
Synthesizing Switching Logic using Constraint
Solving!

Ankur Taly1, Sumit Gulwani2, and Ashish Tiwari3

1 Computer Science Dept., Stanford University ataly@stanford.edu
2 Microsoft Research, Redmond, WA 98052, sumitg@microsoft.com
3 SRI International, Menlo Park, CA 94025, tiwari@csl.sri.com

Abstract. A new approach based on constraint solving techniques was
recently proposed for verification of hybrid systems. This approach works
by searching for inductive invariants of a given form. In this paper, we
extend that work to automatic synthesis of safe hybrid systems. Starting
with a multi-modal dynamical system and a safety property, we present
a sound technique for synthesizing a switching logic for changing modes
so as to preserve the safety property. By construction, the synthesized
hybrid system is well-formed and is guaranteed safe. Our approach is
based on synthesizing a controlled invariant that is sufficient to prove
safety. The generation of the controlled invariant is cast as a constraint
solving problem, which is solved using SMT solvers. The generated con-
trolled invariant is then used to arrive at the maximally liberal switching
logic.

1 Introduction

Formal verification is beginning to play an important role in the process of build-
ing reliable and certifiable complex engineered systems. A different approach to
building correct systems is to automatically synthesize safe systems. The synthe-
sis approach is attractive since it generates correct systems by design. However,
computationally, the synthesis problem appears to be much harder than the
verification problem and there are few general approaches for solving it.

Recently, Gulwani and Tiwari [7] introduced an approach for verification of
(hybrid) systems that reduces the safety verification problem to satisfiability of
∃∀ formulas over some theory (the theory of reals). Their method is based on
finding an inductive invariant that proves the safety of the system. The “un-
bounded” search for invariants is “bounded” by fixing some templates for the
invariants. The existence (∃) of an appropriate instance of the template that
is also an inductive invariant (∀) naturally maps to an ∃∀ formula. If the ∃∀
formula is valid (over the underlying theory), then it means that there exists an
inductive invariant (of the form of the chosen template) that proves safety.
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In theory, the constraint-based approach for verification described in Gulwani
and Tiwari [7] can be generalized to solving the synthesis problem as well. Given
an under-specified system, we can choose templates for the unknown parts of
the system and the unknown inductive invariant. We can then obtain a ∃∀ for-
mula where all the unknowns are existentially quantified. The constraint solver
then searches for instances of all these unknowns so that the resulting system is
proved safe by the resulting invariant. In practice, however, this naive approach
approach does not work well for synthesis because the constraint solver often
chooses values that result in a degenerate system (such as, a zeno system, or a
deadlocked system) where the safety property is vacuously true. Moreover, the
above method does not take advantage of the correlations that exist between
the various unknowns and assigns separate templates to each unknown. Having
too many templates significantly reduces the completeness and effectiveness of
the approach.

In this paper, we define a specific instance of the synthesis problem, called
the switching logic synthesis problem. We present a constraint-based approach,
inspired by [7], to solve the switching logic synthesis problem. The novelty in
our approach here is that we do not search for the switching conditions di-
rectly. Instead we use constraint solving to find an inductive controlled invariant
set. Hence we only have to choose a single template – for the inductive control
invariant – and none for the unknown switching conditions. In a final postpro-
cessing step, we use the generated controlled invariant to synthesize the actual
switching logic. This postprocessing step generates the weakest (most general)
possible controller from the controlled invariant. Our approach is guaranteed to
synthesize a non-blocking hybrid system that is also safe.

Inductive Controlled Invariant. An invariant for a system is any superset of
the set of reachable states of that system. Safety properties can be proved by
finding suitable invariants. However, invariance is difficult to check in general.
A better alternative is to search for inductive invariants. Inductive invariants
are attractive because inductiveness is a “local” property – for each state in the
inductive set, we only need to check that the immediate next states reached from
that state (rather than all reachable states) are also in the inductive set. The
approach of using inductive invariants to verify safety is a sound and complete
method for safety verification.

In this paper, we consider systems that contain controllable choices, that is,
there are (nondeterministic) choices and the user can make selective choices (and
eliminate other choices) to achieve some safety goal. For such systems, the notion
corresponding to invariant sets is called controlled invariant. A controlled reach
set is the reach set obtained for some choice of the controller. A controlled in-
variant is a superset of some controlled reach set. As before, the computationally
interesting notion is that of an inductive controlled invariant. We can, therefore,
synthesize safe controllers by generating the correct inductive controlled invari-
ant. In this paper, we pursue this idea in the context of hybrid systems, though
the idea of inductive controlled invariant is applicable to other systems.



Contribution and Outline of the Paper. This paper makes the following contri-
butions:

– We present a formalization of the notion of inductive controlled invariants for
multi-modal systems and describe a sound and complete approach for syn-
thesizing switching logic from an inductive controlled invariant. (Section 3).
Our synthesis technique relies on the deductive verification approach and
does not use the usual game theoretic approach for controller synthesis, or
the controlled reachability approach (See Section 6 for more discussion).

– We describe several sufficient conditions for a set to be an inductive con-
trolled invariant set. These conditions enable practical implementations for
synthesizing controllers using template-based techniques (Section 4).

– We also describe some heuristics to generate large controlled invariant sets,
that lead to synthesis of the weak controllers (Section 5).

We have performed preliminary experimental evaluation of our approach and
presented some of the results as examples in the paper. We start by formally
describing and motivating the problem in Section 2.

2 The Switching Logic Synthesis Problem

In this section, we describe the synthesis problem considered in this paper. We
motivate our formal definitions with informal descriptions of the problem.

We are interested in controlling multi-modal continuous dynamical systems.
A dynamical system is defined by its state-space, which is the set of all possible
configurations/states of the system, and its dynamics, which defines how the
system changes states (with time). Formally, a continuous dynamical system is
a tuple 〈X, f〉 where X is a finite set of real-valued variables that define the
state space RX and f : RX %→ RX is a vector field that specifies the continuous
dynamics (as dx

dt = f(x)). We assume that f is Lipschitz, which guarantees the
existence and uniqueness of solutions to the ordinary differential equations.

Proposition 1 (Theorem 2.3.1, p80 [4]). Consider a Lipschitz vector field
f and the differential equation dF (t)

dt = f(F (t)), F (t) = x0. The solution of this
differential equation, denoted by F (x0, t), always exists and is unique. Moreover,
F (x0, t) depends continuously on the initial state x0.

