
Switching Logic Synthesis for Reachability∗

Ankur Taly
Computer Science Dept., Stanford University

ataly@stanford.edu

Ashish Tiwari
SRI International, Menlo Park, CA 94025

tiwari@csl.sri.com

ABSTRACT
We consider the problem of driving a system from some
initial configuration to a desired configuration while avoiding
some unsafe configurations. The system to be controlled is
a dynamical system that can operate in different modes.
The goal is to synthesize the logic for switching between the
modes so that the desired reachability property holds.

In this paper, we first present a sound and complete infer-
ence rule for proving reachability properties of single mode
continuous dynamical systems. Next, we present an infer-
ence rule for proving controlled reachability in multi-modal
continuous dynamical systems. From a constructive proof
of controlled reachability, we show how to synthesize the de-
sired switching logic. We show that our synthesis procedure
is sound and produces only non-zeno hybrid systems.

In practice, we perform a constructive proof of controlled
reachability by solving an Exists-Forall formula in the theory
of reals. We present an approach for solving such formulas
that combines symbolic and numeric solvers. We demon-
strate our approach on some examples. All results extend
naturally to the case when, instead of reachability, interest
is in until properties.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.2.4 [Software Engi-
neering]: Software/Program Verification—correctness proofs,
formal methods; J.7 [Computers in Other Systems]:
Process control; I.2.3 [Artificial Intelligence]: Deduction
and Theorem Proving—Deduction

General Terms
Design,Verification

∗Research supported in part by NSF grants CNS-0720721,
CSR-EHCS-0834810 and CSR-0917398 and NASA grant
NNX08AB95A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

1. INTRODUCTION
Several physical systems have multiple modes of opera-

tion. In each mode, the behavior of the system is different.
The dynamics of such a system is described by a collection
of differential equations – one system of different equations
for each mode. We call such systems multimodal dynami-
cal systems. Multimodal dynamical systems are fairly com-
mon. For example, whenever a physical device or plant is
controlled by actuators that can be in one of finitely many
different states, we get a multimodal system. In many mul-
timodal systems, the switch from one mode to another mode
is controllable. An important problem then is designing this
switching logic – when to switch from one mode of operation
to another mode of operation – so as to achieve some desired
safety and/or reachability goal.

In this paper, we consider the problem of automatically
synthesizing a controller for a multimodal system that will
drive the system from an initial state to a desired final state
while avoiding unsafe states on the way. In other words,
we are interested in until properties: all trajectories of the
synthesized system should remain in a safe region until they
reach the desired goal state. We aim to synthesize controllers
that are formally correct.

Our approach for solving the synthesis problem is based
on generating proofs of “controlled properties” for the mul-
timodal system. We explain this a bit more now. First,
consider the verification problem. How do we prove that a
system has some safety property? We do so by discovering
an appropriate certificate for safety in the form of an induc-
tive invariant (also known as a barrier certificate) [31, 25].
How do we prove that a system has some reachability or
stability property? We do so by discovering an appropriate
certificate for reachability (stability) in the form of a ranking
function (Lyapunov function). Now, consider the synthesis
problem. How do we prove that a multimodal system can
be controlled to have some safety property? We do so by
discovering an appropriate certificate for controlled safety in
the form of a controlled inductive invariant [29]. How do we
prove that a multimodal system can be controlled to have
some reachability or some until property? We do so by dis-
covering an appropriate certificate for controlled reachability,
or controlled until, property in the form of a controlled rank-
ing function, or a combination of controlled ranking function
and controlled inductive invariant. This is the essence of our
approach for synthesis.

We are now left with two questions. First, what is the for-
mal definition of a controlled ranking function? Second, how
do we discover an appropriate controlled ranking function

19

and a controlled inductive invariant for a given multimodal
system? We answer these questions in the rest of this paper.

The answer to the first question is presented in the form
of a logical (deductive) inference rule. A deductive infer-
ence rule states a foundational fact about when a system
has a property. For example, consider the following founda-
tional inference rule for safety verification of sequential and
concurrent programs [9, 13, 15]:

(1) ∀~x ~x ∈ Init ⇒ ~x ∈ Inv

(2) ∀~x,~y ~x ∈ Inv ∧ ~x→ ~y ⇒ ~y ∈ Inv

(3) ∀~x ~x ∈ Inv ⇒ ~x ∈ Safe

〈X,→, Init〉 |= G(Safe)

It can be read as follows: if there is a set Inv such that
(1) all initial states are contained in Inv,
(2) all successors ~y of a state ~x ∈ Inv are also in Inv, and
(3) every state ~x in Inv is contained in the set Safe,
then the discrete system 〈X,→, Init〉 with state space X,
transition relation → and initial states Init is safe; that is,
all reachable states are contained in the set Safe. The in-
ference rule above says that an inductive invariant (formally
defined as any set Inv that satisfies Conditions (1), (2) and
(3)) is a certificate for safety verification.

When we wish to synthesize, rather than verify, we need to
prove that the (partial) system “can have” the desired prop-
erty, rather than“will have” the desired property. Hence, we
need to search for a “controlled inductive invariant”, rather
than an “inductive invariant”. In previous work, we pre-
sented a formal definition of inductive invariants for con-
tinuous dynamical systems [30] in the form of a deductive
inference rule; see also [3, 31, 25]. To keep the paper self
contained, we present that inference rule for safety verifi-
cation of single mode continuous systems in Section 4. In
another earlier paper, we extended the inference rule for
safety verification to an inference rule for “controlled safety”
verification, which defined the concept of a “controlled in-
ductive invariant” for a multimodal system [29]. We used
the controlled inductive invariant to synthesize a switching
logic that guaranteed safety in [29].

