) To analyze the effects of varying data distribution,
we tried out different values for z and c. To understand
the effects of varying types of queries, we considered differ-
ing numbers of grouping columns g and selection predicates
selectivities σ, assuming that a predicate of selectivity σ in-
cludes each tuple independently with probability σ. We also
varied the sampling allocation ratio γ = t/r. (Recall that t
and r control the sizes of each small group tables and the
overall sample, respectively.)

We sought to answer the questions (1) what is the optimal
relationship between the small group sampling’s input pa-
rameters t and r, and (2) what is the relative performance of
small group sampling and uniform random sampling under



various circumstances? Some of the results of our analytical
simulations are shown in Figures 3(a) and 3(b).

Figure 3(a) shows the effect of various choices for the sam-
pling allocation ratio. Uniform random sampling is equiv-
alent to small group sampling with a sampling allocation
ratio of zero. Our analysis suggests that a sampling alloca-
tion ratio of 0.5 performs well across a wide range of data
distributions; this is the ratio that we used in the experi-
ments described in Section 5. (The results illustrated in the
figure are for g = 2, σ = 0.1, c = 50, and z = 1.8. Results for
other values of these parameters were similar.) A sampling
allocation ratio of 0.5 means that the maximum size for a
small group sample table is half the size of the uniform ran-
dom sample. As can be seen from the figure, however, the
exact choice of the sampling allocation ratio is not critical,
as values from 0.25 through 1.0 had similar results.

Figure 3(b) compares the performance of small group sam-
pling with uniform sampling across a range of values for the
skew parameter z. (We found that the query selectivity,
number of grouping columns, and number of distinct values
did not have a significant impact on the relative performance
of the two strategies. This figure uses g = 3, σ = 0.3, c = 50,
and γ = 0.5.) We found that, under our analytical model,
uniform sampling is slightly preferrable to small group sam-
pling for data that is uniformly distributed or very nearly
so. For data distributions with moderate to high skew, our
model showed small group sampling to be clearly superior
to uniform random sampling.

Our analytical model is based on a number of simplify-
ing assumptions that are unlikely to hold in real applica-
tions, but the results of our analysis provided some reason
to believe that small group sampling might prove effective
and led us to implement an AQP system to evaluate small
group sampling empirically. We next describe the results of
our experiments.

5. EXPERIMENTS
We implemented an AQP system using small group sam-

pling and conducted a number of experiments to evaluate
its accuracy and performance. We also implemented sev-
eral previous AQP techniques such as (a) uniform random
sampling, (b) congressional sampling [2], and (c) outlier in-
dexing [9], and compared the accuracy and performance of
small group sampling against these algorithms.2 All al-
gorithms were implemented as middleware that executed
queries against a standard commercial database manage-
ment system runnning on a back-end server (512Mhz Pen-
tium processor with 256MB RAM).

5.1 Summary of Results
Accuracy Results

• For COUNT queries, the accuracy of small group sam-
pling is significantly better than uniform random sam-
pling and congressional sampling (basic congress).

• For COUNT queries, the accuracy of all methods de-
grade with (a) increasing number of grouping columns

2Note that we implemented a version of congressional sam-
pling called basic congress; the more sophisticated congress
algorithm did not scale for our experimental databases.
Also, we do not present comparisons again other sampling-
based AQP systems such as [10, 15] as these methods require
the presence of workloads.

referenced in the query, (b) decreasing average group
size of the query result, and (c) decreasing data skew.
However, the degradation is less pronounced for small
group sampling compared to uniform random sampling
and basic congress.

• For SUM queries, the accuracy of small group sampling
(enhanced with outlier indexing techniques) is better
than outlier indexing techniques alone.

Performance Results

• The query processing times of all AQP algorithms are
comparable to each other and orders of magnitude
faster than executing the exact query; the speedup de-
pends on the sampling rate.

• Small group sampling requires more space to store
sample tables than the other algorithms. However, (a)
unlike the other algorithms, small group sampling can
gracefully take advantage of extra available space, and
(b) the extra space is an acceptably small fraction of
the space consumed by the original database tables.

• Small group sampling has acceptable pre-processing
time; it is slower than uniform random sampling and
outlier indexing, but comparable to basic congress.

In the rest of this section we discuss details of our experi-
ments. We begin by describing our experimental setup, then
present our results and draw conclusions.