Often a single ordinary differential equation is insufficient to describe the
system. Many systems have multiple modes and they have different dynamics
in each mode. This happens, for example, when we introduce actuators inside
physical devices that change the device’s dynamics. In such cases, the dynamics
of a system is described by a collection of differential equations. We call such
system multi-modal dynamical systems. A multi-modal system has a finite num-
ber of different modes and in each mode, it behaves like a different continuous
dynamical system. For instance, consider the water level in a tank with an inflow
valve. Such a system has two dynamics – one when the valve is closed and one
when it is open. Formally, we define a multi-modal continuous dynamical system
and its semantics as follows.



Definition 1 (Multi-modal Continuous Dynamical System). A multi-
modal continuous dynamical system MDS is a tuple 〈X, f1, f2, . . . , fk, Init〉, where
〈X, fi〉 is a continuous dynamical system (representing the i-th mode) and Init ⊆
RX is the set of initial states. Given an initial state x0 ∈ Init, we say that a
continuous function x(t) : [0,∞) → RX is a trajectory for MDS, if there exists
an increasing sequence 0 ≤ t1 < t2 < · · · (either finite or diverging to ∞) s.t.

– x(0) = x0 and x(t) is continuous over t ≥ 0.
– for each interval (ti, ti+1), there is a mode j ∈ I such that x(t) is smooth

and dx(t)
dt (t′) = fj(x(t′)) for all t in the range ti < t < ti+1. When i = 0,

then we require j = 1; that is, mode 1 is the initial mode.

Following Definition 1, a multi-modal system can nondeterministically switch
between its modes. However, switching between the different modes in a multi-
modal dynamical system is often controllable. The goal of controlling a system
is to achieve safe operation with some desired performance. For instance, in the
water tank example, the transition between the two modes can be controlled by
opening and closing the valve. The controller may be required to guarantee that
the water level in the tank remains between two thresholds. There are several
controllers that can achieve this property. A controller that opens the valve just
when the water level reaches the lower threshold and closes it soon thereafter,
will keep the level closer to the lower threshold, but it is very restrictive as it
prevents the system from reaching several possible safe states. We are interested
in designing controllers that guarantee safety, but that also do not unnecessarily
restrict the system from reaching safe states.

A controller for a multi-modal system can be specified in the form of a switch-
ing logic.

Definition 2 (Switching Logic). Given a multi-modal dynamical system MDS :=
〈X, (fi)i∈I , Init〉, a switching logic, SwL := 〈(gij)i#=j; i,j∈I , (Invi)i∈I〉, contains
guards gij ⊆ RX and state (location) invariants Invi ⊆ RX .

Informally, the guard gij specifies the condition under which the system could
switch from mode i to mode j and the state invariant Invi specifies the condition
which must be respected while in mode i.

A multi-modal system MDS can be combined with a switching logic SwL to
create a hybrid system HS := HS(MDS, SwL) in the following natural way: the
hybrid system HS has ‖I‖ modes with dynamics given by dX

dt = fi in mode i,
and with gij being the guard on the discrete transition from mode i to mode j
and Invi being the state invariant in mode i. The initial states are {1}× Init.
The discrete transitions in HS have identity reset maps, that is, the continuous
variable do not change values during discrete jumps. The semantics of hybrid
systems that define the set of reachable states of hybrid systems are standard [1].

The semantics of hybrid systems allows for some pathological cases which we
do not consider. For example, it can happen that a hybrid system, in mode i,
reaches a point x on the boundary of Invi, but there is no valid trajectory from
x; that is, there is no discrete transition enabled at x, and following mode i



dynamics takes the system out of Invi. The non-blocking requirement disallows
such cases. We are interested in synthesizing non-blocking hybrid systems.

Definition 3. A hybrid system HS is said to be non-blocking if for every mode
i, and for every point x on the boundary of the state invariant for mode i, there
exists a mode j (may be same as i) and ε > 0 s.t. x ∈ gij and the dynamics of
mode j keeps the system within the state invariant of mode j for at least ε time.

A hybrid system HS is safe with respect to a safety property Safe ⊆ RX if
the set of its reachable states is contained in Safe. Formally, we define the logic
synthesis problem as follows:

Definition 4 (Switching Logic Synthesis Problem). Given a multi-modal
dynamical system MDS := 〈X, f1, f2, . . . , fk, Init〉 and a safety property Safe ⊆
RX , the switching logic synthesis problem seeks to synthesize a switching logic
SwL s.t. the resulting hybrid system HS(MDS, SwL) is safe with respect to Safe.

3 The Synthesis Procedure

In this section we present a high-level procedure for solving the switching logic
synthesis problem described in Definition 4. We fix our notation and denote the
given multi-modal dynamical system by MDS, its initial set of states by Init and
the given safety property by Safe.

We first define the notion of a controlled invariant set.

Definition 5 (Controlled Invariant). A set CInv is said to be a controlled
invariant for a MDS := 〈X, (fi)i∈I , Init〉 if for all x0 ∈ Init, there exists a
trajectory (Definition 1) x(t) such that x(0) = x0 and for all t ≥ 0, x(t) ∈ CInv.

Note that an invariant requires that every trajectory (starting from an ini-
tial state) remains inside the invariant. In contrast, a controlled invariant only
requires some trajectory remains inside the controlled invariant.

Example 1. Consider a multi-modal system with two modes. In mode 1, ẋ =
1, ẏ = 0, while in mode 2, ẋ = 0, ẏ = 1. If x = 0, y = 0 is the only initial state,
then x ≥ 0∧y ≥ 0 is an invariant, whereas x ≥ 0∧y = 0 is a controlled invariant
that is not an invariant. The set x + y ≤ 0 is not a controlled invariant.

Controlled invariants are not easy to compute. Hence, we define the notion
of inductive controlled invariants. Since the dynamics are continuous here, we
need a few more notions before we can define inductive controlled invariants.

We have assumed that the vector fields fi’s are Lipshitz and hence, by Propo-
sition 1, we have a unique trajectory Fi(x0, t) in mode i. By Fi(x0, (0, ε))
we denote the set of all points reached in the time interval (0, ε); that is,
Fi(x0, (0, ε)) := {x | x = Fi(x0, t), 0 < t < ε}. For a set S ⊆ Rn, the nota-
tion ∂S denotes the boundary of S in the topological sense. We are now ready
to define inductive controlled invariants.