The first main contribution of this paper is a sound and
(relatively) complete inference rule for reachability verifica-
tion of single mode continuous systems (Section 4). That
inference rule can be seen as defining the notion of a rank-
ing function for continuous systems. We then build upon
this rule to present the second contribution of this paper,
namely a sound rule for verifying controlled reachability in
multimodal systems (Section 5). In fact, the rule verifies
controlled until properties – a controlled until property holds
for a multimodal system if there exists a controller (switch-
ing logic for switching between modes) such that the re-
sulting system has the specified until property. We also
present a procedure to extract the controller from the above
proof of controlled reachability/until property (Section 6).
An important feature of our rule for controlled reachabil-
ity (controlled until) verification is that it uses a combina-
tion of “controlled bounded-time invariants” and “controlled
progress invariants” to support the “controlled ranking func-
tion” for controlled reachability verification.

Now we come to the second question: how do we discover
the controlled invariants and controlled ranking functions
that are required to prove controlled reachability in multi-
modal systems? Here we use the idea of templates [28, 25,
32, 11]. We assume the user provides the form of the con-

trolled invariants and the controlled ranking function. Now
the applicability of the inference rule reduces to the satisfia-
bility of an ∃∀ formula. A third contribution of the paper is
an outline of a new approach for solving such formulas that
combines numeric simulations and symbolic reasoning and
works for nonlinear expressions (Section 6.3). We illustrate
our overall approach on two examples.

2. MOTIVATING EXAMPLES

2.1 Driving a Robot down an Alley

Figure 1: The goal is to drive the

robot starting from x ∈ [−1, 1], y = 0

to y ≥ 10 while avoiding the unsafe

region and using the 2 modes.

Consider the
problem of steer-
ing a robot (car)
to keep it on
a designated path.
The state is de-
scribed by four
continuous vari-
ables, x, y, vx, vy,
where x, y de-
scribe the posi-
tion of the robot
on the plane and
vx, vy describe its
velocity in the
x- and y-directions.

In the scenario in Fig. 1, initially the robot is in the re-
gion Init := {(x0, y0, vx0, vy0) | x0 ∈ [−1, 1], y0 = 0, vx0 =
vy0 = 0} and the goal is to drive it to the region R :=
{(x, y, vx, vy) | y ≥ 10}. Along the way, we wish to avoid
the walls Unsafe := {(x, y) | x < −3 ∨ x > 3}. Assume that
the robot can be in one of two modes, whose dynamics are:

dx

dt
= vx,

dvx

dt
= U − vx,

dy

dt
= vy,

dvy

dt
= 1− vy

where U = 1 in Mode 1 and U = −1 in Mode 2. Note
that we are controlling the (x, y) position of the robot by
using force, U , that affects the acceleration. The problem
is to find the correct switching conditions – the conditions
for switching from one mode to the other – that will ensure
that the robot reaches the region R while avoiding the region
Unsafe.

2.2 Inverted Pendulum
A classic problem in control pertains to maintaining an

inverted pendulum around its unstable equilibrium. The
state of the inverted pendulum can be described using two
continuous variables, x and y, where x denotes the deviation
of the pendulum from its unstable equilibrium point x = 0
and y denotes the rate of change of x. The dynamics of the
inverted pendulum are given by1

dx

dt
= y,

dy

dt
= 20x− 16y + 4u

where u ∈ {−16, 16} is the force we can apply to control
the inverted pendulum. Thus, again we have two modes.
Assume that initially the pendulum is in the state x = 2, y =
0. The goal is to design a controller that will take the system
to the region −1 ≤ x ≤ 1 and keep it there. Again, the

1Dynamics are linearized about the equilibrium point. Our
technique also works for a polynomial nonlinear model, but
we limit the illustration in this paper to the linearized model.

20

controller takes the form of a switching logic – the conditions
for switching between the two modes that would guarantee
the pendulum eventually reaches and thereafter stays in the
region −1 ≤ x ≤ 1.

Our goal in this paper is to present an approach for solving
such switching logic synthesis problems.

3. CONTINUOUS DYNAMICAL SYSTEMS
In this section, we define a continuous dynamical system

(CDS, in short) and then we define when such a continuous
system is said to satisfy a safety or reachability property.

Definition 1 (Continuous Dynamical System). A
continuous dynamical system CDS is a tuple (X, Init, f) where
X is a finite set of variables interpreted over the reals R, X =
RX is the set of all valuations of the variables X, Init ⊆ X
is the set of initial states, and f : X 7→ X is a vector field
that specifies the continuous dynamics.

Note that RX is isomorphic to the n-dimensional real space
Rn where n = |X| is the number of variables in X. Note
also that the continuous dynamical systems we consider here
are autonomous, that is, they have no inputs. We assume
that f is locally Lipshitz continuous everywhere on X, which
guarantees that the ordinary differential equations dX

dt
= f(X)

have a unique solution for every initial condition [5].
The meaning of a continuous dynamical system is simply

the collection of all possible trajectories starting from an
initial state and “flowing along” the vector field. Formally, if

F (~x0, t) is the solution of dX(t)
dt

= f(X(t)), X(0) = ~x0, then the
semantics, [[CDS]], of a continuous dynamical system CDS =
(X, Init, f) is given as

[[CDS]] := {F1 : [0,∞) 7→ X | F1(t) = F (~x0, t), ~x0 ∈ Init}

The above semantics using flow functions is broadly re-
ferred to as the flow semantics [35]. One can also give a tran-
sition semantics using discrete state transition systems [12],
but the distinction [7] is not relevant for this paper.

The set of reachable states for a continuous dynamical sys-
tem CDS, Reach(CDS), is given by {~x ∈ X | ∃F ∈ [[CDS]],∃t ≥ 0 :
~x = F (t)}. In this paper, we are interested in until proper-
ties of the form Safe U R. A CDS has the property Safe U R

if every initial state can reach some state in R and all inter-
mediate states remain inside Safe.

