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What are Continuous Dynamical Systems (CDS)?

Modeling formalism for systems with continuous dynamics.
Example: Motion of a projectile under gravity.

Dynamics are specified as differential equations over suitable
state space.

Multiple continuous dynamical systems combined together
using a discrete switching logic give rise to Hybrid systems.
Example: Thermostat with on and off modes.

This work: Design a rigorous procedure for verifying safety
properties of CDS.

First step towards rigorous safety analysis of Hybrid systems.
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Formal definition

CDS

A CDS is specified as tuple (X, Init, f )

X is a finite set of variables interpreted over the reals R and
RX is the set of all valuations of the variables X,

Init ⊆ RX is the set of initial states,

f : RX 7→ RX is a lipschitz continuous vector field that
specifies the continuous dynamics.

Lipschitz continuity of f guarantees unique solutions for the initial
value problem(ivp) dX(t)

dt = f (X(t)), X(0) = ~x0. Henceforth we use
F (~x0, t) to denote such a solution.
Semantics: Given a CDS : (X, Init, f ),

[[CDS]] := {F1 : [0,∞) 7→ RX | F1(t) = F (~x0, t), ~x0 ∈ Init }
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The Safety problem for CDS

Given a CDS : (X, Init, f ),

Reach(CDS) is defined as
{~x ∈ RX | ∃F ∈ [[CDS]],∃t ≥ 0 : ~x = F (t)}
A (safety) property, Safe, is simply a subset of the state
space RX.

A property Safe is an invariant (for the system CDS) if
Reach(CDS) ⊆ Safe.

Safety Verification Problem

Given a continuous dynamical system CDS and a safety property
Safe, determine if Safe is an invariant for CDS.
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Verification approaches

Explicit computation of an over-approximation of the set of
reachable states (fixed point based approaches):

Good for systems with pure discrete flows.
Inefficient for systems with non-linear continuous flows.
Proving soundness and completeness is diffucult.
Termination is an issue.

This work: Deductive Verification

Inductive invariants and Constraint solving.
Symbolic approach.
Soundness and relative completeness can be rigorously proven.
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Soundness and Completeness

We seek a deductive verification rule R(CDS, Safe) which has the
following properties:

1 Soundness: Whenever the rule returns true,
Reach(CDS) ⊆ Safe.

2 Completeness: For all CDS and safety properties Safe, if
Reach(CDS) ⊆ Safe holds then the rule returns true.

3 Decidable

This Work: A sound and decidable rule, relatively complete over a
large class of systems.
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Inductive Invariants (Discrete systems)

Inductive Invariant

An invariant I (~x) is inductive iff I (~x)⇒ I (Next(~x)).

What is Next(~x) for continuous systems ?

Example:
Init = {0 ≤ x ≤ 1, y =
0}; dx

dt = y , dy
dt = −x ;

Safe = −2 ≤ x ≤ 2

Inwards

Define Inwards(Inv, f ,~x) as the predicate
∃t0 > 0 : ∀0 ≤ t < t0 : F (~x, t) ∈ Inv
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Rule based on Inductive Invariants

Sound and Complete Rule

Exists closed set Inv,

[Init] ∀~x ~x ∈ Init =⇒ ~x ∈ Inv
[Inductiveness] ∀~x ∈ ∂Inv : Inwards(Inv, f ,~x)
[Safety] ∀~x ~x ∈ Inv =⇒ ~x ∈ Safe
CDS is safe

Inductive invariant

Any closed set Inv satisfying conditions Init and Inductiveness is
said to be an inductive invariant for the CDS.

Issues: General form of the above rule is ∃Inv : ∀~x : φ(Inv,~x)

1 Second order quantifier ∃Inv.

2 Predicate φ makes use of solution function F .
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Getting rid of the second order quantifier

Bounded Verification approach: Bound the search for Inv by
restricting to a template ψ(~u,~x). The verification rule now is
∃~u : ∀~x : φ(ψ(~u,~x),~x).

Focus on polynomial CDS
Init is specified as p ≥ 0 for some polynomial p.
Each component of field f (~x) is a polynomial.

Restrict the search for Inv to sets of the form p ≥ 0 where p
is a polynomial with unknown coefficients.

Recall: Exists-forall formulas in theory of Reals are decidable.

We loose completeness but can try for relative completeness.