5.2 Experimental Setup
5.2.1 Databases

We used one real database and several synthetic databases
for our experiments. The real-world database, which we will
refer to as SALES, was a portion of a large corporate sales
database. The database had a star schema with a fact ta-
ble containing about 800,000 rows and 6 dimension tables,
with the largest containing about 200,000 rows. The total
number of columns in the fact and dimension tables consid-
ered for our experiments was 245. The database consumed
approximately 1GB of disk space.

We also generated a series of synthetic databases based
on the TPC-H benchmark [27]. We used a modified ver-
sion [13] of the benchmark data generation program. The
program was altered to produce skewed data according to
a Zipfian distribution instead of the uniform distribution in
the benchmark specification, so as to more accurately model
real-world databases. We adopt a naming convention where
TPCHxGyz refers to a database that was generated with scal-
ing factor x and and Zipf parameter z = y (thus for e.g.,
TPCH1G2.0z refers to a database with scaling factor 1 and
Zipf parameter z = 2.0). We experimented with scaling
factors 1 and 5 (which produced 1GB and 5GB databases,
respectively) and z parameters of 1.0, 1.5, 2.0 and 2.5.

5.2.2 Sample Tables
In addition to the original tables, the various AQP algo-

rithms require the creation of sample tables. To improve
query processing performance, we joined each sample ta-
ble with the dimension tables to produce join synopses as
described in [3]. Because of the large number of sample
tables used in small group sampling, we applied two space-
saving techniques to the join synopses for the small group
samples. First, we used the technique suggested in [3] of
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Figure 4: Small Group vs. Uniform on TPCH1G2.0z

re-normalizing the join synopses back into their component
tables; this produced a smaller version of each dimension ta-
ble for each small group sample table. Second, we combined
the resulting small dimension tables from all the small group
sampling join synopses to create a single smaller dimension
table for each of the original dimension tables.

5.2.3 Queries
For our experiments, we generated random select-project-

join queries with group-bys and COUNT/SUM aggregations.
The joins were restricted to foreign-key joins of the fact
and dimension tables. We varied the number of grouping
columns (between 1 and 4), the number of selection predi-
cates(1 or 2), and the selectivity of the selection predicates.
Grouping columns were chosen uniformly at random from
the set of all columns in the database, except that columns
where almost every value was unique (such as customer ad-
dress) were excluded. Selection predicates were generated by
choosing a column at random and then restricting to rows
whose values for that column were from a randomly-chosen
subset of the distinct values taken on by that column. We
varied the size of this randomly-chosen subset between 0.05
and 0.3 times the number of distinct values for the column.
For queries with multiple selection predicates, the WHERE
clause included the conjunction of all predicates. For SUM
queries the column being aggregated was randomly selected
from specific measure columns.

For each combination of choices for the above variables,
we generated 20 queries at random, thus generating a fairly
large set of queries in total. We executed these queries using
various AQP techniques and averaged the running time as
well as the accuracy using the RelErr and PctGroups (see
Section 4.3) error metrics.3 We omit presenting experimen-
tal results using the SqRelErr metric as it was mainly used
for analytical convenience; we observed it to to follow similar
trends as the RelErr metric in our experiments. To ensure
a fair comparision of running time and accuracy, we allowed
each AQP technique to utilize the same amount of sample
table space per query at runtime.

3Although we use TPC-H databases in our experiments, the
queries used in our experiments are quite different from stan-
dard TPC-H benchmarks. Thus, our results do not reflect
TPC-H benchmark numbers.
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5.3 Accuracy Experiments
5.3.1 Small Group vs. Uniform

We compared small group sampling with uniform random
sampling on all databases. For small group sampling, we
used a sampling allocation ratio of 0.5, as suggested by the
analysis in Section 4.4. We experimented with various differ-
ent sample sizes, but describe in detail results using a base
sampling rate of 1%; i.e. where the size of the small group
samplings’s overall sample is 1% of the fact table and the
size of each small group table is 0.5%. We measured the av-
erage RelErr and PctGroups error metrics over a large set of
COUNT queries generated as described in Section 5.2.3. We
allowed each technique to use the same amount of sample
space during query execution; thus a query with i grouping
columns executed using small group sampling is also exe-
cuted on a uniform random sample of size (1 + 0.5i)%.

We first present accuracy results on TPCH1G2.0z. Fig-
ure 4 shows how the error metrics vary as a function of
the number of grouping columns referenced in the queries.
For both methods, both RelErr and PctGroups increased as
the number of grouping columns increased; the increase was
more pronounced for uniform sampling than for small group
sampling. For example, even for queries with 4 grouping
columns, the average fraction of the groups from the exact
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answer that were missed by small group sampling remained
under 15%. Uniform sampling, on the other hand, missed
more than 75% of groups per query for such queries.