SynthSwitchLogic(MDS, Safe) :
1. Find a closed set CInv such that the following conditions hold

(A1) Init ⊆ CInv
(A2) CInv ⊆ Safe
(A3) for all x ∈ ∂CInv, there exists an i ∈ I such that ∃ε : Fi(x, (0, ε)) ⊆ CInv

2. Let bdryi := {x ∈ ∂CInv | ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv} for all i ∈ I
3. Let Invi := CInv for all i ∈ I
4. Let gij := bdryj ∪ Interior(CInv) for all i %= j; i, j ∈ I,
Return SwL := 〈(gij)i!=j; i,j∈I , (Invi)i∈I〉

Fig. 1. Procedure for synthesizing switching logic presented at a semantic level

Definition 6 (Inductive Controlled Invariant). A closed set CInv is an
inductive controlled invariant for MDS := 〈X, (fi)i∈I , Init〉 if Init ⊆ CInv and
for every point x ∈ ∂CInv on the boundary of CInv, there is a vector field fi

(i ∈ I) such that ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv.

Intuitively, the condition ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv in Definition 6 says that
the vector field fi points inwards and brings the system (instantaneously) inside
the set CInv. Thus, if CInv is an inductive controlled invariant then at every
point on the boundary of CInv, some vector field points inwards, see also [3].
Just as inductive invariants are also invariants, inductive controlled invariants
are also controlled invariants.

Proposition 2. If a closed set CInv is an inductive controlled invariant for MDS,
then it is also a controlled invariant for MDS.

The complete procedure, at a semantic level, for solving the switching logic
synthesis problem is presented in Figure 1. The key idea behind the synthesis
procedure is to find an inductive controlled invariant set CInv and then design the
guarded transitions so that the resulting hybrid system always remains in CInv.
The three conditions outlined in Line 1 of the procedure of Figure 1, namely
Condition (A1), Condition (A2), and Condition (A3), imply that CInv is an
inductive controlled invariant that proves safety. It follows from the definition of
CInv that its boundary ∂CInv can be written as a union

∂CInv =
⋃

i∈I

bdryi (1)

such that ∀x ∈ bdryi, it is the case that ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv. This fact
is used to define the sets bdryi in Line 2. In Line 4, we use the sets bdryi and
CInv to define the guards for the various discrete transitions.

We next state and prove some properties of the procedure SynthSwitchLogic
in Figure 1. We show that the synthesized hybrid system is always non-blocking
and safe (soundness). Furthermore, if there exists a safe hybrid system, then
under some fairly general conditions, the procedure SynthSwitchLogic will re-
turn a switching logic SwL and synthesize a safe hybrid system HS(MDS, SwL)
(completeness).



Theorem 1. For every switching logic SwL returned by SynthSwitchLogic, the
hybrid system HS(MDS, SwL) is non-blocking.

We prove completeness under a technical assumption. We say a hybrid system
HS has the min-dwell-time property if there exists a fixed time duration ta such
that for all reachable states x, if the hybrid system permits a mode switch from
i to j at x, then there must exist a mode k such that the hybrid system permits
a mode switch from i to k at x and the system can stay in mode k for at least ta
units of time starting at x. The min-dwell-time property implies that successive
mode switchings can be forced to be ta units apart.

Theorem 2 (Soundness and Completeness). If SynthSwitchLogic returns
the switching logic SwL, then the hybrid system HS(MDS, SwL) is safe. If HS =
HS(MDS, SwL) is a safe hybrid system that satisfies the min-dwell-time property
and if Safe is a closed set, then procedure SynthSwitchLogic will return a
switching logic.

Although the above procedure is sound and complete, it is not computation-
ally feasible as there is no easy way to check for Condition (A3). In the next
section we will replace Condition (A3) by something stronger that can be easily
computed. This causes loss of completeness, but it preserve soundness.

4 Implementing the Procedure

The procedure for solving the switching logic synthesis problem was described
at a semantic level in the previous section. In this section, we show how that
procedure can be concretely implemented.

Recall that a set CInv is an inductive controlled invariant if it contains Init
and at each point x on the boundary of CInv, one of the vector fields points
inwards. This latter test involves checking ∃ε > 0 : Fi(x, (0, ε)) ⊆ CInv, which is
not easy to automate as Fi’s are solutions of differential equations. We solve this
problem by replacing this check by a stronger test: ∃ε > 0 : Fi(x, (0, ε)) ⊆
Interior(CInv), which can be tested without explicitly computing Fi. Here
Interior(CInv) := CInv−∂CInv. Thus, we make sure that CInv is an inductive
controlled invariant by checking:

(B1) Init ⊆ CInv
(B2) CInv ⊆ Safe
(B3) for all x ∈ ∂CInv, there exists an i ∈ I and ε > 0 such that Fi(x, (0, ε)) ⊆

Interior(CInv)

We will next present a condition that is equivalent to (B3) and can be easily
computated. We first need to fix a representation for CInv.

We use semi-algebraic sets as candidates for CInv ⊆ RX . Since CInv is un-
known, we use the idea of templates. A template is a formula (in the theory
of reals) with free variables X ∪ U . Here U are the unknown coefficients that
need to be instantiated to yield the desired CInv. We use boolean combinations



SynthSwitchLogicImpl(MDS,Init,Safe)
0. Choose template for controlled invariant, say p(U, X) ≥ 0
1. Generate ∃∀ constraint for template to be a controlled invariant

∃U : ∀X : (X ∈ Init ⇒ p ≥ 0) ∧ (p ≥ 0 ⇒ X ∈ Safe) ∧ (p = 0 ⇒
W

i∈I Lfip > 0)
2. Solve the ∃∀ constraint and get values u for U
3. Return the following switching logic: for all i, j, i %= j,

gij := (p(u, X) > 0 ∨ (p(u, X) = 0 ∧ Lfj p < 0))
Invi := (p(u, X) ≥ 0)

Fig. 2. A sound procedure for solving the switching logic synthesis problem.

of polynomial equalities and inequalities (semi-algebraic sets) as the formulas.
Once a template is fixed, we can write Conditions (B1), (B2) and (B3) as an ∃∀
formula over the theory of reals [7]. Concretely, let p(U, X) be a polynomial and
p(U, X) ≥ 0 be the chosen template for searching for CInv. We restrict ourselves
to the case of a single inequality p(U, X) ≥ 0 for simplicity of presentation. For
example, u1x1 + u2x2 ≥ u3 is a linear template over 2 variables X = {x1, x2}
and 3 unknown coefficients U = {u1, u2, u3}. The following formula states that
there is a choice of values for U such that the resulting set, p(U, X) ≥ 0, is a
controlled invariant sufficient to prove safety.

