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Abstract—A growing number of current web sites combine
active content (applications) from untrusted sources, as in
so-called mashups. The object-capability model provides an
appealing approach for isolating untrusted content: if separate
applications are provided disjoint capabilities, a sound object-
capability framework should prevent untrusted applications
from interfering with each other, without preventing interaction
with the user or the hosting page. In developing language-based
foundations for isolation proofs based on object-capability con-
cepts, we identify a more general notion of authority safety that
also implies resource isolation. After proving that capability
safety implies authority safety, we show the applicability of
our framework for a specific class of mashups. In addition
to proving that a JavaScript subset based on Google Caja
is capability safe, we prove that a more expressive subset of
JavaScript is authority safe, even though it is not based on the
object-capability model.

Keywords-Language-based Security, Capabilities, Opera-
tional Semantics, JavaScript.

I. INTRODUCTION

An increasing number of current web sites serve active
content (applications) from third parties, allowing rich in-
teraction between the embedding page and the embedded
applications. Some prominent examples are OpenSocial [1]
platforms, iGoogle [2], Facebook [3], and the Yahoo! Ap-
plication Platform [4], which allow third parties (users of
the site) to build JavaScript applications that will be served
to other users. While past research [5], [6] has analyzed
and improved commercially available methods for provid-
ing JavaScript isolation, one fundamental problem remains.
Specifically, as illustrated by previously unpublished limita-
tions of Yahoo!ADsafe [7] and Facebook FBJS [8] isolation
given in this paper, isolating key elements of a hosting page
from applications does not isolate applications from each
other. We therefore seek systematic, provably sound methods
for designing and verifying isolation between untrusted web
applications, when displayed as part of a hosting page that
interacts with these applications.

Inspired by Google Caja [9], a more complex and
sophisticated method than Yahoo! ADsafe or Facebook
FBJS, we investigate capability-based methods for providing
language-based isolation. Capability-based protection is a
widely known method for operating-system-level protec-
tion, deployed in such systems as the Cambridge CAP
Computer, the Hydra System, StarOS, IBM System/38, the

Intel iAPX423, the Amoeba operating system, and others
(see [10], [11]). The main idea is that code possessing a
capability, such as an unforgeable reference to a file or
system object, is allowed to access the resource by virtue of
possessing the capability. If a system is capability safe, and
a process possesses only the capabilities that it is explicitly
given, then isolation between two untrusted processes may
be achieved granting them non-overlapping capabilities.

An attractive adaptation to programming language con-
texts is the object-capability model [12], [13], which replaces
the traditional subject-object dichotomy with programming
language objects that are both subjects that initiate access
and objects (targets) of regulated actions. Some languages
that have been previously designed as object-capability
languages are E [14], Joe-E [15], Emily [16], and W7 [17].
Each of these is a restriction or specialized use of a larger
programming language, intended to provide capability safety
by eliminating language constructs that could leak authority.
Specifically, E and Joe-E are restrictions of Java, Emily is
a restricted form of OCaml, and W7 is based on Scheme.
However, no previous study of these languages related the
object-capability model to the semantics of programs in a
way that would support rigorous proofs of properties of
actual code.

Our original goal was to develop suitable foundations
and study whether Cajita [18] or other Caja-based sub-
sets of JavaScript are capability safe and therefore support
provably sound isolation between JavaScript applications. In
the process of formalizing concepts needed to characterize
reachability and isolation using operational semantics of
programming languages, we identified a subset of the object-
capability goals that we call authority safety. Authority
safety is sufficient to provide isolation, and also may be
achieved by languages that do not support the full object-
capability model.

Two access principles articulated in the object-capability
literature (e.g., [13], [19], [20]) are “only connectivity begets
connectivity” and “no authority amplification.” Intuitively,
the first condition means that all access must derive from
previous access, or, if two sections of code have disjoint
or “disconnected” authority, they cannot interfere with each
other. The second property restricts the change in authority
that may occur when a section of code executes and poten-
tially transfers authority to another: authority is limited to



initial authority, authority received through interaction, and
new authority over newly created resources. Since these two
principles are sufficient to bound the authority of executing
code, we formalize these two principles using operational
semantics of programs and say that a language is authority
safe if these two properties are guaranteed. We also give a
general proof, based on properties of operational semantics
that are satisfied by our example languages and many others,
that isolation may be achieved in authority safe languages.
As an application of this general theory, we identify a subset
of JavaScript and show that it is authority safe, and therefore
adequate to support isolation between untrusted applications.
This language Js is similar to a language presented in [6],
but with specific heap initialization code and with native
functions and native objects restricted to read-only access.

Although authority safety provides insight into to the
isolation problem, the object-capability model provides a
structured approach to managing authority that can be used
as the basis of programming language design. In other
words, authority safety provides safety conditions supporting
isolation, but not a programming model or enforcement
method. We therefore formalize a form of object-capability
model, focussing on reachability properties, in the context of
operational semantics of imperative languages and compare
capabilities with authority principles. Our main results about
this form of capability model are a relatively straightforward
theorem that capability safety implies authority safety, and
capability safety for a Caja-based subset of JavaScript. While
Caja uses a surface language Valija that is translated to a
capability safe subset, Cajita, of JavaScript, we focus on the
Cajita subset and leave analysis of translations into Cajita
for future work

The remainder of this paper is structured as follows.
In Section 2, we discuss isolation failures in ADsafe and
FBJS. Section 3 presents the semantic framework used
to define authority and capability properties precisely, and
defines isolation properties. Authority safety is defined and
its relation to the mashup isolation problem is formalized in
Section 4. Section 5 provides a formal definition of object-
capabilities, focussing on reachability, in the context of an
operational semantics for imperative code. Sections 6 and 7
contain the main language examples and safety proofs: our
authority safe subset, Js , and a Caja-based capability safe
subset of JavaScript. We discuss related work in Section 8
and give Concluding remarks in Section 9. Technical details
omitted due to space limitations can be found in [21].

II. ISOLATION FAILURES IN ADSAFE AND FACEBOOK

The need for formal analysis of authority- and capability
safety is motivated by some previously unknown vulnera-
bilities, described in this Section. These vulnerabilities, dis-
covered while analyzing the subsets of JavaScript enforced
by Yahoo! ADsafe and Facebook FBJS from an authority
safety perspective, would be prevented by authority (and/or

capability) tracking as developed in later sections of the
paper.

A. ADsafe

The ADsafe subset [7] is designed to protect hosting
pages from embedded advertising code by limiting access
to the DOM through a combination of static analysis and
syntactic restrictions. The advertising JavaScript code must
satisfy severe syntactical restrictions: for example it cannot
include the keyword this, which could otherwise be used
to access the global object and gain direct access to the
DOM. Restricted code instead must use an ADSAFE object
that serves as a library to mediate access to the DOM and
other page services.

Examining ADsafe from the point of view of a capability-
based approach, we found three problematic cases that let
untrusted ad code violate the ADsafe sandbox. We disclosed
these attack cases to Doug Crockford, who promptly fixed
the ADsafe platform.

The first problem we found is that a library function
exposed to the untrusted code was defined to return its this
parameter when invoked without arguments. The following
code is valid ADsafe code that escapes the sandbox, accesses
the global object and raises an alert “Hacked!”.

var a = dom.tag(”div”).ephemeral;
var asd = a().alert(”Hacked!”);

A sound definition of authority for ADsafe code would
immediately flag that the authority to read ephemeral and
to call it implies the authority to read the global object.

The second problem we found is related to an attack on
Facebook reported in [6], and exploits the JavaScript implicit
type conversion mechanism. The ADsafe dom.tag function,
which ad code can use to create any non-dangerous DOM
element, can be forced to create a script element, which
amounts to inject arbitrary code in the page.

var o = {toString:function(){o.toString =
function(){return ”script”};

return ”div”}};
dom.append(dom.tag(o).append(dom.text(”alert(’Hacked!’)”));

The attacks works because internally dom.tag had a structure
similar to if (o!=”script”){return document.createElement(o);},
and our object o is able to “lie” the first time it is converted
to a string, claiming to be a div element. The call to
document.createElement(o); has the authority to create any tag
element that o can evaluate to. A capability safe alternative
would be to limit such authority by construction, for example
using an idiom like

var tag= {”div”:”div”,”script”:”text”}[o];
return document.createElement(tag);

Finally, we found an example where a library function
exposed to the user returned an object that leaked the



authority to read directly DOM objects. From a DOM object,
untrusted code can get access to the enclosing document by
accessing the ownerDocument property.

var a = dom.text([”hacked”]);
a[0].ownerDocument.location=”http://attacker.com”;

These examples are do not indicate a fundamental flaw in
the ADsafe design, but do suggest the need for a systematic
formal analysis of isolation properties and the means to
achieve them.

B. FBJS

Facebook [3] is a well-known social networking web site
that allows users to store and share private and public in-
formation. A common way for Facebook users to interact is
through Facebook applications, which are retrieved from the
application publisher’s server, filtered by Facebook servers
and embedded in the user page. The scripts used by such
applications must be written in a subset of JavaScript called
FBJS [8] that restricts them from accessing arbitrary parts
of the DOM tree of the larger Facebook page.