We also measured how the error metrics vary as a function
of the per group selectivity of the queries. The per group se-
lectivity of a query is defined as the average group size (num-
ber of tuples in a group) in the query result. Intuitively, if
the per group selectivity of a query is small, it has many
small groups and is consequently harder to approximate us-
ing sampling methods. We varied per group selectivity from
0.02% to 1.28% and observed that while the accuracy of both
AQP methods under both metrics increases with increasing
per group selectivity, small group sampling is consistently
much more accurate than uniform random sampling for this
range of selectivities. For example, at 0.16% per group selec-
tivity, RelErr for small group sampling was only 0.17, while
for uniform sampling it was 1.23. At higher selectivities the
differences were less pronounced as the resulting groups were
large enough for uniform random sampling to do a compe-
tent job in estimating them accurately. Due to lack of space
we omit including a chart to illustrate these results in detail.

We next present results of similar experiments on the real-
world database, SALES. Figure 5 shows how the error metrics
vary as a function of the per group selectivity (shown in log
scale) of the queries. It can be seen that small group sam-
pling is consistently better than uniform random sampling
over the entire range of selectivities considered. For selectiv-
ities much larger than the range shown, the difference was
less pronounced. We also measured how the error metrics
vary as a function of the number of grouping columns refer-
enced in the queries. Due to lack of space we omit including
a chart to illustrate these results in detail, but mention that
the metrics followed similar trends as in Figure 8 (discussed
below in Section 5.3.2). The overall errors for both meth-
ods were somewhat higher compared to TPCH1G2.0z; this is
perhaps attributable to the fact that the SALES database is
relatively less skewed than the TPCH1G2.0z database.

To systematically measure how the the accuracy of these
AQP techniques are affected by data skew, we ran the above
experiments on a series of TPCH1Gyz databases with vary-
ing skew. Figure 6 shows how the RelErr metric varies as
a function of the Zipf parameter z. (The trends for Pct-
Groups were almost identical.) The results are similar to
the rule suggested by the analysis of Section 4.4: uniform
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sampling slightly outperforms small group sampling at low
skew, while small group sampling does significantly better
at moderate to high skew. The fact that the accuracy of
uniform sampling improves somewhat at very high skew can
be explained by noting that most attribute values occur very
rarely in highly skewed data, so selection predicates often fil-
ter those values out altogether, leaving predominantly large
groups. For skews in the range 1.5–2.0, which are consistent
with the oft-cited 90-10 or 80-20 rules of thumb, small group
sampling performs very well.

We conclude this subsection by briefly describing results
when we vary the base sampling rate. For the TPCH1G2.0z

database, we generated sample tables by varying the base
sampling rate from 0.25% to 4%. The resuls are illustrated
in Figure 7. We found that both RelErr and PctGroups for
small group sampling and uniform random sampling degrade
smoothly as the sampling rate is decreased. However, the
accuracy of small group sampling was consistently better
than uniform random sampling for all sampling rates.

5.3.2 Small Group vs. Congress
We were unable to experiment with the Congress algo-

rithm [2] on the SALES database because its running time
is proportional to the number of possible combinations of
group-by columns, and our database had 245 potential group-
by columns, giving 2245 combinations. Instead, we imple-
mented a more tractable version of the algorithm called Ba-
sic Congress (also described in [2]). We picked four dimen-
sion tables plus the fact table from the SALES database, and
used their associated columns (120 columns in all) to build
sample tables for small group sampling, basic congress, and
uniform sampling, using a 1% base sampling rate.

Figure 8 shows how the error metrics vary as a function of
the number of grouping columns referenced in the queries.
Note that for comparision we have also included uniform
random sampling in these charts. For all methods, both
error metrics increased as the number of grouping columns
increased; however, small group sampling was significantly
more accurate than the other methods, whose accuracies
were comparable to each other. Due to the large number of
grouping columns considered, basic congress stratified the
fact table into a large number (about 166,000) of tiny strata,
and its sample table almost resembled a sample from a uni-
form distribution. This may explain why basic congress and
uniform sampling performed similarly.
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5.3.3 Small Group vs. Outlier Indexing
We used the SALES database to compare the performance

of small group sampling enhanced with outlier indexing (see
Section 4.2.1) with the outlier indexing algorithm alone [9].
For both methods, we generated sample tables with a base
sampling rate of 1% and compared their accuracy over a
large number of randomly generated SUM queries. The
overall average RelErr metric was 0.79 for small group sam-
pling enhanced with outlier indexing and 1.08 for outlier in-
dexing alone. The overall average number of missed groups
was 37% for small group sampling enhanced with outlier
indexing and 55% for outlier indexing alone. These ex-
periments demonstrated that for answering SUM queries,
small group sampling enhanced with outlier indexing is con-
sistently better than outlier indexing alone. We also com-
pared uniform sampling to both these methods, and its accu-
racy was comparable to plain outlier indexing, with slightly
higher RelErr and slightly lower PctGroups.