∃U : ∀X : (X ∈ Init ⇒ p(U, X) ≥ 0) ∧ (p(U, X) ≥ 0 ⇒ X ∈ Safe) ∧
(p(U, X) = 0 ⇒

∨

i∈I

Lfip(U, X) > 0) (2)

Here Lfip denotes the derivative of p with respect to time t and is called the
Lie derivative of p with respect to the vector field fi. It can be symbolically
computed using the chain rule as,

Lfip :=
∑

x∈X

∂p

∂x

dx

dt
.

Note that we have used a test on the Lie derivatives to encode Condition (B3).
This test is equivalent to (B3) and allows us to verify it without requiring Fi.

If each of the vector fields, fi, is specified using polynomials (i.e., in each
mode, dX

dt is a vector of polynomials), then Lfip is simply a polynomial. If
Init and Safe are semi-algebraic sets, then the membership tests (X ∈ Init
and X ∈ Safe) can also be written as formulas using only polynomials. Thus
Formula 2 is a ∃∀ formula consisting only of polynomial expressions.

Corollary 1. If Formula 2 is valid in the theory of reals, then there is a con-
trolled invariant CInv that proves safety.

Corollary 1 immediately gives us a sound procedure that reduces the switch-
ing logic synthesis problem to solving of an ∃∀ constraint in the theory of reals.
We illustrate the procedure on the following example.



Example 2. Consider a train gate controller with two modes: In the about to
lower mode (1), distance x of the train from the gate decreases according to
ẋ = −50 and the gate angle g does not change. In the gate lowering mode (2),
we have ẋ = −50 and ġ = −10. The initial state is g = 90∧x = 1000. We wish to
synthesize the switching logic so that the system always stays in the safe region
x > 0∨ g ≤ 0. We assume a template of the form x+ a1g ≥ a2 for the controlled
invariant. Writing out Formula 2, we get:

∃a1, a2 : ∀x, g :
(x = 1000 ∧ g = 90 ⇒ x + a1g ≥ a2)∧ (Condition (B1))
(x + a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (Condition (B2))
(x + a1g = a2 ⇒ −50 + 0 > 0 ∨ −50 − 10a1 > 0) (Condition (B3))

Our solver returns a1 = −10, a2 = 50; that is, we get x − 10g ≥ 50 as the
controlled invariant. The resulting hybrid system has x − 10g ≥ 50 as the state
invariant for each mode. The guards for transitions are g12 = x − 10g ≥ 50 (as
dynamics for mode 2 points inwards everywhere on the boundary) and g21 =
x− 10g > 50 (dynamics for mode 1 never points inwards on the boundary, so no
boundary point gets assigned to g21). So, if the system starts in mode 1, it can
continue in 1 until x − 10g = 50 is true, whence the system will have to shift to
mode 2. The resulting hybrid system is safe and non-blocking.

4.1 A Variant Procedure

In the previous section, we approximated the semantic condition (A3) by the
constraint p = 0 ⇒

∨
i∈I Lfip > 0. As Corollary 1 shows, this is a sound approx-

imation. However, the requirement that a vector field points strictly inwards,
which is captured by Lfip > 0, is too strong and leads to incompleteness, which
leads to failure in finding suitable controlled invariant sets in practice. In this
section, we weaken Formula 2 so that it can be used to handle more examples.

We weaken Condition (B3) and use the following weaker version of Formula 2
to test if p(X, U) ≥ 0 is an inductive controlled invariant:

∃U∀X : (X ∈ Init ⇒ p(U, X) ≥ 0) ∧ (p(U, X) ≥ 0 ⇒ X ∈ Safe) ∧
p(U, X) = 0 ⇒

∨

i∈I

(Lfip(U, X) > 0 ∨ (Lfip = 0 ∧
∧

j #=i

Lfj p < 0)) (3)

Formula 3 says that at the boundary (p = 0) of the controlled invariant (p ≥ 0),
either some vector field, say fi, points strictly inwards (Lfip > 0), or exactly
one vector field is tangential (Lfip = 0) and all others point strictly outside
(Lfj p < 0). This condition helps us in proving that the tangential vector field
will keep the system inside the controlled invariant.

We can now replace the constraint in Step (1) of the procedure in Figure 2 by
Formula 3 and get a new and more powerful procedure for solving the switching
logic synthesis problem. We can again prove soundness of the technique.

Corollary 2. If Formula 3 is valid in the theory of reals, then there is a con-
trolled invariant CInv that proves safety provided ‖I‖ > 1.



We illustrate the advantage of weakening the constraint for the inductive test
by using the following example.

Example 3. Consider a system with continuous variable x and y and two modes.
In mode 1, ẋ = 0, ẏ = −1 and in mode 2, ẏ = 0, ẋ = −1. The initial state
is x = 10, y = 10 and the desired safety property is y ≥ 0. We start with the
template a1x + a2y ≥ a3. Formula 3 then becomes:

∃a1, a2, a3 : ∀x, g :
(x = 10 ∧ y = 10 ⇒ a1x + a2y ≥ a3)∧ (Condition (A1))
(a1x + a2y ≥ a3 ⇒ y ≥ 0)∧ (Condition (A2))
(a1x + a2y = a3 ⇒ −a1 > 0 ∨ (−a1 = 0 ∧ −a2 < 0)∨

−a2 > 0 ∨ (−a2 = 0 ∧ −a1 < 0) (Condition (A3))

We get a solution a1 = 0, a2 = 1, a3 = 1. So the invariant obtained is y ≥ 1.
Note that on the boundary of the controlled invariant, the dynamics in mode 2
moves along the boundary and that of mode 1 points outwards. The previous
method fails to find a controlled invariant for this example.