While the details of the FBJS restrictions have been
studied in detail elsewhere [22], we shall here simply note
that a crucial part of these restrictions consist of preventing
untrusted code from accessing directly the global object, and
therefore all its properties that reference native JavaScript
objects (such as Object, Function, Object.prototype, etc.). In fact,
tampering with those objects amounts to tampering with
the execution environment of the whole browser window,
including the Facebook libraries and other user applications.

Authority leaks. While trying to define the authority
provided to FBJS expressions, we realized that the actual
FBJS implementation does not seem to take into account
the authority conveyed by the prototype-based inheritance
mechanism of JavaScript. The simple expression

var Obj = {};
var ObjProtToString = Obj.toString;

illustrates this problem, by saving in the variable
ObjProtToString the heap address of the toString function found
in the native Object.prototype. A FBJS application can now
read or write properties of that native function at will.

This example shows how, by traversing the prototype
chain, some FBJS code with no capabilities to modify native
objects can gain this capability without being granted the
authority by another principal. We illustrate the ramification
of this kind of capability leakage with two examples.

Communication channels between FBJS applications.
Two Facebook applications can easily (and unsafely) ex-
change data or code with each other, bypassing the FBJS
runtime altogether. The sending application can execute the
code

({}).toString.channel = ”message”;

<a href=”#” onclick=”break()”>Attack FBJS!</a>
<script>
function break(){

var f = function(){};
f.bind.apply =

(function(old){return function(x,y){
var getWindow = y[1].setReplay;
getWindow(0).alert(”Hacked!”);
return old(x,y)}

})(f.bind.apply)}
</script>

Figure 1. Exploit code.

The receiving one can read the data back from the channel

var a67890 message = ({}).toString.channel;

Note that channel is a newly created public property of the
shared function/object Object.prototype.toString. Essentially,
this examples shows a way for untrusted code to gain write
capabilities on the properties of the properties of native
prototype objects.

While this communication mechanism could be consid-
ered useful by application writers, it is not a documented
FBJS feature, and we do not believe was intended by the
FBJS designers. In the example above the two applications
are willing to communicate with each other. It is possible to
construct other examples where an application maliciously
alters the behavior of another without the latter being aware.
The next example supersedes that case, showing that this
leak of authority can be used to compromise the whole FBJS
runtime environment.
Compromising the Facebook sandbox. A programming
pattern common in both FBJS applications and runtime
libraries consists of calling functions through the standard
call and apply methods rather than directly (i.e. using f.call(o,v)
rather than o.f(v)). Another common idiom is to use a bind
method to curry the arguments of a function. What if a
malicious application redefines for example the apply method
of the bind function of Function.prototype? Then, the attacker
can automatically hijack all the function invocations arising
from expressions of the form f.bind.apply(e), and have full
access to e. This is indeed the basis of our attack that can
break the FBJS sandbox.

We found that when the Facebook page receives an AJAX
message, it invokes a function fitting that pattern, and it
passes as argument an object from which we can steal a
direct reference to the window object. The details of how
that can be done are complicated and not necessary for
the current discussion. The important point is that untrusted
code is not supposed to have the capabilities to modify such
internal functions, and should not be able to gain them.
In Figure 1 we report the exploit code of the malicious



Facebook application, which raises an alert dialogue with the
message “Hacked!”. The serious potential implications of
Facebook exploits have been discussed in the literature [23],
[22]. We described this problem to the Facebook team and
proposed a solution based on avoiding the nested call pattern
f.bind.apply(e) in FBJS libraries. The problem is currently
being fixed.

As we shall see below, a safe approximation of authority
for JavaScript terms would make these examples of insecure
behaviour very easy to spot.

III. ISOLATION FOR MASHUPS

We consider isolation between components supplied by
different principals, in a general language setting. As ex-
plained below, we assume that the programming language
has a deterministic operational semantics of a given form.
For concreteness, and to simplify some of the technical anal-
ysis, we consider a basic form of mashup based on sequential
composition that appears to provide the basic challenges
present whenever there is no preemptive scheduling. In this
context, the basic isolation problem, defined more precisely
in Section III-B is to ensure that during the execution of a
mashup, execution of one component does not access certain
security-critical resources of the execution environment or
interfere with the execution of any other component.

All the languages considered in the rest of this paper are
assumed to satisfy the conditions given in Section III-A. The
operational semantics of JavaScript developed in [5], [22],
[6] meets all of these conditions.

A. Assumptions

We assume a programming language L with a deter-
ministic small-step operational semantics S satisfying the
conditions below.
States, heaps and terms. We assume that a state S =
(H, t) consists of a heap H representing program memory
and a term t representing the program being executed. The
heap is assumed to be a mapping from heap addresses to
values (which could be language specific). Depending on
the structure of the heap and the language semantics, a term
may be able to write to or read from specific portions of
the memory denoted by a heap address. We refer to the
smallest such portions of memory as resources. We let R
be the set of all possible resources and write res(H) for
the set of resources associated with a given heap H . For
most languages, res(H) would be the set of allocated heap
addresses, but our analysis allows any definition of res(H)
as long as remaining conditions are satisfied.

We let TL be the set of all syntactically well-formed terms
of the language and let IL be a set of principals that may
supply terms to a mashup. The set of terms may include
user terms and intermediate terms that are used simply to
express the operational semantics and may produced during
the evaluation of user terms: TL := Tu

L ] Ti
L. The subterm

relation v is the usual partial order on the structure of terms.
Given a set of terms, the term contexts are syntactically
wellformed terms with one or more place holders [−],
usually generated by the grammar of the language.

Operational semantics. For any state S, we let heap(S)
and term(S) be its heap and term components. We assume
that the semantic evaluation rules are of two kinds

• Base Case rules: P(H,t)
H,t→K,s - where P(H, t) is a predicate

that must be true for the rule to be enabled.
• Contextual rules: H,t→K,s

H,C[t]→K,C[s] - where C[−] is an
evaluation context.

Given a state S, the trace τ(S) is the possibly infinite
sequence of states obtained evaluating S. We write S ↑ when
τ(S) is non-terminating and final(τ) for the final state if
trace τ is finite. We assume that for every final state S, the
term term(S) is always a value (i.e., cannot be evaluated
further). We partition the set of all possible values into the
set of normal values V and the set of error values E.

Writing Wf(S) to indicate that state S is well formed
(for example, every location named in term(S) has a value
in heap(S)), we assume that the set of wellformed states
is closed under evaluation. In addition, we assume that Wf
is compositional on terms (for example, Wf(H, t1; t2) iff
Wf(H, t1) and Wf(H, t2)) and depends on a wellformedness
predicate for heaps Wfh (in particular, Wf(H, t) implies
Wfh(H)). We write H for the set of all wellformed heaps
in the language L. We assume that the language semantics
provides an initial heap HL ∈ H, where computation begins.

Sequential composition. We assume that the language
supports sequential composition “;” with the semantics de-
scribed below, which is a generalization of the standard
semantics for most imperative languages with exceptions.
Given a wellformed heap H1 and terms t1 and t2 such that
Wf(H1, t1; t2) holds, either H1, t1; t2 diverges or there must
exist an evaluation context C1 and a heap H2 such that

• H1, t1; t2 →∗ H1, C1[t1]→∗ H2, C1[v]→∗ H2, t;
• if v ∈ V then t = C2[t2] for some C2;
• if v ∈ E then t = v.

Intuitively, the semantics may provide some bookkeeping
context C1[−] to evaluate t1 to a value v, and then it can
either continue with the evaluation of t2 (possibly in another
bookkeeping context C2[−]), or report an error.

B. The Isolation Problem

Intuitively, the isolation problem is to ensure that in any
mashup, execution of one component does not access certain
security-critical resources of the execution environment or
interfere with the execution of any other component. Since
this depends on the definition of mashup, we begin with
mashups. For simplicity, a mashup is defined by sequential
composition of mashup components, as follows.



Definition 1 (Basic Mashup): A basic mashup

Mashup((t1, id1), ... , (tn, idn))

is an ordered list of pairs of terms and principals, with
t1, ... , tn ∈ TL and id1, ... , idn ∈ IL. The program prog(m)
is the sequential composition t1; ... ; tn of the terms.

Given a mashup m = Mashup((t1, id1), ... , (tn, idn))
and a heap H with Wf(H, prog(m)), the sequence
states(H,m, idi) records the states in τ(H, prog(m)) that
arise from executing term ti provided by principal idi. If
the evaluation of a component tk leads to an error state or
diverges, then states(H,m, idi) is empty for the principals
with index i > k.

The sequence states(H,m, idi) may be defined more
precisely as follows. Let k be the least natural number with
term(final(τ(H, t1; ... ; ti)) 6∈ V, meaning that t1; ... ; ti does
not terminate normally.
• For i < k, states(H,m, idi) is the subtrace
Hi, Ci[ti] →∗ Hi+1, Ci[vi] of the computation
Hm, prog(m) →∗ Hm, C1[t1] →∗ H2, C1[v1] →∗
H2, C2[t2]→∗ H3, C2[v2]→∗ ... →∗ Hk, Ck[tk].

• Let states(H,m, idk) be the trace τ(Hk, Ck[tk]).
• For i > k, let states(H,m, idi) = ∅.
We will define isolation using the set of heap-affecting

actions performed during a single step of evaluation. Let
D = {r,w} have two tokens, indicating read and write
permissions, and let A := R× D be the set of all read and
write permissions on resources. For any heap H , the set of
heap-affecting actions is act(H) := res(H)×D, where (p, r)
(or (p,w)) denotes reading (or writing) the value at position
p. It is straightforward to partition act(H) into read and
write actions actr(H) and actw(H). We consider creation of
a new empty resource as a read action, and the initialization
of such resource as a write action.