Relative Completeness

Our goal is to prove relative completeness to the class of
polynomial CDS and safety properties Safe for which there is an
inductive invariant of the form p ≥ 0 such that p ≥ 0⇒ Safe.
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Removing dependence on solution function F

Recall: Inwards(Inv, f ,~x) is defined as
∃t0 > 0 : ∀0 ≤ t < t0 : F (~x, t) ∈ Inv

Inv is specified using the template p ≥ 0. Intuitively,

Since f is lipschitz, direction of f (~x) determines direction of
F (~x, t) for t very close to 0.
Inwards can be determined by analyzing the dot-product of
f (~x) with normal to surface p = 0.

We now present practical and intuitive approximations of
Inwards and analyze the soundness and relative completeness
of resulting procedures.

Many of these procedures are already present in the literature
but without rigorous analysis of soundness and completeness.
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Procedure 1 (Tiwari and Gulwani, Prajna)

Approximation for Inwards

Inwards(p ≥ 0, f ,~x) := ~∇(p) · f ≥ 0 := Σx∈X
∂p
∂x

dx
dt ≥ 0

The inductiveness condition is:
p = 0⇒ ~∇p · f (~x) ≥ 0
Relative Completeness holds but Soundness fails !

Unsoundness Example

Let dx
dt = 1 be the dynamics and x = 0 be the initial state. The

above rule proves that −x2 ≥ 0 is inductive since
−x2 = 0⇒ −2x ∗ 1 ≥ 0.
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Procedure 2

Approximation for Inwards

Inwards(p ≥ 0, f ,~x) := Lf (p)(~x) > 0 ≡: ~∇(p) · f > 0

The inductiveness condition is:
p = 0⇒ ~∇p · f (~x) > 0
Soundness holds but Relative Completeness fails !

Incompleteness Example

Let dx
dt = y , dy

dt = −x , be the dynamics; 0 ≤ x ≤ 1 ∧ y = 0 be the
initial state and Safe be x2 + y 2 > 1.

The safety of the system can only be shown using x2 + y 2 ≤ 1.

The vector field is tangential at all points on x2 + y 2 = 1.
Therefore ~∇(p) · f (~x) = 0 for all ~x such that p = 0 (here p is
1− x2 − y 2).
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Procedure 3

Approximation for Inwards

The polynomial P(u,~x) = −x2 in the previous example had
points where ~∇P is 0 and so the check ~∇(p) · f (~x) ≥ 0 failed.

We call a polynomial P as smooth if
∀~x : P(~x) = 0⇒ ~∇P(~x) 6= 0

Search over the space of smooth polynomials only.

The inductiveness condition is
p = 0⇒ ~∇(p) 6= 0

∧
p = 0⇒ ~∇p · f (~x) ≥ 0
Soundness holds but relatively completeness still fails !
Not all polynomial CDS have smooth inductive invariant sets
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Procedure 3 contd.

Incompleteness example

Let dx
dt = −x , dy

dt = −y , dz
dt = −z be the dynamics. Let

Safe := −x2 − y 2 + z2 >= 0 and Init := z = 2
∧

x2 + y 2 <= 4.
This system is safe, however its safety can only be proven using the
invariant P := −x2 − y 2 + z2 >= 0, which is not a smooth
polynomial (since ~∇P is 0 at the origin).

The problem is trickier than we thought.

Lets go back to the foundations !
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Sound and Relatively Complete procedures

We present two procedures to compute Inwards(p ≥ 0, f ,~x),
without computing the solution F , for invariant sets specified as
p ≥ 0 for some polynomial p:

1 Based on Tangent cone and Nagumo’s theorem.

2 Based on Lie Derivatives.

Resulting rules from both approaches are sound and relatively
complete but are not in general decidable.
We will later present a decidable approximation for the rule based
on Tangent cones.
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Computing Inwards using Nagumo’s theorem

Tangent Cone

Let S ⊂ Rn be a closed set. Given any ~x ∈ Rn, the tangent cone to
S at ~x is the set

T (S)(~x) := {~z ∈ Rn | lim inf
α→0

d(~x + α~z, S)

α
= 0} (1)

where d(~x, S) := inf~y∈S ||~x− ~y|| is the distance of ~x from S

Nagumo’s theorem

Given a CDS : {Init, X, f } and a closed set Inv,
Inwards(Inv, f ,~x) hold iff ~x ∈ T (Inv)(~x).

Thus given a polynomial p ≥ 0, f (~x) ∈ T (p ≥ 0)(~x) is sufficient to
compute Inwards(p ≥ 0, f ,~x).
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Computing Inwards using Lie Derivatives

Central Idea: Compute Inwards(p ≥ 0, f ,~x) by checking the
time derivative dp

dt at ~x.

For any polynomial p, dp
dt = ~∇p · f

For any polynomial p, define L
(n)
f (p) as the n-th derivative of

p with respect to time.