Definition 2 (Properties). Given sets Safe and R of
states, a continuous dynamical system CDS = (X, Init, f) is
said to satisfy the property Safe U R, denoted by CDS |=
Safe U R, if

∀F ∈ [[CDS]] : ∃t : [F (t) ∈ R ∧ ∀t′ : (0 ≤ t′ < t ⇒ F (t′) ∈ Safe)]

We use F(R) as a shorthand for true U R and G(Safe) for
¬F(¬Safe). We will use the same notation to denote a set
and its characteristic predicate. For example, Init denotes
a set of states and Init(~x) denotes ~x ∈ Init.

Example 1 (CDS). Each mode of the robot can be de-
scribed as a continuous dynamical system (X, Init, f), where
X := {x, y, vx, vy}, Init := {(x, y, vx, vy) | x ∈ [−1, 1], y =
vx = vy = 0}, and f : RX 7→ RX is defined by

f((x, y, vx, vy)) = (vx, vy, U − vx, 1− vy).

In Mode 1, U = 1 and in Mode 2, U = −1. �

4. VERIFYING SAFETY AND REACHABIL-
ITY OF CDS

In this section, we consider the problem of safety and
reachability verification of continuous systems. We present
sound and complete inference rules (necessary and sufficient
characterizations) for safety and reachability verification of
continuous systems.

Henceforth, we use F (~x, t) to denote the unique solution

to the initial value problem dX(t)
dt

= f(X(t)), X(0) = ~x0.
Our inference rules for verification of safety and reacha-

bility are based on finding appropriate “witnesses” or “cer-
tificates” that are sufficient (and even necessary) for proving
safety and reachability respectively. For safety verification,
the witness is an inductive invariant and for reachability
verification, the witness is a ranking function. (In the same
spirit, the witness for stability verification would be a Lya-
punov function.)

4.1 Safety Verification of CDSs
Figure 2 presents an inference rule for safety verification

of continuous dynamical systems. We can prove a CDS safe
by finding a closed set Inv such that (1) all initial states
are contained in Inv (Initial), (2) every state in Inv is safe
(Property), and (3) at all points ~x on the boundary ∂Inv
of Inv, the flow F moves inwards into the set Inv (Induct).
The predicate Inwards is defined below.

Definition 3 (Inwards). Given a closed set Inv, a
Lipschitz continuous vector field f : X 7→ X and a point
~x ∈ X, the predicate Inwards(Inv,~x, f) holds iff ∃h > 0 :
∀0 ≤ t < h : F (~x, t) ∈ Inv.

Intuitively, the predicate Inwards(Inv,~x, f) is true if, start-
ing from ~x, the flow F (corresponding to the vector field f)
stays inside the set Inv for some h > 0 time. If ~x is in
the interior of Inv, then Inwards(Inv,~x, f) is always true
for any f . However, if ~x is on the boundary of Inv, then
Inwards(Inv,~x, f) is true only if the vector field f is point-
ing “inwards” (into Inv) at ~x.

The inference rule in Figure 2 is read as follows: if we
can find a closed set Inv that satisfies Conditions (Initial),
(Induct) and (Property), then we can conclude that CDS is
safe. In other words, safety is established by showing the
existence of a witness set, namely an inductive invariant
Inv, which is any set Inv that satisfies Conditions (Initial),
(Induct) and (Property). The crucial condition is the in-
ductiveness check (Induct), which is based on checking that
the vector field points inwards at all points on the boundary
∂Inv of the invariant set Inv.

The inference rule in Figure 2 is sound and complete for
proving safety, as shown in previous work [3, 30]. As stated,
the inference rule in Figure 2 is impractical because the def-
inition of Inwards (Definition 3) uses the solution F of the
differential equation. The important point to note here is
that there are several efficiently computable sufficient checks
for Inwards – based on using the Lie derivatives – some of
which are also necessary [30]; see also Section 6.2. We will
use one such“implementation”for Inwards in the examples.

4.2 Reachability Verification of CDSs
We extend our earlier work for safety [11, 29, 30], by con-

sidering reachability. In this section, we consider the reach-
ability verification problem for CDSs.

21

(Initial) Init(~x) ⇒ Inv(~x) Init(~x) ⇒ V (~x) ≤ 0 ∧ Inv(~x)
(Induct) ∂Inv(~x) ⇒ Inwards(Inv,~x, f) ∂Inv(~x) ∧ V (~x) < 0 ⇒ Inwards(Inv,~x, f)

(Property) Inv(~x) ⇒ Safe(~x) Inv(~x) ∧ V (~x) = 0 ⇒ R(~x)
(Progress) Inv(~x) ∧ V (~x) < 0 ⇒ Progress(V,~x, f, ε)

CDS |= G(Safe) CDS |= F(R)

Figure 2: Inference rule for safety and reachability verification of continuous system CDS := (X, Init, f). The
inference rule on right actually proves (V < 0) U R.

Figure 2(right) presents an inference rule for reachability
verification. It uses the Progress predicate, apart from the
Inwards predicate.

Definition 4 (Progress). Given a state ~x ∈ X, a
Lipschitz continuous vector field f : X 7→ X, a positive con-
stant ε ∈ R+, and a function V : X 7→ R, the predicate
Progress(V,~x, f, ε) holds if there is a positive h ∈ R+ s.t.

1. V (F (~x, h))− V (~x) ≥ ε · h

2. ∀0 ≤ t ≤ h : V (F (~x, t)) ≥ V (~x)

3. V (F (~x, t)) is continuous over t for all t ≥ 0.

Intuitively, the predicate Progress(V,~x, f, ε) is true at a
point ~x for the vector field f if the function V changes con-
tinuously along the flow F (defined by the vector field f), V
does not drop below its value at ~x for at least some h time,
and after h time it is at least ε ·h more than its initial value.