Definition 2 (Can Influence): A write action a1 = (p,w)
can influence read action a2 = (p, r) on the same resource
p ∈ res(H), written a1 . a2. Set A1 of heap actions can
influence set A2, written A1 . A2 if ∃a1 ∈ A1, a2 ∈ A2

such that a1 . a2.

Definition 3 (Access): For any well-formed state S, acc(S)
is the set of all actions (p, r) or (p,w) such that resource p
is read or written, respectively, during the single evaluation
step from state S. The acc function is naturally extended to
traces and sets of states.

The set of all actions performed during the complete eval-
uation of S is therefore acc(τ(S)). Given a heap Hm, a
mashup m and a principal idk, the actions performed by the
component idk can be expressed acc(states(Hm,m, idk)).

Informally, isolation of mashups includes two properties:
(i) the actions performed by the individual components are
mutually non-influencing; (ii) the set of actions performed

by each component do not include certain forbidden heap
actions. The forbidden actions are generally actions ac-
cessing security critical resources specified by the hosting
environment for the mashup. In our analysis, assume a set
A∅ of forbidden heap actions.

Definition 4 (Isolation Property): Given a heap Hm, a
mashup m = Mashup((t1, id1), ... , (tn, idn)) such that
Wf(Hm, prog(m)), and a set A∅ of forbidden heap actions,
we have Isolation(A∅, Hm,m) if

1) ∀i, j : i < j ⇒
acc(states(Hm,m, idi)) 6. acc(states(Hm,m, idj));

2) ∀i : acc(states(Hm,m, idi)) ∩ A∅ = ∅.

Isolation approach. Since arbitrary mashups may not
satisfy the isolation property, it is useful to be able to enforce
mashup isolation by the following steps, also followed by
FBJS and ADsafe: (i) Perform a source-to-source translation
of each component ti thereby confining its behavior to a
restricted set of resources, and (ii) Set up an appropriate
initial environment so that the resources accessible to the
various components do not leak any access to the forbidden
resources and also do not act as communication channels
between the various components.

Writing enfi : TL → TL for a source-to-source translation
applied to the component supplied by principal idi, we can
define the isolation problem as follows:

Problem 1 (Isolation Problem): Given a set of forbidden
actions A∅, define an initial heap Hm and enforcement
functions enf1, ... , enfn, such that for all terms t1, ... , tn ∈
TL provided by principals idi, ... , idn, if Wf(Hm, prog(m))
holds, then Mashup((enf1(t1), id1), ... , (enfn(tn), idn)) sat-
isfies the isolation property Isolation(A∅, Hm,m).

IV. AUTHORITY SAFETY

In this Section, we identify properties based on object-
capability systems that are sufficient to ensure isolation,
as characterized in Section III. In programming languages,
the subjects that access resources are program terms, and
resources, as described in the previous Section, are the small-
est granularity readable/writable positions on the program
heap. We allow the authority of a subject to be any upper
bound on the set of actions that a subject can perform on
all resources. An important part of the isolation problem is
that the authority of a subject may change due to actions
performed by other subjects, if they share resources. For
example, a term with access to a linked list will gain
authority if another term adds to the linked list. Although
there is no prior precise semantic definition of capability
safe languages, we draw inspiration from a useful body of
work on object-capability models and their properties.

A fundamental question we want to answer is: What prop-
erty of capability safe languages makes them favorable for
enforcing isolation between mutually mistrusting subjects?



We propose AuthoritySafe as a candidate answer to this
question.

Authority safety. We say that a programming language is
AuthoritySafe if it satisfies the following properties associ-
ated with the object-capabilities model:

1) Only connectivity begets connectivity: A subject can
influence the authority of only those subjects whose
authority influences its own authority.

2) No authority amplification: The change in authority
of a subject due to actions performed by another
subject is bounded by the authority of the acting
subject.

Although derived from the object-capability model, these
properties are actually independent of the specific details
of the object-capability model, and can be independently
evaluated for a general sequential programming language. In
Section V, we define a form of capability safety and show
that capability safety implies AuthoritySafe.

After defining AuthoritySafe more precisely below, we
prove that for any two subjects t1 and t2 provided by
principals id1 and id2, if the initial authorities of t1 and
t2 are non-influencing, then the evaluation of term t1
cannot influence the evaluation of term t2 in the mashup
Mashup((t1, id1), (t2, id2)). This result allows us to show
that isolation may be achieved by performing an initial
source to source translation in order to ensure mutually non-
influencing executions of all the components of the mashup.

A. Formalizing AuthoritySafe

We define authority safety using the notion of “authority
of a term”. Authority is informally a function of a heap H
and a term t which expresses an over-approximation of the
heap actions that are performed in the trace of the state H, t.

Definition 5 (Valid Authority map): A map auth : H ×
TL → A is said to be a valid authority map if, for all
states H, t and K, s, whenever H, t → K, s, the following
holds:

acc(H, t) ⊆ auth(H, t) ∪ (act(K) \ act(H));
auth(K, s) ⊆ auth(H, t) ∪ (act(K) \ act(H)).

We now define AuthoritySafe, assuming a valid authority
map.

Definition 6 (AuthoritySafe property): A language L is au-
thority safe for authority map auth if, for all well-formed
states H, t and K, v with H, t →∗ K, v 6→ and v ∈ V,
and for all u ∈ TL such that Wf(H,u) and Wf(K,u), the
following holds:

1) Connectivity begets connectivity:

acc(τ(H, t)) 6. auth(H,u)⇒ auth(H,u) = auth(K,u)

2) No authority amplification:

acc(τ(H, t)) . auth(H,u) ⇒

auth(K,u) ⊆ auth(H,u)∪auth(H, t)∪(act(K)\act(H)).

B. Solving the Mashup Isolation Problem

We now show that the authority safety of a language helps
solving the mashup isolation problem. First of all we define
the authority isolation property, which formalizes the idea
that some terms do not have sufficient authority to influence
each other, or access forbidden properties.

Definition 7 (Authority Isolation): Consider an authority
safe language L with authority map auth. The terms
t1, ... , tn ∈ TL enjoy authority isolation with respect to
the wellformed heap H and the set of forbidden actions
A∅, denoted by AuthorityIsolation(A∅, H, t1, ... , tn), if the
following properties hold:

1) ∀i, j : i < j ⇒ auth(H, ti) 6. auth(H, tj).
2) ∀i : auth(H, ti) ∩ A∅ = ∅.

We now show that AuthorityIsolation implies Isolation for
a mashup.

Theorem 1: Consider an authority safe language L with
authority map auth. Given a set of forbidden actions A∅,
a mashup m = Mashup((t1, id1), ... , (tn, idn)), and a heap
Hm such that Wf(Hm, prog(m)) holds,

AuthorityIsolation(A∅, Hm, t1, ... , tn) ⇒
Isolation(A∅, Hm,m).

Proof Sketch: Consider the valid authority map auth
for which AuthoritySafe holds. In order to prove the
theorem, we define the sequence of heaps H1, ... , Hk

(k ≤ n) such that H1 = Hm and ∀i <
k : term(final(τ(Hi, ti))) ∈ V and Hi+1 =
heap(final(τ(Hi, ti))), and term(final(τ(Hk, tk))) ∈ E or
Hk, tk ↑.
Since Wf(Hm, t1; ... ; tn) holds, and wellformedness is
closed under evaluation, for all i, j we have

i ≤ j ⇒Wf(Hi, tj). (1)

From the definition of states and the definition of contexts
rules, for all i, k we have

i ≤ k ⇒ acc(states(Hm,m, idi))= acc(τ(Hi, ti)); (2)
i > k ⇒ acc(states(Hm,m, idi))=∅. (3)

From AuthoritySafe(auth), we have acc(τ(Hi, ti)) ⊆
auth(Hi, ti). Therefore, in order to prove
Isolation(A∅, H,m), it is sufficient to show, for all
i, j

1 ≤ i < j ≤ k ⇒ auth(Hi, ti) 6. auth(Hj , tj); (4)
1 ≤ i ≤ k ⇒ auth(Hi, ti) ∩ A∅ = ∅. (5)



From AuthorityIsolation(A∅, H, t1, ... , tn), we have

1 ≤ i < j ≤ k ⇒ auth(Hm, ti) 6 .auth(Hm, tj); (6)
1 ≤ i ≤ k ⇒ auth(Hm, ti) ∩ A∅ = ∅. (7)

Properties 4 and 5 will follow from Properties 6 and 7 if we
show that auth(Hi, ti) = auth(Hm, ti) for all i ∈ 1..k.
This follows by proving the stronger property

∀i, j ∈ 1..k : i ≤ j ⇒ auth(Hi, tj) = auth(Hm, tj)

by induction on i. �

Using Theorem 1, the isolation problem can be reduced
to defining an initial heap Hm and enforcement functions
enf1, ... , enfn, such that, for all terms t1, ... , tn ∈ TL

AuthorityIsolation(A∅, Hm, enf1(t1), ... , enfn(tn)) holds.

V. OBJECT CAPABILITY SYSTEMS

Building on the formal definitions of Section III, in this
Section we present a definition of capability safety in the
context of a sequential programming language. We focus
on reachability properties of the object-capability model,
leaving further formalization and analysis of the object-
capability model to later work.