L
(n)
f (p) :=

{
~∇p · f if n = 1
dL

(n−1)
f (p)

dt otherwise
(2)

Computing Inwards

Inwards(p ≥ 0, f ,~x) can be computed as
k−1∧
i=1

L
(i)
f (p) = 0⇒ L

(k)
f (p) ≥ 0 for k = 1, 2, . . ..

Note that for polynomial f , Ln
f (p) is a polynomial for all n.
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Inference Rules

(S1) Init(~x) =⇒ p(~x) ≥ 0 (T1) Init(~x) =⇒ p(~x) ≥ 0

(S2) p(~x) = 0 =⇒ f (~x) ∈ T (p ≥ 0)(~x) (T2) p = 0 =⇒ (
k−1V
i=1

L
(i)
f (p) = 0⇒ L

(k)
f (p) ≥ 0)

for k = 1, 2, . . .
(S3) p(~x) ≥ 0 =⇒ Safe(~x) (T3) p(~x) ≥ 0 =⇒ Safe(~x)

CDS is Safe CDS is Safe

Theorem

For all CDS and safety property Safe

Soundness: If Inv satisfies Conditions (S1), (S2) and (S3) or
Conditions (T1), (T2) and (T3), then Reach(CDS) ⊆ Safe.

Relative Completeness: If Reach(CDS) ⊆ Safe and there is an
inductive invariant p ≥ 0 such that p ≥ 0 =⇒ Safe, then
p ≥ 0 also satisfies Conditions (S1), (S2) and (S3) as well as
Conditions (T1), (T2) and (T3).

Downside: Conditions (S2) and (A2) in general are
computationally infeasible.
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Effectively checkable approximation for Tangent cone
based procedure

Given a polynomial p and a point ~x such that p(~x) = 0, we want
to check if

lim inf
α→0

d(~x + αf (~x), p ≥ 0)

α
= 0

This is equivalent to

∃α0 > 0 : ∀0 ≤ α ≤ α0 : ∃gα : lim inf
α→0

d(~x + αf (~x), p ≥ 0, gα)

α
= 0

where d(~x + αf (~x), p ≥ 0, gα) is distance of ~x + αf (~x) from p ≥ 0,
along direction gα.

Approximation

∃g :∃α0 > 0 : ∀0 ≤ α ≤ α0 : lim infα→0
d(~x+αf (~x),p≥0,g)

α = 0
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Effectively checkable approximation contd.

Either f moves inside OR there exists a direction g which makes p = 0

sufficiently quickly.

Notation

Let p(~x +~y)i denote i th homogeneous component of p(~x +~y) when viewed as a
polynomial in ~y.

pos(p,~x,~u) :=
n_

k=1

(p(~x +~y)k (~u) > 0 ∧
k−1̂

i=1

p(~x +~y)i (~u) = 0)

kneg(p,~x,~u, k) := (p(~x +~y)k (~u) < 0 ∧
k−1̂

i=1

p(~x +~y)i (~u) = 0)

zero(p,~x,~u) :=
n̂

i=1

p(~x +~y)i (~u) = 0 neg(p,~x,~u) :=
n_

i=1

kneg(p,~x,~u, i)
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Effectively checkable approximation contd.

(F1) Init =⇒ p ≥ 0

(F2) p = 0⇒ ¬neg(p,~x, f ) ∨
nW

k=2
(kneg(p,~x, f , k) ∧

W
l<k

(∃g : pos(pl , f , g) ∧
V
j<l

zero(pj , f , g)))

(F3) p ≥ 0⇒ Safe

CDS is safe

Theorem
For all CDS and safety property Safe

Soundness: If Inv satisfies Conditions (F1), (F2) and (F3) then
Reach(CDS) ⊆ Safe.

Relative Completeness: If Reach(CDS) ⊆ Safe and there is an inductive invariant
p ≥ 0 such that p ≥ 0 =⇒ Safe and p ≥ 0 is a convex, then p ≥ 0 also
satisfies Conditions (F1), (F2) and (F3).

Open Problem: Sound and Relatively Complete rules for the entire class

of polynomial CDS with polynomial inductive invariants.
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Ongoing and Future Work

Ongoing Work:

Deductive techniques for synthesizing switching logic for safe
hybrid systems: search for controlled inductive invariants
(VMCAI’09).

Deductive techniques for checking reachability: search for
Lyapunov functions (submitted to HSCC’09).

Future Work:

Extend the verification rule to full-fledged hybrid systems.

Deductive techniques for verifying other properties like
stability, reachability+safety etc.

Design good exists-forall solvers to automate the
verification/synthesis procedure.
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Thank You !
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