Example 4. Consider the train gate controller model from Example 2. Observe
that the controller synthesized is very conservative and forces the system to
switch from mode 1 to 2 in t ≤ 1 units. Applying the variant procedure on this
example, we get the following ∃∀ formula:

∃a1, a2 : ∀x, g :
(x = 1000 ∧ g = 90 ⇒ x + a1g ≥ a2)∧ (A1)
(x + a1g ≥ a2 ⇒ x > 0 ∨ g ≤ 0)∧ (A2)
(x + a1g = a2 ⇒ −50 > 0 ∨ (−50 = 0 ∧ −50 − 10a1 < 0)∨

−50 − 10a1 > 0 ∨ (−50 − 10a1 = 0 ∧ −50 < 0) (A3)

This time the solver returned a1 = −5, a2 = 50 as the solution, which gives
x − 5g ≥ 50 as the controlled invariant. So the resulting hybrid system has
x−5g ≥ 50 as the state invariant for each mode and the guards g12 = x−5g ≥ 50
and g21 = x − 5g > 50 are computed. In this case, the switch from mode 1 to
mode 2 could be delayed by as much as 10 units.

5 Synthesizing a Good Controller

In the previous section, two sound approaches were presented for solving the
switching logic synthesis problem. Neither method gives any guarantee on the
quality of the generated controller. A controller that minimally restricts the
dynamics – and consequently results in a system with a maximal reach set – is
preferable since it provides more opportunities for being refined later for other
requirements. In this section, we present heuristics that improve the quality of
solution generated by the two approaches presented in Section 4.

The size of the generated controlled invariant is a good measure of the quality
of the solution. We desire to synthesize the largest possible inductive controlled



invariant CInv because this would allow the maximal possible behaviors. It is
not immediately clear how this can be achieved in our approach. Intuitively, the
problem of finding the largest inductive controlled invariant is naturally seen
as an optimization problems, whereas in our approach of using constraints, we
are casting the problem as a satisfiability problem that asks for some solution
and not the “best” solution. We now present three different ways to address the
above problem.

5.1 Binary Search

The first solution for finding good controllers is based on iteratively searching for
larger controlled invariants. In the first iteration, we use one of the methods from
Section 4 to compute CInv. In each subsequent iteration, we add an additional
constraint that forces search for a larger set CInv. For example, if we use the
template p(U, X) ≥ 0, and the first iteration returns the controlled invariant
p(u, X) ≥ 0, then in the next iteration we use the template p′(v, X) := p(u, X) ≥
v (containing only one parameter v) and add an additional constraint v ≤ −1.
If the second iteration is successful, then the controlled invariant generated in
the second iteration will necessarily contain the controlled invariant generated
in the first iteration. In the case when we know a lower bound on v, say lb < 0,
then use can search for the optimal v by using a binary search in the interval
[lb, 0]. This approach can be used to find the largest controlled invariant in the
set {p(u, X) ≥ v | v ∈ [lb, 0], v an integer} in O(log ‖lb‖) iterations.

5.2 Encoding Optimality Constraints Directly

We now present a different technique for capturing the optimality requirement.
It is based on adding more constraints to the ∃∀ formula. Intuitively, the new
constraints say that at least one of the implications in the ∃∀ formula is tight.

A reasonable heuristic for identifying if CInv is maximally large is to test if
the boundary of CInv touches the boundary of the unsafe set Safe. Hence, we
introduce the following additional constraint in the original ∃∀ formula:

∂CInv ∩ ∂Cl(Safe) 4= ∅

This constraint can be written as an ∃ formula. Since we assume the sets CInv
and Safe are given using polynomial inequalities, the boundaries of these sets can
be expressed using polynomial equations and inequalities. The above constraint
corresponds to tightening Condition (A2).

Example 5. Consider the train gate controller from example 4. The controlled
invariant obtained by using the variant procedure on this example is x−10g ≥ 50.
Observe that this is not the largest controlled invariant possible because when
x = 0, this invariant implies g ≤ −5, whereas safety just requires g ≤ 0. If we
add an additional constraint for tightening condition A2, which in this case is
∃x1, g1 : x1 +a1g = a2∧x = 0 ⇒ g = 0, to the ∃∀ formula, we get x−10g ≥ 0 as
the controlled invariant. This is the largest controlled invariant for the template
x − 10g ≥ v.



Finally, consider Condition (A3) which encodes the boundary condition. In
Section 4, this condition was approximately captured in Formula 2 and For-
mula 3. Using elementary logical manipulations, the formulas encoding Condi-
tion (A3) – in either Formula 2 or Formula 3 – can be written as a conjunction
of implications of the following form

∧

j

(pj = 0 ∧ (
∧

k

qjk ≥ 0) ⇒ qj ≥ 0), (4)

where pj is the template and all qjk’s are Lie derivatives of pj with respect to
different dynamics. Recall that there is an outer ∃∀ enclosing quantifier.

Before we describe the constraint for encoding tightness of Condition (A3),
we need a few details on the procedure we use to solve the ∃∀ formulas from [7].
The ∃∀ formulas are solved in two steps. In the first step, the ∀ quantifier is
eliminated and replaced by new ∃ quantifiers. The result of the first step is a
purely existentially quantified formula which is solved using SMT solvers in the
second step. The first step is achieved using a variant of Farkas Lemma – which
is a technique for replacing ∀ by ∃ quantification.
Lemma 1. Consider one conjunct in the Formula 4 obtained by fixing j.

It is the case that ∃U : ∀X : (pj = 0 ∧
∧

k

qjk ≥ 0 ⇒ qj ≥ 0) (5)

if ∃U, νj ,λjk,λj , µj : λjk ≥ 0 ∧ λj ≥ 0 ∧ µj ≥ 0 ∧ (6)

(∀X : (νjp +
∑

k

λjkqjk + µj − λjqj = 0))

Lemma 1 can be used to eliminate the internal ∀X quantifier by noting that a
polynomial p is zero for all X , if and only if, all coefficients of all power products
of X in p are identically 0. We note that the term µj in Formula 7 is a “slack”
term. If Formula 7 is satisfied by µj = 0 and for some νj < 0, then we say that
the implication of Formula 5 is tight.