Before proposing a rigorous definition of capability safety
we surveyed various existing capability safe languages.
A general capability system for a programming language,
informally, refers to the notions of resources, subjects, capa-
bilities and authority associated with capabilities. We have
already encountered resources and subjects in Section IV.
Capabilities are unspoofable and unforgeable entities which,
when possessed by a subject, grant it the ability to des-
ignate and access one or more resources in a specific
way. The authority associated with a capability is an over-
approximation of all the actions that can be performed by
exercising the capability in all possible ways. In a capability
system, the authority associated with a subject is essentially
the cumulative authority associated with all the capabilities
possessed by the subject. Additionally, the capability system
imposes specific restrictions on how the actions performed
by a subject can affect the resources and the authority
associated with every capability present in the system.

Object-capability systems are a very important special
case of capability systems. These systems contain a central
notion of object, which is an entity that encapsulates re-
sources together with the code for accessing those resources.
Objects essentially form the set of capabilities in such
systems. Each object may possess references to other objects
and therefore a reference graph of objects can be defined.
The authority associated with an object is determined by
the behavior of the code stored in the object. An upper-
bound on this authority is given by the union of the set of
resources contained in all objects that are reachable from
a given object in the reference graph. This notion is also
known as the topology-only bound on authority.

Formal definitions. Our formal definition of capability
system is close in spirit to the object-capability model.
Capabilities are entities which designate and carry read or
write (or both) permissions to access a specific resource. A
capability system is composed of a set of capabilities (C)
together with functions to obtain the resources designated
by each capability (desg), the privileges associated to each
capability (priv), the set of capabilities associated with a
term in the language (tCap), the set of all capabilities which
designate resources present on a particular heap (hCap)
and the authority associated with a capability (cAuth) in
a specific heap.

Definition 8 (Capability System): A capability system is a
tuple consisting of:
• a set C;
• a function desg : C→ R;
• a function priv : C→ 2D;
• a function tCap : TL → 2C;
• a function hCap : H→ 2C;
• a function cAuth : H× C→ 2A.

In order to denote a valid capability system, the tuple must
satisfy the following conditions:

1) Basic conditions: For all s, t ∈ TL, H ∈ H and c ∈ C
a) s v t ⇒ tCap(s) ⊆ tCap(t)
b) desg(c) ∈ res(H) ⇔ c ∈ hCap(H).
c) (c /∈ hCap(H) ∨ priv(c) = ∅) ⇒

cAuth(H, c) = ∅
d) (c ∈ hCap(H) ∧ priv(c) 6= ∅) ⇒
{desg(c)} × priv(c) ⊆ cAuth(H, c) ⊆ act(H)

e) Wf(H, t) ⇒ tCap(t) ⊆ hCap(H).
2) Topology-only bound for cAuth: For all H ∈ H and

c ∈ C, with C = tCap(H(desg(c)))
a) r ∈ priv(c) ⇒

cAuth(H, c) ⊆ {desg(c)} × priv(c) ∪⋃
c′∈C cAuth(H, c′)

b) r /∈ priv(c) ⇒
cAuth(H, c) ⊆ {desg(c)} × priv(c).

We now define the conditions under which a capability
system is safe. These conditions are essentially restrictions
on how a subject can affect the resources and the authority
of all capabilities.

Definition 9 (Capability Safety): A language L is ca-
pability safe with respect to the capability system
(C, desg, priv, tCap, cAuth, hCap) if for all wellformed
states H, t the following conditions hold:

1) The map auth(H, t) =
⋃

c∈tCap(t) cAuth(H, c) is a
valid authority map for the language.

2) For all wellformed states K, v such that H, t →∗
K, v 6→ ∧v ∈ V, and for all capabilities c ∈ hCap(K)

a) acc(H, t) 6 .cAuth(H, c) ⇒

cAuth(K, c) = cAuth(H, c) ∪ ({desg(c)} × priv(c));



b) acc(H, t) . cAuth(H, c) ⇒

cAuth(K, c) ⊆ cAuth(H, c) ∪ ({desg(c)} × priv(c))

∪(
⋃

c′∈tCap(t) cAuth(H, c′))∪(act(K)\act(H)).

Consider any capability safe language L with capabil-
ity system (C, desg, priv, tCap, cAuth). For any wellformed
heap H , we define the capability graph GC(H) as a graph
with nodes as capabilities from the set hCap(H) and an
edge between capabilities c1 and c2 iff r ∈ priv(c1) ∧ c2 ∈
tCap(H(desg(c1))). We denote by c1  H c2 a path from
node c1 to node c2 in the graph GC(H).

We now give a proposition which precisely states the con-
ditions under which an edge can be added to the capability
graph as the heap changes from H to K due to the evaluation
of some term t.

Proposition 1: Consider a capability safe language L with a
capability system (C, desg, priv, tCap, cAuth). Suppose there
exist wellformed states H, t and K, v such that H, t →∗
K, v 6→ ∧v ∈ V. One of the following must be true for
any two capabilities c1, c2 ∈ hCap(K) for which there is an
edge c1 → c2 in GC(K):

1) Connectivity by initial conditions: The edge c1 → c2
is present in GC(H).

2) Connectivity by introduction: c1, c2 ∈ hCap(H) and
∃c′1, c′2 ∈ tCap(t) : c′1  H c1 ∧ c′2  H c2.

3) Connectivity by parenthood: c1 ∈ hCap(H) ∧ c2 /∈
hCap(H) and ∃c′1 ∈ tCap(t) : c′1  H c1.

4) Connectivity by endowment: c1 /∈ hCap(H) ∧ c2 ∈
hCap(H) and ∃c′2 ∈ tCap(t) : c′2  H c2.

We are now ready to present the main result of this
Section, that capability safety implies authority safety.

Theorem 2: A capability safe language L with capability
system (C, desg, priv, tCap, cAuth) is authority safe with
respect to the authority map

⋃
c′∈tCap(t) cAuth(H, c′).

Proof Sketch: Since the language L is capability safe
for the system (C, desg, priv, tCap, cAuth), we know that
auth(H, t) :=

⋃
c∈tCap(t) cAuth(H, c) is a valid authority

map. We now show that AuthoritySafe holds for auth:
namely (i) that only connectivity begets connectivity and
(ii) that there is no authority amplification, according to
Definition 6.

Consider any states H, t and K, v such that H, t →∗
K, v 6→ and v ∈ V. Consider also any term u ∈ TL such that
Wf(H,u) and Wf(K,u). Below, we prove (i). The proof of
(ii) is similar.

Suppose acc(τ(H, t)) 6. auth(H,u). We need to show that
auth(H,u) = auth(K,u), that is implied by

∀c ∈ tCap(u) : cAuth(H, c) = cAuth(K, c). (8)

Since Wf(H,u) and Wf(K,u), for any c ∈ tCap(u)
we have c ∈ hCap(H) and c ∈ hCap(K). Since

acc(τ(H, t)) 6. auth(H,u), we have ∀c ∈ tCap(u) :
acc(τ(H, t)) 6. cAuth(H, c). Condition 8 now follows easily
from Condition (2a) of Definition 9 and Condition (1d) of
Definition 8, and we conclude. �

VI. Js IS AUTHORITY SAFE

In this Section we describe the language Js which is
a subset of ECMAScript 3 (E3 in brief), the ECMA-262-
compliant version of JavaScript [5]. E3 was the most recent
version of JavaScript when this paper was written, and it was
current when existing browsers implementations were devel-
oped. The latest version of the standard is ECMAScript 5,
which we will consider in future work. We define Js as a
minor variant of the language Jsub of [6] that satisfies the
assumptions of Section III-A.

A. Operational Semantics of E3

Given the space constraints, we only describe (informally)
the semantics of some of the unusual and interesting con-
structs of E3 which motivate the definition of Js .

Heaps and terms. We denote by Tu
E3

the set of all
terms derivable from the syntax of E3. Besides these terms,
the semantics introduces some internal terms, objects and
properties useful to express the reduction semantics of the
language. We denote the set of internal terms by Ti

E3
and

define TE3 = Tu
E3
] Ti

E3
. None of these internal terms,

objects and properties are visible in user code. We use the
symbol @ to distinguish internal terms from user terms.

In E3 everything, including functions, is represented as an
object. In the semantics, objects are represented as records
of values, where each property name is either a string m
or an internal identifier @x. We denote by prop(o) the set
of properties names defined for o. A heap H is a mapping
from heap addresses l to objects o. The set of allocated heap
addresses is denoted by dom(H).

Given a term t, we denote by namesi(t) the set of top-
level identifier names of t, and by namesp(t) the set of all
property names appearing in t (a property name p appears
in t if the expression o.p appears in t). We denote by P the
set of all identifier and property names. We partition P in
the sets Pu and Pi of the user and internal property names.
The identifier names present in a term always belong to the
set Pu.

We denote by HE3 the initial heap of E3. It contains native
objects for representing predefined functions, constructors
and prototypes, and the global object @Global that constitutes
the initial scope, and is always the root of the scope chain.
We denote by Fnat the set of heap addresses of all the
native functions and constructors. Due to space limitations
we do not list them here, but it is straightforward to obtain
them from the operational semantics of JavaScript [5]. For
example, in Fnat there is the eval function and the Object,
Function and Array constructors. We denote by lg the heap



address of the global object @Global, and by propnat(lg) its
set of native properties.