The inference rule in Figure 2 establishes reachability of a
set R of states by showing the existence of a ranking function
V such that (1) V is initially non-positive (Initial), (2) V
increases while it is non-positive (Progress), and (3) when
V is zero, then it indicates that some state in R has been
reached (Property).

A notable enhancement in the inference rule for reachabil-
ity verification in Figure 2 is that reachability verification is
supported with “time-bounded invariants” Inv. Specifically,
in Figure 2(right), the Conditions (Progress) and (Property)
are checked only for points ~x that are also in the set Inv. The
set Inv is an over-approximation of the set of states that are
reached before a state in R is reached. Note that Inv need not
be an invariant of CDS. Adding the set Inv to the inference
rule in Figure 2 simplifies the choice of the ranking function
V since weaker ranking functions could suffice for proving
reachability if stronger Inv can be found. This observation
was also made by Platzer [21].

We can state and prove the soundness (sufficiency) and
completeness (necessity) of the inference rule in Figure 2 for
proving reachability, but we omit the proofs here.

The soundness theorem is proved by showing that for any
system which satisfies the inference rules, it is never the
case that a flow moves out of the set Inv before the ranking
function V becomes 0. Further, as long as V < 0 and the
flow is inside Inv, the value of the ranking function can
increase by at least ε · h during a duration h.

Theorem 1. (Soundness) Let CDS := (X, Init, f) be a
continuous dynamical system and let R ⊆ X be a set of
states. If there is an ε > 0, a function V : X 7→ R and a
closed set Inv that satisfy the conditions (Initial), (Progress),
(Induct) and (Property) in Fig. 2, then CDS |= F(R).

The completeness theorem says that if F(R) holds for a
continuous dynamical system CDS, then the inference rules
in Figure 2 can also prove that CDS |= F(R). The completness
theorem is proved by showing that for any CDS which satisfies
F(R), we can find ε > 0, a function V : X 7→ R, and a
closed set Inv, which satisfy conditions (Initial), (Progress),
(Induct) and (Property) in Fig. 2. Informally, we take the
closure of the complete reach set of CDS as the set Inv and
the negative of time-to-reach-R as the value of the function
V at any point ~x that is going to reach R. Intuitively, it is
clear that, by definition, time-to-reach-R will always make
progress along a flow.

Theorem 2. (Completeness) Let CDS := (X, Init, f) be a
continuous dynamical system and let R ⊆ X be a set such
that F(R) holds. Suppose that Init is closed. Then there
exists an ε > 0, a function V : X 7→ R, and a closed set
Inv that satisfy conditions (Initial), (Progress), (Induct) and
(Property) in Fig. 2.

We present a simple example to illustrate the inference
rule in Figure 2 for reachability verification.

Example 2. Consider a ball moving with constant speed
in the x-direction and falling under gravity in the negative
y-direction. We can model this system as the CDS := (X =
{x, y, z}, Init = {(0, 10, 0)}, f) where f defines the following
dynamics: ẋ = 1, ẏ = z, ż = −10. Suppose we wish to prove
that the set R = {(1, y, z) | y ≥ 5, z ∈ <} is reachable.

We can apply the rule in Figure 2 to prove that R is reach-
able from the initial state by choosing Inv := (10x2 + 2y −
20 ≥ 0 ∧ 10x + z ≥ 0), V := (x − 1), and ε = 1. We
use the following practical checks for the predicates Inwards

and Progress (see also Section 6.2). We check Inwards(p ≥
0,~x, f) by checking dp

dt
(~x) ≥ 0, whenever ∇(p)(~x) 6= 0. Here

∇(p) denotes the gradient of p. We check Progress(V,~x, f, ε)
by checking dV

dt
(~x) ≥ ε. For these choices, we get the proof

obligations shown in Figure 3 by applying the rule in Fig-
ure 2. It is easy to see that each formula in Figure 3 is a
valid (universally quantified) fact. This proves that the re-
gion R is reachable. �

We remark that the inference rule in Figure 2(right) actu-
ally proves that “V < 0 holds true until the system reaches
R”((V < 0) U R), which is stronger than just the reachability
claim that “the system eventually reaches R” (F(R)).

5. CONTROLLED REACHABILITY IN MDS
In this section, we define a multi-modal system (MDS, in

short) and then present a sound inference rule for checking
controlled reachability in multi-modal systems.

A multi-modal system has a finite number of different
modes and in each mode, it behaves like a different con-
tinuous dynamical system.

22

(Initial) (x = 0 ∧ y = 10 ∧ z = 0) ⇒ (x− 1 ≤ 0 ∧ 10x2 + 2y − 20 ≥ 0 ∧ 10x + z ≥ 0)
(Progress) (10x2 + 2y − 20 ≥ 0 ∧ 10x + z ≥ 0 ∧ x− 1 < 0) ⇒ (1 ≥ 1)
(Induct) (10x2 + 2y − 20 = 0 ∧ 10x + z ≥ 0 ∧ x− 1 < 0) ⇒ (20x + 2z ≥ 0)
(Induct) (10x2 + 2y − 20 ≥ 0 ∧ 10x + z = 0 ∧ x− 1 < 0) ⇒ (10− 10 ≥ 0)

(Property) (10x2 + 2y − 20 ≥ 0 ∧ 10x + z ≥ 0 ∧ x− 1 = 0) ⇒ (x = 1 ∧ y ≥ 5)

Figure 3: Proof obligations arising from Example 2.