Now we are ready to state the constraint that enforces tightness on Condi-
tion (A3). This new constraint is not added to the ∃∀ formula. It is added to the
existential formula generated after the ∀ formulas have been eliminated using
Lemma 1. The constraint we add is the following:

φopt :=
∨

k

(νk < 0 ∧ µk = 0) (7)

If the existential formula, with φopt added, is satisfiable and we get a controlled
invariant p(u, X) ≥ 0, then we can show the obtained controlled invariant is the
“best possible” among the set {p(u, X) ≥ α | α ∈ R}.
Theorem 3 (Correctness). Let u be a set of values for variables U that satisfy
the existential formula φ∃ ∧ φopt , where φ∃ is the existential formula generated
from Formula 2 (or Formula 3) using Lemma 1. Then, there is no controlled
invariant p(u, X) ≥ α for any α < 0 that also satisfies the existential formula
generated from Formula 2 (or Formula 3) using p(u, X) ≥ α as a template.



Boolean Combinations of Polynomial Templates

In our presentation so far, we have restricted all discussion to simple templates of
the form p(U, X) ≥ 0. However, the two procedures described in Section 4 can be
generalized to the case when the template is a boolean combination of nonstrict
polynomial inequalities. When the template is a conjunction, say p1 ≥ 0∧p2 ≥ 0,
then Formula 2 generalizes to

∃U∀X : (X ∈ Init ⇒ p1 ≥ 0 ∧ p2 ≥ 0) ∧ (p1 ≥ 0 ∧ p2 ≥ 0 ⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 > 0 ⇒

∨

i∈I

Lfi(p1) > 0) ∧ (p1 > 0 ∧ p2 = 0 ⇒
∨

i∈I

Lfi(p2) > 0) ∧

(p1 = 0 ∧ p2 = 0 ⇒
∨

i∈I

Lfi(p1) > 0 ∧ Lfi(p2) > 0)

When the template is a disjunction, say p1 ≥ 0 ∨ p2 ≥ 0, then Formula 2
generalizes to

∃U : ∀X : (X ∈ Init ⇒ p1 ≥ 0 ∨ p2 ≥ 0) ∧ (p1 ≥ 0 ∨ p2 ≥ 0 ⇒ X ∈ Safe) ∧
(p1 = 0 ∧ p2 < 0 ⇒

∨

i∈I

Lfi(p1) > 0) ∧ (p1 < 0 ∧ p2 = 0 ⇒
∨

i∈I

Lfi(p2) > 0) ∧

(p1 = 0 ∧ p2 = 0 ⇒
∨

i∈I

Lfi(p1) > 0 ∨ Lfi(p2) > 0)

The soundness of the new formula can be shown by using Theorem 2. We can
similarly generalize Formula 3 for the case when the template is a disjunction
or conjunction of polynomial inequalities. The following example illustrates this
case.

Example 6. Consider a thermostat controller with two continuous variables tem-
perature (t) and power (p) and two modes on and off. In the on mode the dy-
namics is ṗ = +1 ∧ ṫ = p − 10 and in the off mode it is ṗ = −1 ∧ ṫ = p − 10.
The initial state is p = 10 ∧ t = 75 and the mode is on. We need to synthe-
size the switching conditions such that the system satisfies the safety invariant
≤ t ≤. In order to do this we start with the following template for the controlled
invariant : a1p2 + a2p + a3t + a4 ≥ 0 ∧ b1p2 + b2p + b3t + b4 ≤ 0. We apply
the above procedure for boolean combinations of polynomial templates to ob-
tain the ∃∀ formula. Solving the ∃∀ constraints we get a1 = −1, a2 = 20, a3 =
2, a4 = −172, b1 = 1, b2 = −20, b3 = 100, b4 = 23 as one of the possible solu-
tions. So the invariant is −(p−10)2

2 + t ≥ 72 ∧ (p−10)2

2 + t ≤ 77. The switching
conditions can be obtained from the controlled invariant by using the procedure
SynthSwitchLogic. It is easy to see that this is a safe controller. However it is
not the most liberal controller. If we add an additional constraint so as to tighten
the condition A2 (make the controlled invariant intersect with the boundary of
the safe set) then we obtain −(p−10)2

2 + t ≥ 70∧ (p−10)2

2 + t ≤ 80 as the controlled
invariant. In fact, this also happens to be the most liberal controller for this
system.



Extension and Future Work

Our basic approach can be adapted to handle natural variants of the switching
logic synthesis problem. First, note that we have assumed that each mode of the
multi-modal system has the complete state space as its given state invariant.
If the given modes have nontrivial state invariants, we can use them in our
constraints and the synthesized controller can potentially refine them. Second,
our synthesized controller could have zeno behaviors. The sound formulas in
Section 4 already reduces the possibility of synthesizing zeno hybrid systems.
The formulas can be made stronger to ensure synthesis of guaranteed non-zeno
hybrid systems.

We have a preliminary implementation of the approaches described in Sec-
tion 4, along with the optimality variants of Section 5. This implementation was
used to solve the examples in the paper and variants of these examples. We cur-
rently use the technique from [7] for solving the ∃∀ constraints over the reals.
Future work involves improving this technique using a symbolic nonlinear solver.
This will enable application to larger and more complex examples. One of the
issues in our approach is the process of choosing the template. We currently start
with linear and quadratic templates that have 1 to 4 conjuncts or disjuncts. Ob-
taining completeness results for classes of templates is an interesting direction
for future work.

6 Related Work

Constraint-based techniques have been used for safety verification of hybrid sys-
tems [7, 12, 11], wherein ∃∀ constraints are generated from the user-provided
invariant templates. The various approaches differ in the form of the invariants
considered, the technique used to generate the ∃∀ formula, and the approach for
solving it. In this paper, we present a constraint-based technique for the synthesis
problem that also involves generating and solving a ∃∀ formula from template
controlled invariants. The novelty of our work lies in the formalization of in-
ductive controlled invariant approach for solving synthesis problem and showing
that it can be reduced to solving ∃∀ constraints.

There is a lot of work on synthesis of controllers for hybrid systems, which
can be broadly classified into two categories. The first category finds controllers
that meet some liveness specifications, such as synthesizing a trajectory to drive
a hybrid system from an initial state to a desired final state [9, 8]. The second
category finds controllers that meet some safety specification. Our work falls in
this category. For a detailed discussion on the related work in this category, we
refer the reader to Asarin et.al. [2]. There are two main approaches for synthesis:
direct approaches that compute the controlled reachable states in the style of
solving a game [2, 13], and abstraction-based approaches that do the same,
but on an abstraction or approximation of the system [10, 6]. Some of these
approaches are limited in the kinds of continuous dynamics they can handle.
They all require some form of iterative fixpoint computation. Our work here,



based on synthesizing inductive controlled invariants, is an entirely different
approach for controller synthesis that does not require any fixpoint computation.