Program state and reduction rules. Program states in the
semantics are triples H, l, t (where l is the heap address of
the current scope object). The general form of a reduction
rule is <Premise>

S1→S2
, meaning that if a certain premise is

true then the state S1 evaluates to a state S2. The rules
can be further divided into two categories: transition axioms
and context rules. An atomic transition is described by
an axiom. For example, the axiom H,l,(v) −→H,l,v
describes that brackets can be removed when they surround
a value (as opposed to a proper expression, where brackets
are still meaningful). Contextual rules propagate such atomic
transitions. To satisfy the assumptions of Section III-A, we
represent a state H, l, t as a pair H, t where H adds a special
property @curr scp in the global object to store the current
scope l (denoted by scope(H)).

Scope and prototype lookup. The E3 stack is represented
by a chain of objects whose properties represent the binding
of local variables in the scope. Each scope object stores a
pointer to its enclosing scope object in an internal @Scope
property. JavaScript follows a prototype-based approach
to inheritance. In the semantics, each object stores in an
internal property @Prototype a pointer to its prototype object,
and inherits its properties.

Property access. In E3, each object property may be
associated with the attributes readonly, dontdelete, dontenum
that restrict the kind of access which can be granted on that
property. Property accesses can be explicit or implicit.

Explicit property access takes place when a term explicitly
names the property that is being read or written. There are
three such cases: (i) the reduction of identifier x (which
involves looking at objects on the scope chain, starting from
the current scope object until we find an object which has
the property x, either directly or in one of its prototypes); (ii)
the reduction of e.x, which results in the reduction of e[”x”];
(iii) the reduction of e1[e2], which involves accessing the
property name corresponding to the string representation of
the value obtained dynamically by evaluating the expression
e2.

Implicit property access takes place when the property
accessed is not named explicitly by the term, but is accessed
as part of an intermediate reduction step in the semantics.
For example, the length property is accessed with the push
function of the Array.prototype object.

These accesses are important when the underlying object
is the global object. We denote by Pnat the set of all property
names that can be accessed implicitly, defined as:
{0,1,2,...}

⋃
{ toString, toNumber, valueOf, length,

prototype, constructor, message, arguments, Object, Array,
RegExp, String, Number, Boolean, Error, EvalError, RangeError,
ReferenceError, SyntaxError, TypeError}.

In E3, the global object itself can only be accessed by

using this or calling the methods valueOf of Object.prototype,
or concat, sort or reverse of Array.prototype.

B. The Js subset

We now define the Js subset of E3, so that it enforces
blacklisting (and whitelisting), and it restricts code to access
only those properties of the global object which appear ex-
plicitly as identifiers in the code. We shall see that Js enjoys
the AuthoritySafe property, and helps in defining suitable
enforcement functions to solve the isolation problem.

We begin by defining the language Ju for writing user-
level programs. Next, we define Js by adding runtime checks
to the Ju property access mechanisms. Both Ju and Js are
parametric on a set of black-listed property names B ⊆ Pu.

Definition 10 (JuB): Given a blacklist B, the subset JuB

is defined as E3 minus: all terms containing identifiers or
property names from the set B, all terms containing one or
more of the identifiers {eval, Function, contructor}, all terms
containing identifiers beginning with $.

The language JuB forbids access to blacklisted property
names by the identifier mechanism x and the property access
mechanism e.p. Given any term t ∈ JuB, we define enf(t)
as the term obtained by applying Rewrite rules 1 and 2
reported below (originally defined in [6]), which control the
properties accessed via the expression e1[e2], and prevent
the term this from evaluating to the global object.

Rewrite 1: Rewrite every occurrence of e1[e2] in a term by
e1[IDX(e2)], where,

IDX(e2) =
($=e2,{toString:function(){return($=$String($),CHK $)})

CHK $ = ($BL[$] ? ”bad”:
($ == ”constructor” ? ”bad”:
($ == ”eval” ? ”bad”:
($ == ”Function” ? ”bad”:
($[0] == ”$” ? ”bad”:$))))))

where $String refers to the original String constructor, $BL
is a (blacklisted) global variable containing an object with
all blacklisted property names initialized to true, and $ is a
reserved variable name.

Rewrite 2: Rewrite every occurrence of this by the expres-
sion (this==$g?null;this), where $g is a blacklisted global
variable, initialized with the address of the global object.

Definition 11 (JsB): Given a blacklist B, the subset JsB is
defined as {enf(t)|t ∈ JuB}.
We denote by TJsB the set of all user and internal terms of
JsB.
Operational Semantics of JsB. The operational semantics
of JsB is mostly the semantics of E3 projected on the
terms in JsB, but with a different initial heap, and read-only
internal properties.



Initial heap. The correctness of Rewrite rules 1 and 2
depends on the heap containing specific $-prefixed variables
with the appropriate values. These are initialized by execut-
ing the following code.

Initialization Code 1: Init BL.

var $String = String; var $= ””; var $g = this;
var $BL = {p1:true;...,pn:true};

where p1,... ,pn are the blacklisted property names.

As described earlier, a handle to the global object can be
obtained by calling certain native functions, such as valueOf,
sort, concat and reverse. Therefore, we wrap these functions so
that the return value is never the global object. For example,
in the case of valueOf we use the following initialization code.

Initialization Code 2: Init valueOf.

$OPvalueOf = Object.prototype.valueOf;
$OPvalueOf.call = Function.prototype.call;
Object.prototype.valueOf =

function(){var $= $OPvalueOf.call(this);
return ($==$g?null:$)}

Init sort, Init concat and Init reverse are defined similarly by
considering the sort, concat and reverse methods respectively.

Finally, we wrap each native function f ∈ Fnat by
executing the following code.

Initialization Code 3: Init f.

$f = f;
$f.call = Function.prototype.call;
f = function(){var $this = (this==$g?{ }: $this);

return $f.call($this)}

We denote by Init Fnat, the sequential composition of
initialization codes Init f for all f ∈ Fnat. We can now define
the initial heap for the language Js .

Definition 12: The initial heap HJsB for the language is
defined as the terminal heap obtained by executing in the
heap HE3 the term

Init BL; Init valueOf; Init sort; Init concat; Init reverse; Init Fnat.

Readonly native properties. In the initial heap HJsB , we
require that for all heap addresses l ∈ dom(HJsB) \ {lg},
all the properties p ∈ Pu of the object HJsB(l) have
the readonly attribute set. This is a restriction imposed on
the semantics of JsB and its main purpose is to prevent
a component from being able to use globally accessible
locations as communication channels.

Wellformedness. We say that a heap H is wellformed for
the language JsB iff it is wellformed for the language E3

and it can be obtained by evaluating the initial heap HJsB

using a term in TJsB . Formally, Wfh
JsB(H) is defined as

Wfh
E3

(H)
∧
∃s, t ∈ TJsB : H, s ∈ τ(HJsB , t).

Similarly, a state H, t is wellformed iff it is wellformed
according to E3, H is wellformed according to JsB and
t is in TJsB . Formally, WfJsB is defined as

WfE3(H, t)
∧

Wfh
JsB(H)

∧
t ∈ TJsB .

In the rest of this Section we use accJsB to denote the set
of heap actions that occur during a single step transition of
a wellformed state in the language JsB.

C. Authority Map for JsB

We now present an authority map for JsB that makes the
language authority safe. We begin by defining the notion of
resources. A resource in JsB is a pair of heap address and
a user property name. The set of allocated resources for a
given heap H are the pairs (l, p) such that l is an allocated
heap address and p ∈ Pu is any property name. Formally,

R := L× Pu res(H) := dom(H)× Pu

where L is the set of all possible heap addresses.
The set of all possible actions is A := R × D. In order

to simplify notation, in the rest of this Section we will also
denote actions as triplets (l, p, d) where d ∈ D.

The authority of a state denotes an over-approximation of
the set of all actions that it can perform on the allocated
resources during its reduction. Since JavaScript is memory
safe, we know that the set of heap addresses that can be
accessed during the reduction of a state S are the ones that
are reachable from the current scope address. Rewrite rules 1
and 2 guarantee that a term can never access a blacklisted
property name. Moreover, all properties of native objects
(except for the global object) are read-only, preventing write
actions to be executed. First, we informally describe the
authority of a state without taking into account the read-
only restriction on native properties. Then, we appropriately
subset the authority of each state to account for this restric-
tion.

Definition 13 (Heap Graph): Given a heap H , we denote
by GH(H) a directed graph consisting of heap addresses as
nodes and an edge from node li to lj labelled with p ∈ P iff
H(li).p = lj (note that p may also be an internal property
name).

Given a heap graph GH, a heap address l and a set of
property names P ⊆ P, we denote by reach(GH, l,P) the
set of heap addresses reachable from l by accessing property
names from P . We define the subgraph proj(GH, l,P) as the
graph defined by deleting all outward edges from l which
have edge labels outside the set P .