Definition 5 (Multi-modal CDS/MDS). A multi-modal
continuous dynamical system, MDS, is a tuple 〈X, f1, . . . , fk, Init〉,
where 〈X, fi, Init〉 is a continuous dynamical system (rep-
resenting the i-th mode). Let I = {1, . . . , k} be the mode
indices. Given an initial state ~x0 ∈ Init, we say that a
function F (~x0, t) : X × [0,∞) → X is a trajectory for MDS,
if there is an increasing sequence 0 = t0 < t1 < t2 < · · ·
(either finite or diverging to ∞) such that

• F (~x0, 0) = ~x0 and F (~x0, t) is continuous over t ≥ 0,
and

• for each interval (ti, ti+1), there is a mode j ∈ I such

that F (~x0, t) is smooth and dF (~x0,t)
dt

(t′) = fj(F (~x0, t
′))

for all t′ in the range ti < t′ < ti+1.

The semantics [[MDS]] of MDS is defined as {F1 : [0,∞) 7→
X | F1(t) = F (~x0, t) for some ~x0 ∈ Init}.

Following Definition 5, a multi-modal system can nonde-
terministically switch between its modes. However, switch-
ing between the different modes in a multi-modal dynamical
system is often controllable. The goal of controlling a system
is to reach some desired state while maintaining safety. We
are interested in designing controllers that can guarantee
both safety and reachability properties. In an earlier pa-
per [29], we synthesized controllers that guaranteed safety.
Here we consider reachability.

We solve the controller synthesis problem in two steps.
In the first step, presented in this section, we consider the
controlled-reachability verification problem. In the next sec-
tion, we will show how to extract a controller and synthesize
a hybrid system using the “proof” of controlled-reachability.

A set of states R is controlled reachable if for each initial
state, there is some flow starting from that initial state that
reaches the set R. We define the more general notion of
“controlled until” property.

Definition 6 (Controlled Until). Let MDS be a multi-
modal system 〈X, f1, . . . , fk, Init〉 and let Safe, R ⊂ X be sets
of states. We say MDS |= Safe Uc R, if for every ~x0 ∈ Init,
there exists a flow F ∈ [[MDS]] such that F (0) = ~x0, F (t1) ∈ R

for some t1 ≥ 0 and F (t) ∈ Safe for all 0 ≤ t < t1.
We say that R is controlled reachable in MDS, denoted by
MDS |= Fc(R), if MDS |= true Uc R.

Note that MDS |= F(R) holds when all flows starting from
every initial state reach R, whereas MDS |= Fc(R) holds when,
starting from any initial state, some flow reaches R.

Figure 4 presents an inference rule for proving controlled
reachability for multi-modal systems. To prove controlled
reachability, we need to find
(a) an invariant set Invi(~x) for each Mode i,

(b) a progress invariant PInvi(~x,~x) for each Mode i,
(c) a function V (~x), and

(d) positive real numbers (pi)i∈I and ε
such that the six conditions in Figure 4 hold. Note that the
last five conditions need to be checked for each Mode i. The
“progress invariant” predicates PInvi(~x,~x) are defined over

pairs of states, ~x and ~x. The progress invariant captures the
relationship between the current value ~x of the state vari-
ables and their value ~x at the last entry into the current
Mode i. The progress invariant helps us in proving that ev-
ery discrete transition makes some progress toward reaching
our goal. For improving presentation of the inference rule,
we introduce the macros, Entryi and Exiti, that are defined
as follows:

Exiti(~x) := Invi(~x) ∧ ¬Inwards(Invi,~x, fi)

Entryi(~x) := Invi(~x) ∧ Inwards(Invi,~x, fi) ∧ ∨j∈IExitj(~x)

Intuitively, Entryi is the set of states from where we enter
Mode i and Exiti is the set of states from where we exit
Mode i. Now look back at the rule in Figure 4. In the first
reading, the reader may wish to ignore the progress invari-
ants. Roughly speaking, Condition (DProgress) ensures that
ε progress is made during every discrete transition, Condi-
tion (CProgress) ensures that the rate of progress is at least
pi during the stay in Mode i, Condition (Induct) ensures
that we stay inside the sets Invi’s as long as V < 0, and
Condition (PInduct) ensures that PInvi(~y,~x) holds for all
pairs of states such that ~y is reachable from ~x following dy-
namics of Mode i.

If we add the following extra check in the antecedent of
the rule in Figure 4,

(Property’) Invi(~x) ∧ V (~x) < 0 ⇒ Safe(~x),

then we can make the conclusion of the rule stronger to
conclude the controlled until property Safe Uc R; that is,
from every initial state there is a trajectory that reaches R

and that remains inside Safe until it reaches R.

Example 3 (Figure 4). Consider the MDS from Ex-
ample 1 that modeled a robot moving down an alley (Sec-
tion 2.1). We will prove that the property Safe Uc R, where
Safe := {(x, y, vx, vy) | −3 < x < 3} and R := {(x, y, vx, vy) |
y ≥ 10} using the inference rule in Figure 4. To use the
rule, we need a function V , and invariants Inv1, Inv2 and
PInv1, PInv2 for the two modes. Consider the following choices
for V , Invi and PInvi.

V := (y + vy − 11)

Inv1 := Inv2 := Inv := |x + vx| ≤ 2 ∧ |vx| ≤ 1 ∧ 0 ≤ vy ≤ 1

PInv1 := x + vx − y − vy = x + vx − y − vy

PInv2 := x + vx + y + vy = x + vx + y + vy

where x in PInvi denotes the value of x when Mode i was
entered. Let ~x denote the tuple x, y, vx, vy of variables. The

23

(Initial) Init(~x) ⇒ V (~x) ≤ 0 ∧ ∃i : (Invi(~x) ∧ PInvi(~x,~x))
(DProgress) Entryi(~x) ∧ Exiti(~y) ∧ PInvi(~y,~x) ∧ V (~x) < 0 ⇒ V (~y) ≥ V (~x) + ε
(CProgress) Invi(~x) ∧ ¬Exiti(~x) ∧ V (~x) < 0 ⇒ Progress(V,~x, fi, pi)
(Induct) Exiti(~x) ∧ V (~x) < 0 ⇒ ∃j : (Entryj(~x) ∧ PInvi(~x,~x))
(PInduct) PInvi(~y,~x) ∧ Invi(~y) ∧ V (~y) < 0 ⇒ Inwards(PInvi,~y, fi)
(Property) Invi(~x) ∧ V (~x) = 0 ⇒ R(~x)