There is a large body of work in the area of program synthesis. These works
differ in the kind of program synthesized and the techniques used. The only
work that uses a constraint-based approach is that of Colon, who synthesises
imperative programs computing polynomial functions from partially specified
programs and their invariants [5]. In contrast, we present a synthesis approach
for the switching logic in hybrid systems using a constraint-based technique.

7 Conclusion

This paper formalized the notion of inductive controlled invariants and showed
that inductive controlled invariants can be used to synthesize controllers that
satisfy some safety requirements. Theoretically, this approach is sound and com-
plete. We adapted this approach to the problem of synthesizing switching logic
for multi-modal systems. We presented several sufficient conditions for a set to be
an inductive controlled invariant set for a multi-modal dynamical system. These
sufficient conditions were used to synthesize controllers using template-based
techniques, which were then adapted to generate optimal controlled invariants.
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A Proofs and Additional Examples

Theorem 1. For every switching logic SwL returned by SynthSwitchLogic, the
hybrid system HS(MDS, SwL) is non-blocking.

Proof: We prove this theorem by showing that ∀x ∈ ∂CInv and for every state
i there exists a state j such that x ∈ gij and there exists an ε > 0 such that
the system will stay in mode j for at least ε time. Let x be any point in ∂CInv.
From Equation 1, we know that there is a set bdryj such that x ∈ bdryj. Also
by definition, for all i, gij = bdryj and hence, x ∈ gij for all i. Furthermore, we
also know that ∀x ∈ bdryj : ∃ε : Fj(x, [0, ε]) ⊆ CInv. This implies that there is
an ε > 0 such that the system can stay in mode j for ε time. This proves the
theorem.

Theorem 2. If the procedure SynthSwitchLogic returns the switching logic SwL,
then the hybrid system HS(MDS, SwL) is safe. If HS = HS(MDS, SwL) is a safe hybrid
system that satisfies the min-dwell-time property and if Safe is a closed set, then
procedure SynthSwitchLogic will return a switching logic.

Proof: Soundness: Given a set CInv satisfying Condition (A1), Condition (A2)
and Condition (A3), Theorem 1 says that the switching logic SwL generated
from CInv results in a non-blocking hybrid system HS(MDS, SwL). Since the state
invariant CInv satisfies CInv ⊆ Safe (Condition (A2)), safety follows trivially
for the non-blocking hybrid system HS(MDS, SwL).

Completeness: Consider a safe hybrid system HS = {MDS, SwL} which has the
min-dwell-time property. Let R be the set of reachable states of HS. Consider
the closure Cl(R) = R ∪ Limit(R) of R. Clearly Init ⊆ Cl(R).

Next we show that Cl(R) ⊆ Safe. Since HS is safe, we know that R ⊆ Safe.
If Cl(R) 4⊆ Safe, then there exists an x ∈ Limit(R) such that x ∈ Safe. Since
Safe is an open set there exists an open ball around x which is completely
contained in Safe. But this implies that x /∈ Limit(R) which is a contradiction.
Therefore Cl(R) ⊆ Safe.

Next we show that Cl(R) satisfies Condition (A3).
Case 1 : Cl(R) = R. Consider a point x ∈ R. Let us assume that R does

not satisfy Condition (A3). So it is the case that ∀i ∈ I : ∀ε : Fi(xb, [0, ε]) 4⊆ R.
Since the trajectories are continuous and in C1, we have ∀i : ∃hi : ∀0 < t ≤ hi :
Fi(x, t) /∈ R. However this is not possible because R includes all the states that
are reached and so all trajectories cannot move out of R. Hence our assumption
is wrong and R satisfies Condition (A3).

Case 2 : R ⊂ Cl(R). Consider xb ∈ Cl(R)/R. By definition, xb is a limit
point of R. Again let us assume that Cl(R) does not satisfy Condition (A3);
that is, ∀i ∈ I : ∀ε : Fi(xb, [0, ε]) 4⊆ Cl(R). Since Fi(x, t) is continuous and in
C1 for all i, we have ∀i ∈ I : ∃hi : ∀0 < t ≤ hi : Fi(xb, t) ∈ Cl(R). Pick a time
t1 such that 0 < t1 ≤ hi and let yi,t1 = Fi(xb, t1). Since Cl(R) is an open set,
this means that there exists an ε > 0 such that an open ball centered at yi,t1 is
completely contained in Cl(R). Formally,

∀i ∈ I : ∃ε > 0 : ∀y : ‖y − yi,t1‖ ≤ ε ⇒ y ∈ Cl(R) (8)



Proposition 1 implies that for all i, Fi(x, t1) is continuous in x. So we have

∀i ∈ I : ∀ε > 0 : ∃δi,t1 > 0 : ∀x : ‖x− xb‖ ≤ δi,t ⇒ ‖Fi(x, t) − Fi(xb, t)‖ ≤ ε(9)

s Combining Formula 8 and Formula 9 we get that ∃δi,t1 > 0 : ∀x : ‖x − xb‖ ≤
δi,t1 ⇒ Fi(x, t1) ∈ Cl(R). Take δt1 = mini(δi,t1). This gives us

∃δt1 : ∀i ∈ I : ∀x : ‖x′ − xb‖ ≤ δt1 ⇒ Fi(x, t1) ∈ Cl(R) (10)

Since xb is a limit point of R, this implies that ∀δ > 0 : ∃x ∈ R : ‖x − xb‖ ≤ δ.
Combining this with Formula 10 we get ∀i ∈ I : ∃δt : ∃xi,1 ∈ R : Fi(x1, t1) ∈
Cl(R). Consider a dynamics i. Starting with t1 and yi,t1 we obtained a point
xi,1 ∈ R such that the trajectory staring from xi,1, moves out of R in time t1,
when evolved under dynamics i. Since no trajectory of the hybrid system moves
out of R, this means that the system would switch to some other dynamics j1
(choose the mode such that the system can stay in that mode for at least some
constant time ta as mentioned in the min-dwell-time property) at some time
t2 < t1. Let z1 = Fi(xi,1, t2) ∈ R and T (z1) = j1. Also let yi,t2 = Fi(xb, t2).
Starting with t2 and yi,t2 we repeat the above steps again with the only difference
that we take δt2 = min(mini(δi,t2),

‖xb−xi,t1‖
2 ). Let the new point obtained be

xi,2. So the the trajectory from xi,2 under dynamics i moves out of R in time
t2. So we will have a time t3 < t2 such that the system switches to dynamics j2
(according to the min-dwell-time property) at time t3. Let z2 = Fi(xi,2, t3) ∈ R
and T (z2) = j2. Also by construction we have ‖xi,2 − xb‖ < ‖xi,1 − xb‖.