Without accounting for the read-only attribute on native
properties, the authority map for a state H, t can be infor-
mally described as the set of all actions (l, p, d) such that
one of the following holds (recall that lg is the heap address
of the global object and Pnat is the set of property names
that can be implicitly accessed):

1) d = r; l = lg; p is a property from the set Pnat;
2) d = r; l 6= lg and l is reachable from the global object

in the graph GH(H) by accessing non-blacklisted
property names or property names in Pnat; p is a non-
blacklisted user property name or a property name in
Pnat;

3) l = lg; p is an identifier name appearing in the term
t or in a function stored at a heap address reachable
from the current scope object in the graph GH(H);

4) l 6= lg and l is reachable from the current scope object
in the graph GH(H) by accessing non-blacklisted
property names or property names in Pnat; p is a non-
blacklisted user property name or property name in
Pnat.

To account for the read-only attribute, we subtract the actions
(dom(HJsB) \ {lg} × Pu) × {w} from this authority map.
The formal definition of the authority map authJsB is given
below. A1, A2 and A3 correspond to points (1), (2) and (3)
in the above paragraph and fH(∅, ∅,L) corresponds to point
(4).

Definition 14 (authJsB ): Consider a black list B and a
wellformed state H, t. The authority map authJsB(H, t) can
be defined as

(A1 ∪ A2 ∪ A3 ∪ fH(∅, ∅,L)) \ A 6w

where
L =

(
L ∩ {H(lg).p | p ∈ namesi(t) ∪ Pi}

)
∪ {l | l ∈ t},

A6w =
(
dom(HJsB) \ {lg} × Pu

)
× {w},

A1, A2 and A3 are defined as follows

A1 := ({lg} × Pnat)× {r}
GH

1 := proj(GH(H), lg,Pnat)
L1 := reach(GH

1 , lg, (P \ B) ∪ Pnat)
A2 := (L1 × Pnat)× {r}
A3 := ({lg} × (namesi(t) \ B))× D,

and for sets P1,P2 of property names and set L of heap
addresses, fH(P1,P2,L) is computed by the following pro-
cedure:

1) Ai := ({lg} × (P1 \ B))× D
2) GH

1 := proj(GH(H), lg,P1)
3) L2 := reach(GH

1 ,L, (P \ B) ∪ Pnat)
4) Aii := ((L2 \ {lg})× ((Pu \ B) ∪ Pnat))× D
5) L3 := {l | l ∈ L2 ∧ IsFunc(H(l))}
6) P3 := {namesi(H(l).@body) | l ∈ L3}
7) if P3 ⊆ P2 = ∅, return Ai ∪ Aii

8) L4 := {l | ∃p ∈ P3 : H(lg).p = l}
9) else return Ai ∪ Aii ∪ fH(P3 \ P2,P2 ∪ P3,L4),

where for an object o, IsFunc(o) is true iff o is a user-
function object.

Theorem 3: For all blacklists B ∩ Pnat = ∅, authJsB is a
valid authority map and AuthoritySafe(authJsB) holds for
the language JsB.

Proof Sketch: In order to prove this theorem, we use an
invariant Good(S) on all wellformed states S. We prove that
Good(S) holds for all initial states S and Good is preserved
under reduction. The predicate Good(S) is very similar to
the predicate GoodJsub

(H, t) defined in [6]. An example of a
property implied by Good(S) is that for all property names
p present in term(S), p /∈ B. We split the proof of the main
theorem into two parts.

Part 1: authJsB is a valid authority map. In order to prove
this property it is sufficient to show that Good(H, t) and
H, t→ K, s imply
• accJsB(H, t) ⊆ authJsB(H, t) ∪ (act(K) \ act(H))
• During the single step reduction of H, t, if a heap

address l′ is written to property p (p ∈ P) of an object
at address l, (p could be an internal property) then
fK(∅, ∅, l′) ⊆ authJsB(H, t) ∪ (act(K) \ act(H))

• authJsB(K, s) ⊆ authJsB(H, t) ∪ (act(K) \ act(H))
using the function fH of Definition 14.
All these conditions can be proved by induction on the set
of reduction rules in the operational semantics of Js . The
base case follows by a cases analysis over the transition
axioms and the inductive case follows from a contradiction
argument on the context rules.

Part 2: AuthoritySafe(authJsB) holds. In order to prove this
theorem we make use of the following property that can be
derived from the operational semantics of JsB:

For all wellformed states H, t and K, v such that H, t→∗
K, v 6→, for all l ∈ dom(H) ∩ dom(K), and p ∈ Pi \
{@curr scp,@scope}:

H(l).p = K(l).p
∧
K(lg).@curr scp = lg

∧
@scope ∈ prop(K(l))⇒ K(l).@scope = H(l).@scope.

The proof for AuthoritySafe(authJsB) is split in two parts.
The proof that only connectivity begets connectivity follows
by a contradiction argument. The proof that there is no
authority amplification follows by a case analysis. �

D. Solving the Isolation Problem with Js

According to Theorem 1, in order to solve the
isolation problem for a given set of forbidden
actions A∅, it is sufficient to define a blacklist Bm,
an initial heap Hm and an enforcement function
enfk : TJsBm → TJsBm for each k, such that
AuthorityIsolation(A∅, Hm, enf1(t1), ... , enfn(tn)) holds
for any choice of terms t1, ... , tn ∈ TJsBm .



We choose the initial heap Hm to be defined as HJsBm . For
each principal idk and term t ∈ Js , we define enfk(t) as the
the term obtained by replacing each identifier x in namesi(t)
with idk::x, where :: denotes string concatenation. There-
fore, we have namesi(enfk(t)) = {idk::x | a ∈ namesi(t)}.
We use this prefixing in order to separate the namespaces of
the components controlled by different principals. Finally,
we define Bm = {p | ∃l, d : ((l, p), d) ∈ A∅}, where A∅ ⊆
act(HJsB) and moreover, for any action a = ((l, p), d), we
assume (i) if a ∈ A∅ then p /∈ Pnat and p ∈ Pu; (ii) if
a /∈ A∅ then also ((l, idk::p), d) /∈ A∅ for all k. Condition
(i) is important because the properties in Pnat are implicitly
accessed and hence the user has authority over them by
default.1 Condition (ii) ensures that any of these prefixed
identifier names do not clash with the forbidden identifier
names. Practically, these conditions are likely to be satisfied
by a natural definition of Bm.

Theorem 4: For the blacklist Bm, initial heap Hm

and enforcement functions enf1, ... , enfn defined above,
AuthorityIsolation(A∅, Hm, enf1(t1), ... , enfn(tn)) holds.

Proof Sketch: In order to prove the theorem, we show that

A. ∀i, 1 ≤ i ≤ n : authJsBm (Hm, ti) ∩ A∅ = ∅.
B. ∀i, j, 1 ≤ i < j ≤ n :

authJsBm (Hm, enfi(ti)) 6. authJs(Hm, enfj(tj)).

Condition A. We prove this condition by contradiction.
Suppose there is a component ti and an action (l, p, d) ∈
A∅ (where d is either r or w) which is also present in
authJsBm (Hm, enfi(ti)). From definition of authJsBm , it is
clear that for all (l, p, d) ∈ authJs(Hm, enfi(ti)), p /∈ Bm

or p ∈ Pnat. By the assumptions on A∅, both these cases
are not possible, and we have a contradiction. Therefore,
condition A must hold.

Condition B. We prove this condition by contradic-
tion. Suppose there exist actions (l, p,w) and (l, p, r) such
that (l, p,w) ∈ authJsBm (Hm, enfi(ti)) and (l, p, r) ∈
authJsBm (Hm, enfj(tj)) and i < j. From the definition of
authJsBm , for the heap Hm = HJsBm , the only object on
which a term can have write authority over some property
is the global object. So l = lg and p ∈ namesi(enfi(ti))
or there exists a user function present in the heap Hm

whose body has p as an identifier. However, since Hm is
the initial heap the latter is not possible. Therefore we have
p ∈ namesi(enfi(ti)). Since (lg, p, r) ∈ authJsBm (Hm, tj),
either p ∈ Pnat or p ∈ namesi(enfj(tj)). Since p ∈
namesi(enfi(ti)), p = idi::p′ for some p′. Therefore p /∈
Pnat. This implies p ∈ namesi(enfj(tj)) which leads to a
contradiction, and we conclude that condition B must hold.
�

1Note that all such authority is read-only and therefore cannot be used
by one component to influence another (see Points 1 and 2 in the informal
description of authority for JsB in Section VI-C).

VII. CAJITA IS CAPABILITY SAFE

The Google Caja [9] project is one of the main ef-
forts, together with FBJS and Web Sandbox, to provide
safe mashups that integrate untrusted JavaScript code. At
the basis of Caja is Cajita, an object-capability subset of
JavaScript. In this Section, we shall focus on Cajita, and
show that as characterized here, the language is capability
safe.
Google Caja. In the Caja framework, the mashup host
defines a container page that embeds the Caja libraries and
follows predefined guidelines to tame any other function
or object that should be exposed to the untrusted mashup
components. Taming is the process of making arbitrary
pieces of JavaScript compatible with a safe subset, in order
to offer additional mashup-specific functionalities without
compromising the isolation of the untrusted components.
The code of the untrusted components must belong to the
Cajita subset of JavaScript, which is designed to be a safe
object-capability language. Cajita is the core component of
the Caja framework. Cajita can be used effectively to write
mashup components from scratch, but it is too different from
JavaScript to port existing components easily. Hence, legacy
components can be written in Valija, which is very similar
to JavaScript, and can be automatically compiled to Cajita.
Compiled Valija code introduces a hefty performance cost
compared to code written directly in Cajita.