MDS |= Fc(R)

Figure 4: Inference rule for controlled-reachability verification of multimodal dynamical system MDS :=
(X, Init, f1, . . . , fk) and reach set R ⊆ X. Here Exiti(~x) is defined as Invi(~x) ∧ ¬Inwards(Invi,~x, fi) and Entryi(~x) is
defined as Invi(~x) ∧ Inwards(Invi,~x, fi) ∧ ∨j∈IExitj(~x). The rule naturally extends to proving Safe Uc R too.

values of the predicates Entryi and Exiti, that are defined
using Invi and Inwards, are computed as:

Entry2 := Exit1(~x) := Inv1(~x) ∧ (x + vx = 2)

Entry1 := Exit2(~x) := Inv2(~x) ∧ (x + vx = −2)

To verify Safe Uc R for the 2-mode system, we next check
the seven conditions in the antecedent by fixing ε = 1 and
pi = 1. Note that PInvi(~x,~x) evaluates to true and hence
is ignored below. Conditions (Initial) and (Property) expand
to the following valid formulas:

−1 ≤ x ≤ 1 ∧ y = vx = vy = 0 ⇒ (y + vy ≤ 11) ∧ Inv(~x)

Inv(~x) ∧ (y + vy = 11) ⇒ y ≥ 10

Note that dV
dt

= Lfi(V) = 1 in both modes and hence Condi-
tion (CProgress) is immediately verified as it reduces to the
tautology Invi ∧ ¬Exiti ∧ V < 0 ⇒ 1 ≥ 1.

Condition (DProgress) for Mode 1 reduces to:

x + vx = −2 ∧ |vx| ≤ 1 ∧ 0 ≤ vy ≤ 1∧
x′ + v′x = 2 ∧ |v′x| ≤ 1 ∧ 0 ≤ v′y ≤ 1∧

x′ + v′x − y′ − v′y = x + vx − y − vy ⇒ y′ + v′y − y − vy ≥ 1

which is easily verified. Condition (DProgress) for Mode 2
is similarly verified. Condition (Induct) for Mode i = 1
reduces to the following tautology:

x + vx = 2 ∧ Inv1(~x) ⇒ (Inv2(~x) ∧ x + vx = 2)

Condition (Induct) for Mode i = 2 is similarly verified. Con-

dition (PInduct) also holds in both modes since
d(x+vx−y−vy)

dt
=

0 in Mode 1 and
d(x+vx+y+vy)

dt
= 0 in Mode 2, and hence

Inwards(PInvi,~y, fi) holds for any state ~y. We finally verify
the extra condition (Property’) (works for both modes since
they share the regular invariant Inv):

Inv ∧ (y + vy < 0) ⇒ −3 < x < 3

Thus, we conclude that the robot can reach the desired state
R while avoiding the unsafe region on the way. �

If we generalize the definition of Invi to include the progress
invariants (that is, new Invi is PInvi ∧ Invi), then the pre-
sentation of the rule in Figure 4 gets considerably simplified:
all mention of PInv are eliminated and Condition (PInduct)
is also not required (since Condition (Induct) suffices then).

We can formally state and prove the soundness of the in-
ference rule in Figure 4, but we do not do it here since we will
explicitly construct the switching conditions, combine them
with the MDS to synthesize a hybrid system, and then prove
that the hybrid system satisfies F(R) (respectively Safe U R).

6. CONTROLLER SYNTHESIS
In this section, we formally describe how to use a proof of

controlled reachability to synthesize mode-switching condi-
tions. These conditions are composed with the multimodal
system to give a hybrid system that satisfies the reachability
property.

The mode-switching conditions are specified using a switch-
ing logic.

Definition 7 (Switching Logic). A switching logic
SwL for a multi-modal dynamical system MDS := 〈X, (fi)i∈I , Init〉
is a tuple

〈B, (gij)i6=j; i,j∈I , (Resetij)i6=j; i,j∈I(StateInvi)i∈I〉

where, B is a finite set of Boolean variables that take values
in the set B := {>,⊥}, gij ⊆ BB × RX specifies the guard
for the discrete transition from mode i to mode j, Resetij ⊆
BB ×RX ×BB specifies the updates to B during the discrete
transition from mode i to mode j, and StateInvi ⊆ RX

specifies the state (location) invariants.

A multi-modal system MDS := 〈X, (fi)i∈I , Init〉 can be
combined with a switching logic SwL := 〈B, (gij), (Resetij),-
(StateInvi)〉 to create a hybrid system HS := HS(MDS, SwL)
in the following natural way:

• the state space of HS is I × BB × RX ,

• the hybrid system HS has |I| modes; the vector field in
mode i ∈ I is fi

• the state invariant in mode i is StateInvi

• the initial states of HS is {(i,~b,~x) | ~x ∈ Init,~x ∈
StateInvi,~b = ~⊥}

• there is a discrete transition from (i,~b,~x) to (j,~b
′
,~x) if

(~b,~x) ∈ gij and (~b,~x,~b
′
) ∈ Resetij

The semantics, [[HS]], of HS := HS(MDS, SwL) can be defined
as a collection of trajectories, analogously to the definition of
[[MDS]] (Definition 5), but with the following two additions:
(1) every discrete mode switch in the trajectory should re-
spect the guard and the reset relations (as described above),
and (2) if (i,~b,~x) is ever reached in a trajectory, then ~x
should belong to StateInvi. For more formal presentation,
see [35, 1]. We can define when a hyrid system satisfies an
until (safety, reachability) property by generalizing Defini-
tion 2.