Continuing in this way we obtain the sequence t1 > t2 > t3 . . . and xi,1, xi,2, . . ..
By construction the sequence (xi,k) converges to xb. The sequence (tk) is mono-
tonically decreasing and bounded below by 0. So it must converge to some point
tc. Suppose tc > 0. Therefore the sequence (zk = Fi(xi,k, tk+1)) converges to
Fi(xb, tc) (by continuity of Fi). Thus we have a sequence in R converging to
Fi(xb, tc). Therefore Fi(xb, tc) is a limit point of R and hence belongs to Cl(R).
Thus our initial assumption was wrong. There would be a dynamics for which
the trajectory xb would be contained in Cl(R) for at least some non-zero time.
Therefore cl(R) satisfies condition (A3).

If tc = 0 then the sequence (zk = Fi(xi,k, tk+1)) converges to Fi(xb, 0) = xb.
For each k, zk is a point where the system switches to dynamics T (zk) . By the
min-dwell-time property we know that the trajectory for dynamics T (zk) will
remain in R for at least some time ta. So we have

∀k : ∀0 ≤ t ≤ ta : FT (zk)(zk, t) ∈ R (11)

Now for all k, T (zk) ∈ I. Since I is finite, the sequence (T (zk)) must have a term
j ∈ I which repeats infinitely often. Let (z′

k) be a subsequence of (zk) such that
T (z′

k) = j. Since (zk) converges to xb, (z′
k) converges to xb and hence (Fj(z′

k, t))
converges to (Fj(xb, t)) (by continuity of Fj). For all t such that 0 ≤ t ≤ ta,
(Fj(z′

k, t)) is a sequence contained in R and therefore Fj(xb, t) is a limit point
of R. Thus ∀0 ≤ t ≤ ta : Fj(xb, t) ∈ Cl(R). Thus our initial assumption was
wrong. Therefore Cl(R) satisfies Condition (A3).



Thus in either case the procedure would have been able to synthesize the
hybrid system H(Cl(R)).

Corollary 1. If Formula 2 is valid in the theory of reals, then there is a controlled
invariant CInv that proves safety.

Proof: (Sketch) We only need to argue that the condition

(p(U, X) = 0 ⇒
∨

i∈I

Lfip(U, X) > 0)

implies Condition (B3). Let u be the value of the parameters that make For-
mula 2 true. Let y be a point on the boundary of the set {X | p(u, X) ≥ 0}.
Clearly, p(u, y) = 0. The above condition immediately implies that the following
formula evaluates to true: ∨

i∈I

Lfip(u, y) > 0

Without loss of generality, let i = 1 be such that Lfip(u, y) > 0 We claim that
Lf1p(u, y) > 0 implies ∃ε : F1(y, [0, ε]) ⊆ Interior(p ≥ 0). The corollary then
follows from Theorem 2.

We now prove the claim. Consider the value of p at the point Fi(y, ε), where
ε is a small positive constant. Let us denote by p(t) the value p(u, F1(y, t)). For
t close to 0, by Taylor expansion, we have (note that all derivatives of p with
respect to t are defined)

p(t) = p(0) +
dp(0)

dt
t + O(t2)

= 0 + (Lf1p)t + O(t2)

For sufficiently small t, we can ignore the higher-order terms and sinceLf1p(u, y) >
0, it follows that p(t) > 0 and hence ∃ε : F1(y, [0, ε]) ⊆ Interior(p ≥ 0).

Corollary 2. If Formula 3 is valid in the theory of reals, then there is a controlled
invariant CInv that proves safety provided ‖I‖ > 1.

Proof: (Sketch) We only need to argue that the condition

p = 0 ⇒
∨

i∈I

(Lfip > 0 ∨ (Lfip = 0 ∧
∧

j #=i

Lfj p < 0))

implies Condition (A3). Let u be the value of the parameters that make For-
mula 3 true. Let y be a point on the boundary of the set {X | p(u, X) ≥ 0}.
Clearly, p(u, y) = 0. The above condition immediately implies that the following
formula evaluates to true:

∨

i∈I

(Lfip > 0 ∨ (Lfip = 0 ∧
∧

j #=i

Lfj p < 0))



If this choice of u, y make some Lfip evaluate to a strictly positive real, then we
are done by Corollary 1. Therefore, assume that for all i ∈ I, Lfip ≤ 0. Since
the formula above is true, it follows that there is an i, say i = 1, such that

Lfip = 0 ∧
∧

j #=i

Lfj p < 0.

Since ‖I‖ > 1, we have Lf2p < 0, and hence, it follows that ∇(p)(u, y) 4= 0.
Hence, locally at point y, p(u, X) = 0 is an (n− 1)-dimensional manifold. Since
Lfj p < 0 for all j 4= 1 at the point y, it follows that there is an open (n − 1)-
dimensional hypersurface around y such that p is zero and Lfj p < 0 on all points
on this open hypersurface. Since the above formula is true, it also follows that
on all points on this open ball, Lf1p = 0. Using these facts, it can be shown that
∃ε : F1(y, [0, ε]) ⊆ {x | p(u, x) ≥ 0}.

Example 7 (Illustrating min-dwell-time property). The following hybrid system
does not have the min-dwell-time property: Mode 1 : ẋ = −1, ẏ = −3, Mode
2 : ẋ = −1, ẏ = +3. Safe region is x + y ≥ 0 ∧ x − y ≥ 0 ∧ x ≥ 0. Safety
invariant for the two modes is x − y ≥ 0 and x + y ≥ 0 respectively. Guard g12

is the region x − y = 0 and the guard g21 is the region x + y = 0. It is easy
to see that as the system state approaches (0, 0) the time between successive
switchings monotonically decreases, reaching 0 in the limit.