A. Core-Cajita

The design principles underlying Cajita are described in
several documents available online [9], but no formal specifi-
cation is available. Hence, the precise details of its definition
must be inferred from the publicly available implementation
[9].

Besides the basic isolation principles, the Cajita im-
plementation contains details related to several practical
concerns that go beyond the scope of this paper. Here we
present a concise description of what we understand to be
the core Cajita language, abstracting away from features that
are not essential for the isolation analysis, and simplifying
many details of the enforcement mechanisms used to im-
plement Cajita in JavaScript. Hence, our results concern the
design of Cajita, rather than its current implementation. In
particular, we remove from Cajita certain constructs (such
as function declarations) that do not increase expressivity,
but complicate the definitions. We define what constitutes
the code of a valid Cajita module, making explicit some
rewriting steps that would normally be hidden from the
module programmer.

Definition 15 (Cajita Module): A Cajita module is a
JavaScript expression of the form function (y˜){s} such that

1) s does not contain the statements with(e){s}, e in e,
function x(x˜){s};

2) s does not contain the expressions e.p, e[e], this;



3) y˜ are the free variables of s;
4) s cannot assign to any free variables (expressions like

z = e for z∈y˜ are not allowed);
5) s may read and write properties of objects using the

predefined functions getPub(e,e) and setPub(e,e,e), and
may prevent further modification of objects using the
predefined function freeze(e).

We now explain the rationale behind this definition.

No global variables. In order for several modules to coexist
without interference, and to prevent direct access to the
native JavaScript objects, Cajita code is not allowed to access
global variables. Instead, the container code has control over
which global variables can be passed to each module. Each
module is embedded in a function that takes as parameters
all the free variables of the module (which for Cajita code
can be statically determined). Values for such free variables
must be passed by the container explicitly at runtime. For
example, a module s with free variables x and y will be
embedded in the function function(x,y){s}. Each attempt to
write to x can be detected statically, and causes the module
to be rejected.

Controlling the read/write attributes of object properties.
The code of a Cajita module cannot use the expressions o.p
or o[”p”] to access the property p of object o. Instead, it
must use the function getPub(o,p). This function implements
a reference monitor that identifies the heap address of object
o, the actual runtime value of property p, and based on an
internal policy decides whether or not to grant read access
to the property. The case of writing to object properties is
analogous, and uses a function setPub. Hence, the read and
write attributes of any object property are under the control
of the Cajita runtime system. The only exception here is that
of local variable declarations inside a Cajita module. These
amount to creating and writing to properties of an activation
object of a function call. These property writes, although not
interposed by setPub, do not pose any threat as they remain
local to the Cajita module.

Functions are not objects. In a Cajita module, functions
are first-class values, but are not objects with properties: the
getPub and setPub functions prevent read or write access to
properties of those objects that are actually functions.

Whitelisting. Certain properties of objects, such as the
Mozilla extension proto can be used to compromise
the enforcement mechanisms of Cajita. For that reason, by
default, all properties that are not known to belong to a
white-list of harmless properties are not readable or writable
on Cajita objects.

Freezing objects. By default, all the whitelisted properties
of a Cajita object are readable and writable. A Cajita module
can use the function freeze(o) to affect the policy of the
setPub function so that o becomes read-only, and can be
safely shared with other modules.

B. Core-Cajita is Capability Safe

We now present a capability system for the core of Cajita,
and show that the system is capability safe in accordance
with Definition 9. We use the same notations and definitions
used for Js .

In the capability system of Cajita, as in the analysis of Js ,
resources are pairs of heap addresses and property names.
Formally, R := L × Pu and res(H) := dom(H) × Pu.
Capabilities are also pairs of heap addresses and property
names. The capabilities associated with a term are the
cartesian product of all the heap addresses occurring in the
term with all possible property names. We associate any
possible property names to each heap address in order to
account for all the authority that a subject may be gain via
dynamic generation of property names (in other words to
prevent authority amplification). Given any capability (l, p),
function desg is defined as the identity function. If l is not an
activation object, the function priv is defined using the getPub
and setPub functions which respectively control whether
H(l).p is readable and/or writable. If l is an activation
object then for all property names p, priv(l, p) = D. If
H(l).p is not readable then getPub(l,p) returns null and if it
is not writable then setPub(l,p,v) returns false. In general the
value returned by getPub(l,p) and the final heap obtained after
executing setPub(l,p,v) depend on the initial heap. Henceforth
we make this dependency on a heap H explicit by the
notation getPubH and setPubH . Whenever the property p
is in Pnat (set of implicitly accessible property names),
getPubH conservatively grants reading permissions to any
object. By virtue of the semantics of Cajita, the restrictions
imposed by getPubH and setPubH can only increase as the
heap evolves during the evaluation of a term. The authority
associated with a capability c is defined as the set of actions
(desg(c1), priv(c1)) for all capabilities c1 reachable from
c. The set of capabilities c1 reachable from a particular
capability c is defined as the set of nodes reachable from
c in the capability graph. The capability graph is a graph
with capabilities as nodes, and an edge from c1 to c2 iff
r ∈ priv(c1) and c2 can be obtained by reading a resource
designated by c1. Definition 17 contains a more formal
description.

In full JavaScript, using the this mechanism, a native func-
tion can perform read or write operations on the global ob-
ject or certain other scope objects that are passed implicitly.
These actions are not accounted for in the above definition of
authority. Moreover, if a term can get hold of the native eval
or Function constructor, then it can use the keyword this to
gain unrestricted authority over the global object. Therefore,
in order for the authority map defined above to be valid, we
need to impose some restrictions on the functions getPub and
setPub. Let F∅

nat denote the set of heap addresses of all native
functions, such as Array.prototype.push, which can potentially
involve a write action on the this object passed to them (It is



straightforward to derive F∅
nat from the operational semantics

of JavaScript). Let leval and lFunction denote the addresses of
the eval function and Function constructor, let lvalueOf denote
the address of the valueOf method of Object.prototype and let
lsort, lconcat, lreverse denote the addresses of the sort, concat
and reverse methods of Array.prototype.

Definition 16 (Restrictions): The functions setPubH and
getPubH must satisfy the following restrictions:

1) For all wellformed heaps H ,

∀l, p : getPubH(l, p) /∈ {leval, lFunction} ∪ F∅
nat.

2) For all wellformed heaps H ,

∀l, p : getPubH(l, p) /∈ {lsort, lconcat, lreverse, lvalueOf}.

3) For all wellformed heaps H and for all l, p if
getPubH(l, p) 6= null then getPubH(l, p) = H(l).p.

4) For all wellformed heaps H and for all l, p, v if
setPubH(l, p, v) holds then the heap state obtained just
after setPubH finishes execution satisfies- H(l).p = v
and H(l′).p′ = K(l′).p′ for all l 6= l′ or p 6= p′.

Capability system for Core-Cajita. We now formalize
the capability system described above. The definition is
parametric on the policy functions getPubH and setPubH .

Definition 17 (Capability System for Core-Cajita):
The capability system for Core-Cajita is the tuple
(C, desg, priv, tCap, hCap, cAuth), where:
• C := L× Pu.
• For all c ∈ C, desg(c) = c.
• For all (l, p) ∈ C:

– r ∈ priv(l, p) iff getPubH(l, p) 6= null or p ∈ Pnat

or l is an activation object;
– w ∈ priv(l, p) iff there exists v such that

setPubH(l, p, v) holds or l is an activation object;
– priv(c) = ∅ whenever getPubH(l, p) = null, p /∈
Pnat, l is not an activation object and there is no
u such that setPubH(l, p, u).

• For all t ∈ TCajita, tCap(t) = {(l, p) | l ∈ t ∧ p ∈ Pu}.
• For all wellformed heaps H , hCap(H) = {c | c ∈

C ∧ desg(c) ∈ res(H)}.
• For all wellformed heaps H and capabilities c,

– if desg(c) /∈ res(H) or priv(c) = ∅ then
cAuth(H, c) = ∅;

– otherwise, cAuth(H, c) = {(desg(c1), d) | d ∈
priv(c1) ∧ c1 ∈ reachG(H)(c)}, where G(H) is the
graph with capabilities as nodes and an edge from
capability (l1, p1) to capability (l2, p2) iff
p1 /∈ Pnat ⇒ l2 = getPubH(l1, p1)

∧
p1 ∈ Pnat ⇒ l2 = H(l1).p1,
and reachG(H)(c) is the set of nodes reachable
from c in the graph G(H).

We are now ready to present the main result for this
Section, that the above capability system is a safe capability
system for Cajita. Our result only pertains to the specifica-
tion of Cajita and relies on the semantic assumptions made
about the functions getPubH and setPubH .

Theorem 5: The capability system

(C, desg, priv, tCap, hCap, cAuth)

is a safe capability system for Core-Cajita if the functions
getPubH and setPubH satisfy the restrictions stated in Defi-
nition 16.