Hybrid systems can have two kinds of undesirable behav-
iors. First, they can deadlock. This happens when a hybrid

24

system reaches a point from where there is no further valid
trajectory; that is, there is no discrete transition enabled at
that point and the continuous dynamics can not keep the
trajectory inside StateInvi. The non-blocking requirement
defined below disallows such cases.

Definition 8 (Non-Blocking). A hybrid system HS

with modes I, vector fields (fi)i∈I , guards (gij)i,j∈I , and
state invariants (StateInvi)i∈I , is said to be non-blocking,
if for every mode i ∈ I and any state ~x in ∂StateInvi,

∃j ∈ I : (Inwards(StateInvj ,~x, fj) ∧ (i 6= j ⇒ ~x ∈ gij))

The second undesirable behavior happens when the fre-
quency of mode switches becomes unbounded and the tra-
jectory makes infinite switches in finite time (zeno behavior).
The Min-Dwell requirement eliminates zeno behaviors.

Definition 9 (Min-Dwell). A hybrid system HS sat-
isfies Min-Dwell property if there exists a constant h > 0
such that for all flows F ∈ [[HS]], if t1, t2, · · · are the switch-
ing times in the flow F , then ∀i > 1 : ti − ti−1 ≥ h.

We are interested in synthesizing non-blocking hybrid sys-
tems that have the Min-Dwell property.

Definition 10 (Switching Logic Synthesis Problem).
Given an MDS := 〈X, f1, f2, . . . , fk, Init〉, a set R ⊆ RX to
reach and a set Unsafe to avoid, the switching logic synthe-
sis problem seeks to synthesize a switching logic SwL such
that HS(MDS, SwL) |= ¬Unsafe U R, HS is non-blocking, and
HS satisfies the Min-Dwell property.

6.1 The Synthesis Procedure
The switching logic synthesis problem (Definition 10) is

solved in two steps. In the first step, the inference rule in
Figure 4 is used to solve the controlled-reachability (controlled-
until) verification problem. Once we have verified controlled-
reachability, in this section, we show how we can use the
“proof” to construct a controller (mode switching logic) to
reach the desired region.

The extraction of the switching logic from the proof of
controlled-reachability is fairly intuitive and is shown in Fig-
ure 5. We introduce a new Boolean variable, done?, which
indicates if we have reached R. Initially, done? is ⊥ and it
is set to > only after V ≥ 0. Note that, as soon as done?
becomes >, all transitions are disabled and all state invari-
ants accept any state ~x. This is done because, after we have
reached R, we need to make sure we remain non-blocking
and have min-dwell property. (No safety is enforced after
goal is reached.) Ignoring the Boolean component of the
state space, the switching logic is easy to understand. The
sets Invi define the state invariants. The guards are defined
so that we have a transition from mode i to mode j at state
(b,~x) only if (1) ~x is in Invi and Invj , (2) the vector field
fi at ~x is not pointing inwards toward Invi, (3) the vector
field fj at ~x is pointing inwards toward Invj , and (4) V at
~x is negative.

The synthesis procedure outlined above correctly solves
the switching logic synthesis problem.

Theorem 3. Given any MDS := (X, Init, f1, . . . , fk), for
every switching logic SwL returned by procedure SynthSwitch-
Logic, the hybrid system 〈MDS, SwL〉 is non-blocking, it has
the min-dwell property, and it satisfies F(R).

6.2 Sound Approximations for the Semantic
Predicates

The verification rules for continuous and multi-modal dy-
namical systems described in this paper rely on the predi-
cates Inwards and Progress. These predicates are defined
using the flow function F , which is the solution of the differ-
ential equation ~̇x = f(~x). In this section, we present alter-
nate sound checks for the predicates Inwards and Progress,
which can be computed automatically for the class of poly-
nomial multimodal systems. A polynomial system is one
where the vector field f(x) (for each mode) is expressed us-
ing polynomial function from X→ R.

Sound approximations for Inwards(Inv,~x, f) for semi-algebraic
Inv have been discussed extensively in previous work by
the authors [30]. Let ∇(p) denote the gradient of p; that
is, ∇p := 〈 ∂p

∂x1
, ∂p

∂x2
, . . . , ∂p

∂xn
〉. Let Lf (p) denote the Lie

derivative of p with respect to the dynamics f ; that is,
Lf (p) := ∇p · f , where · denotes the inner product. Clearly,
if we know p and the vector field f , we can symbolically
compute ∇p and Lf (p). Now, if p is a polynomial, then
Inwards(p ≥ 0,~x, f) is implied by Lf (p)(~x) ≥ 0 whenever
∇(p)(~x) 6= 0, and it is implied by Lf (p)(~x) > 0 in all cases.

Using Lie derivatives, we can similarly get a sound ap-
proximation for Progress(V,~x, f, ε) as Lf (V)(~x) ≥ ε. If the
sets Invi in the inference rules in this paper are closed and
bounded, then we can argue that we can replace the check
Lf (V)(~x) ≥ ε by the simpler check Lf (V)(~x) > 0 without
compromising the soundness of the procedure.

The inference rules in Figures 2 and 4 are based on finding
a suitable set(s) Inv (Invi’s), a function V , and some posi-
tive constants. We have not discussed how to find these sets
and functions. We do so by considering semi-algebraic sets
as candidates for Inv and polynomial functions as candidates
for V . As demostrated in [11, 29, 30], we can fix a template
for the polynomials, thereby restricting the problem to find-
ing the unknown coefficients of the polynomials. Hence, we
get an ∃∀ formula – there exist values for the unknown co-
efficients such that for all values for the state variables X,
the conditions in the inference rules hold. Since the theory
of reals admits quantifier elimination, we can decide such
formulas and discover the unknown coefficients.