5.4 Performance Experiments

5.4.1 Query Processing Performance
We experimented with query processing performance of all

AQP methods (using a 1% base sampling rate) on the 5GB
databases (TPCH5Gyz); the other databases were smaller and
hence the timing measurements were less reliable.

Since the total sample space given to all AQP algorithms
was the same, their processing times were very similar. The
overall average speedup of small group sampling was 9.49,
i.e. approximately 10x faster than executing the query ex-
actly. The overall average speedup of uniform sampling was
slightly better, about 11.53. Basic congress and outlier in-
dexing have similar speedups as uniform sampling. We note
that for all these methods, even though the sample tables
are smaller than the original fact table by a factor of 100, it
is difficult to achieve a 100x speedup since most queries in-
volve multi-table joins of fact and dimension tables and the
dimension tables have not been reduced by the same factor.

Figure 9 shows the average speedup of small group sam-
pling as a function of the number of grouping columns refer-
enced in the query. As can be seen, the speedup decreases as
the number of grouping columns increase. This is because
a query with more grouping columns requires more small
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group sample tables during execution. Nevertheless, even
for queries with 4 grouping columns, the average speedup is
reasonable, about 8x.

5.4.2 Preprocessing Performance
In this paper we started with the assumption that rela-

tively large preprocessing times and space usage are gen-
erally acceptable as long as they are not exorbitant. We
demonstrate here that the preprocessing requirements of
small group sampling are indeed not exorbitant.

We compared both the space and time taken to build the
sample tables for all the algorithms. The space consumed by
the sample tables for small group sampling is more than the
other algorithms as it has to build multiple sample tables.
Nevertheless, the space overhead is still quite reasonable: at
a base sampling rate of 1%, the total overhead was about
6% of the original database size for the TPCHxGyz databases
and about 18% for the SALES database. In practice, this
amount can be further reduced in several ways, such as (a)
by using smaller base sampling rates (e.g. reducing the base
sampling rate to 0.25% reduced the space overhead to about
1.8% for the TPCHxGyz databases), and (b) by considering
fewer columns (e.g. available workloads may be analyzed to
eliminate infrequently referenced grouping columns).

The preprocessing times for uniform random sampling and



outlier indexing are very short; the respective sample ta-
bles are built within a few minutes even for the TPCH5Gyz

databases. Basic congress is substantially slower but not
exorbitant, with our implementation taking about 3 hours
each for the SALES and TPCH1Gyz databases, and 12 hours
for the TPCH5Gyz databases. We used a straightforward, un-
optimized implementation of small group sampling instead
of the more efficient two-pass implementation discussed in
Section 4.2.1. Its performance was in the same ballpark as
basic congress: about 2.5 hours for the SALES and TPCH1Gyz

databases, and about 13.6 hours for the TPCH5Gyz databases.
As future work we plan to experiment with the more efficient
implementation of small group sampling.

6. CONCLUSION
In this paper we introduced the dynamic sample selec-

tion architecture for producing fast, approximate answers
to analysis queries over massive databases. Dynamic sam-
ple selection improves on previous AQP approaches by its
ability to productively utilize additional disk space, which is
frequently available in relative abundance, without increas-
ing query response time. We also described small group
sampling, a type of dynamic sample selection that targets
aggregation queries with group-bys, and gave experimental
results showing that small group sampling outperforms al-
ternative techniques.

Not every AQP application is appropriate for dynamic
sample selection; for example, when summary structure must
be kept small, e.g. for transmission over a wide-area network,
then creating a single biased sample or a similar small syn-
opsis is likely to be the best approach. However, we believe
that for a large and important class of applications involving
ad hoc queries, query response time is the resource that be-
comes a bottleneck. For such applications, dynamic sample
selection provides a way to improve system performance at
little additional cost by taking better advantage of existing
system resources.
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