Proof Sketch: Since we prove this theorem for the spec-
ification of Cajita, we assume that the functions getPubH

and setPubH are implemented correctly and appropriately
interpose all object property reads and writes as described
in the definition of the language. Thus we prove the safety
of the capability system with respect to a modified semantics
where all object property reads and writes using the o.p
or o[p] mechanism are replaced by calls to getPubH and
setPubH. It is straightforward to show from the definitions
that (C, desg, priv, tCap, hCap, cAuth) is a valid capability
system. In order to show that the capability system is safe,
we show that all the conditions in Definition 9 hold. The
arguments for each of these conditions are very similar to the
ones presented in the proof of Theorem 3 and are therefore
omitted here. �

The above capability system for Core-Cajita gives us a
natural authority map for which the AuthoritySafe property
holds (Theorem 2). From Theorem 1 we know that, in
order to solve the isolation problem for a Cajita mashup
built with components t1, ... , tn and a set of forbidden
actions A∅, we must appropriately define the initial heap
Hm and enforcement functions enf1, ... , enfn such that
AuthorityIsolation(A∅, Hm, enf1(t1), ... , enfn(tn)) holds.
One solution is to define define enforcement functions
which “bind” capabilities with non-influencing authority
to distinct components. For example, if getPubH and
setPubH are forced to be disjoint for all H , then any two
capabilities designating different resources will always
have non-influencing authority. This can be achieved by
imposing that for all l, v, setPubH(l, p, v) returns false
for any p ∈ Pnat. If p /∈ Pnat, then either getPubH(l, p)
holds or setPubH(l, p, v) holds but not both. Summarizing,
authority isolation can be achieved by simply binding
capabilities designating disjoint sets of resources to distinct
components, thereby providing a solution to the isolation
problem.

C. Comparison with Js

In Section IV, we defined the sub-language Js of E3

and showed that it is authority safe. The language Js is
similar in spirit to Cajita, and achieves authority safety by



controlling the identifiers present in a term. However, Js is
more expressive than Cajita, and allows the this and with
construct. This additional expressivity comes at the cost
that a term can access global variables. As a result, the
authority associated with a term is strongly dependent on
the heap, and it is difficult to define any non-trivial notion
of capabilities such that the capabilities held by the term
are heap-independent. This conflicts with the capabilities
paradigm where the capabilities held by a term should be
heap-independent.

VIII. RELATED WORK

Capability-based protection is a widely known method
for operating-system-level protection, deployed in such sys-
tems as the Cambridge CAP Computer, the Hydra System,
StarOS, IBM System/38, and the Intel iAPX423, all summa-
rized in [10]. Another interesting operating system project
is Amoeba [11], in which servers respond to messages
sent with capabilities. Among other interesting features, the
Amoeba system had a concept of owner capability, which
had all rights, and the ability of someone holding an owner
capability to compute a capability with more restricted rights
(using exclusive-or and a cryptographic hash function).

Among prior operating system research, the closest to the
present paper (to the best of our knowledge) is an analysis
and proof of the EROS confinement mechanism [24], which
uses an operational semantics of system execution. While
there are some other similarities between their framework
and our general setup, one substantial difference is that
instead of defining authority as an over-approximation of
heap actions that can be performed by a single object, they
define authority for the whole system. Therefore, the main
theorem shows that if a system performs an action, the
system has authority to perform that action; this does not
give precise information about whether a part of the system
that performed the action was allowed to do so. Of course,
the study of EROS involves system call actions, not the
programming language actions studied in this paper.

Previous work on the object-capability model (e.g., [12],
[13], [19]) outlines a number of principles and discusses
advantages of the model. However, principles and goals are
presented using the reference graph, which is intended to
represent the references held by each object and define the
authority of an object as the aggregated authority of all
reachable objects. While reference graphs are a pictorial and
intuitive way to explaining how authority can be transferred
from one object to another, we have not located techni-
cal work, similar to the present paper, that connects the
object-capability model to operational semantics (or other
semantics) of programming languages that are intended to
conform to the model. In particular, we do not know of
any semantically-based proofs of confinement for object-
capability languages such as E, Joe-E, Emily, W7 [14], [15],
[16], [17], [20].

Some recent work by Murray, Lowe and others (e.g.,
[25]) defines precise forms of object-capability models in
the context of process calculus.

While language-based research on information flow (see
[26]) has similar goals to the present work – protecting
systems from untrusted coded that operates as part of the
system – there are a number of significant differences. In par-
ticular, information flow properties are normally properties
of specific programs, based on program analysis, while the
present paper is concerned with whether and entire language
or sub-language supports authority confinement principles.

IX. CONCLUSIONS

Because important modern web sites such as OpenSo-
cial [1] platforms, iGoogle [2], Facebook [3], and Yahoo!’s
Application Platform [4] allow third parties to contribute
JavaScript applications that are not trusted by the sites
or their other users, there is a widely recognized need
to provide isolation. While past research has focussed on
protecting trusted code embedded in the hosting page from
untrusted applications, we show that current systems do
not effectively isolate separate third-party applications from
each other. In fact, one of the attacks we discovered while
analyzing isolation between FBJS applications also defeats
the entire sandbox and allows an untrusted application to
redefine the way that functions are applied to arguments.

We focus on capability-based protection and reachabil-
ity properties of the object-capability model [12], [13].
Although a number of languages have been previously
designed as object-capability languages, including E [14],
Joe-E [15], Emily [16], and W7 [17], no previous study of
these languages has related the object-capability model to the
semantics of programs in a way that would support rigorous
proofs of properties of actual code. We identify a subset of
the object-capability goals with reachability consequences
that we call authority safety and give precise definitions
of both authority safety and a form of capability safety,
based on programming language semantics. We prove that (i)
capability safety implies authority safety, and (ii) authority
safety is sufficient to provide isolation.

We study two language examples in some detail. In
Section VI, we identify a subset Js of JavaScript and
show that it is authority safe. This implies that Js supports
isolation between untrusted applications. However, Js does
not appear to support the object-capability model and our
proof methods does not involve capabilities. In Section VII,
we prove capability safety for Cajita, an object-capability
subset of JavaScript used in Caja. By our general theorems
connecting capability safety to authority safety and isolation,
this implies isolation between untrusted applications that are
provided capabilities with non-influencing authority. While
Caja uses a surface language Valija that is translated to
Cajita, we leave analysis of full Caja and the Valija to Cajita
translation to future work. Other future research directions



include extending the analysis of Js and Cajita to the latest
ECMAScript 5 semantics and also performing a similar
analysis of other well-known object capability languages
like E, Joe-E and W7. On the theoretical side, we plan to
formalize additional aspects of the object capability model
such as encapsulation, defensive consistency and principle
of least authority, at the same level of generality considered
in this paper. We believe that a formal definition of these
concepts would be immensely beneficial in the analysis of
mashups with interacting components.
Acknowledgments. We thank Mark Miller and the Google
Caja team for invaluable comments and discussions. We
are indebted to Andrei Sabelfeld and anonymous reviewers
for their comments and suggestions. Maffeis is supported
by EPSRC grant EP/E044956/1 and Mitchell and Taly
acknowledge the support of the National Science Foundation
and the Office of Naval Research.

REFERENCES

[1] O. Foundation, “OpenSocial,” http://www.opensocial.org/.

[2] Google, “iGoogle,” http://www.google.com/ig.

[3] The Facebook Team, “Facebook,” http://www.facebook.com/.

[4] Yahoo! Inc., “Yahoo! Application Platform,” http://developer.
yahoo.com/yap/.

[5] S. Maffeis, J. Mitchell, and A. Taly, “An operational semantics
for JavaScript,” in Proc. of APLAS’08, ser. LNCS, vol. 5356.
Springer Verlag, 2008, pp. 307–325.

[6] ——, “Isolating JavaScript with filters, rewriting, and wrap-
pers,” in Proc. of ESORICS’09. Springer Verlag, 2009, See
also: Dep. of Computing, Imperial College London, Technical
Report DTR09-6.

[7] D. Crockford, “ADsafe: Making JavaScript safe for advertis-
ing,” http://www.adsafe.org/, 2008.

[8] The Facebook Team, “FBJS,” http://wiki.developers.
facebook.com/index.php/FBJS.

[9] G. Caja Team, “Google-Caja: A source-to-source translator
for securing JavaScript-based web,” http://code.google.com/
p/google-caja/.

[10] H. M. Levy, Capability-Based Computer Systems. Newton,
MA, USA: Butterworth-Heinemann, 1984.

[11] A. Tanenbaum, R. V. Renesse, H. V. Staveren, G. Sharp,
S. Mullender, J. Jansen, and G. V. Rossum, “Experiences with
the amoeba distributed operating system,” Communications of
the ACM, vol. 33, pp. 46–63, 1990.

[12] M. Miller, K.-P. Yee, and J. Shapiro, “Capability myths
demolished,” Johns Hopkins University, Tech. Rep., 2003.

[13] M. Miller, “Robust composition: Towards a unified approach
to access control and concurrency control,” Ph.D. dissertation,
Johns Hopkins University, 2006.

[14] E. Rights, “The E language,” http://erights.org/elang/index.
html.

[15] A. Mettler and D. Wagner, “The joe-e language specification
(draft),” U.C. Berkeley, Tech. Rep. UCB/EECS-2006-26, May
2006.

[16] M. Stiegler, “Emily: A high performance language for en-
abling secure cooperation,” in Proc. of C5 ’07, 2007, pp.
163–169.

[17] J. A. Rees, “A security kernel based on the lambda-calculus,”
Massachusetts Institute of Technology, Cambridge, MA,
USA, Tech. Rep., 1996.

[18] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay,
“Caja: Safe active content in sanitized JavaScript,” hhtp://
google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf.

[19] F. Spiessens, “Patterns of safe collaboration,” Ph.D. disserta-
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