6.3 Discovering Inv’s and V ’s
We briefly illustrate our approach for discovering the var-

ious sets required for proving (controlled) reachability.
First, consider the robot example from Section 2.1. In

Example 3, we proved a controlled-until property for this
example assuming that we were given V , Invi’s and PInvi’s.
We can weaken this assumption and assume instead that we
are only given the form of V , Invi’s and PInvi’s, say,

V := (y + vy − a)

Inv1 := |x + vx| ≤ b ∧ |vx| ≤ c ∧ d ≤ vy ≤ e

Inv2 := Inv1

PInv1 := i(x− x) + j(vx − vx) + k(y − y) + l(vy − vy)

PInv2 := m(x− x) + n(vx − vx) + o(y − y) + p(vy − vy)

where a, b, . . . , p are unknown real constants. Plugging in
the above forms in the formula in Figure 4 gives a big for-
mula of the form

∃a, . . . , p : ∀X, X :
^
i

(φi1 ⇒ φi2)

25

SynthSwitchLogic(MDS, R) :

1. Find closed sets (Invi)i∈I, function V : X 7→ R, and constants ε, (pi)i∈I > 0
s.t. (Initial), (DProgress), (CProgress), (Induct) and (Property) hold

2. B := {done?}
3. StateInvi(b,~x) := ∃~x : Invi(~x,~x) ∨ b = >, for all i ∈ I
4. Exiti(~x) := StateInvi(⊥,~x) ∧ ¬Inwards(Invi,~x, fi);
5. Entryi(~x) := StateInvi(⊥,~x) ∧ Inwards(Invi,~x, fi) ∧ ∨j∈IExitj(~x)
6. gij(b,~x) := b = ⊥ ∧ Exiti(~x) ∧ Entryj(~x) ∧ V (~x) < 0 ∀i 6= j ∈ I;
7. gii(b,~x) := b = ⊥ ∧ V (~x) ≥ 0
8. Resetij(b,~x, b

′) := (b = ⊥ ∧ V (~x) ≥ 0 ∧ b′ = >)
Return SwL := 〈(B, (gij)i,j∈I , (Resetij)i,j∈I , (StateInvi)i∈I〉

Figure 5: Procedure for synthesizing switching logic

In theory, the above formula falls in a decidable class and
hence a decision procedure implementation, such as QEP-
CAD [14] could decide its validity. In practice, QEPCAD
fails (runs out of memory) because it cannot handle for-
mulas with more than 6-7 variables (the above formula has
21 variables – 13 existentially quantified and 8 universally
quantified, assuming pi and ε are known constants).

We use a combination of numeric solving – in the form of
Matlab ODE simulators – and symbolic solving – in the form
of QEPCAD – to find values for a, . . . , p; see also [34]. First,
we use QEPCAD on each individual conjunct ∀X, X : φi1 ⇒
φi2 to eliminate the universally quantified variables and get
a constraint purely on the existential variables. QEPCAD
is able to handle these subformulas because (i) only a small
subset of the variables appear in it, and (ii) the subformula
is much smaller. For example, QEPCAD can simplify the
subformula corresponding to Condition (Property), namely

∀X : |x+vx| ≤ b∧|vx| ≤ c∧d ≤ vy ≤ e∧y+vy < a ⇒ −3 < x < 3,

to c + b − 3 ≤ 0. In general, QEPCAD returns a disjunc-
tion of conjunction of such (maybe nonlinear) constraints
on the existentially quantified variable. Thus, we reduce the
problem of solving the original ∃∀ formula to solving an ∃
formula. We turn the formula into disjunctive normal form
and then solve each existentially quantified conjunction of
polynomial inequalities and equations separately.

We solve the ∃ formula in two steps. We first obtain an
estimate for the values of the existential variables by using
a Matlab ODE simulator. We describe the approach using a
small example. Suppose we wish to find values for b, c such
that c+b−3 ≤ 0∧b ≥ 0∧c ≥ 0. We define a continuous func-
tion p(b, c) = max(c+b−3, 0)+max(−b, 0)+max(−c, 0) with
the property that p is always non-negative and it is zero for
any satisfying assignment. We then define a 2-dimensional
CDS whose vector field is the negative of (an approximation
of) the gradient of p. In the above example, the vector field

at a point (b, c) is given by (− p(b+ε,c)+p(b,c)
ε

, −p(b,c+ε)+p(b,c)
ε

),
where ε is some small positive constant. We perform multi-
ple simulations of the resulting CDS and find different ap-
proximate equilibrium points of this CDS. The equilibrium
point that minimizes p is chosen as our first estimate for
b, c. We finally use QEPCAD again on the pure existential
formula, but after instantiating a few variables by their es-
timated values (to reduce the number of variables for QEP-
CAD), to get a final sound answer for the existential vari-
ables.

We generated the sets Invi, PInvi, and V for the robot
example shown in Example 3 using the above approach. In

Figure 6, we show one possible trajectory of the hybrid sys-
tem (using light-colored line) that is synthesized from the
above proof of controlled reachability. Note that the dynam-
ics are not stright lines. We show a second trajectory in the
plot too, which is obtained by non-deterministically switch-
ing before the Exiti condition is true, but after ensuring a
dwell time of 1 unit in each mode (using dark-colored/blue
line).

The same approach was also used on the pendulum ex-
ample (Section 2.2). We solved the problem of synthesizing
switching logic for the pendulum in two steps. In the first
step, we showed that a set Inv can be reached using Mode
2 (u = −16) of the MDS. In the second step, we designed
a controller to keep the MDS in the set Inv. We used the
inference rule in Figure 2 for the first step. We used the
following templates for V and Inv:

V (x, y) := ax + by + c

Inv(x, y) := x2 + dy2 ≤ e

We thus get an ∃a, . . . , e : ∀x, y : Φ formula using the rule
in Figure 2(right). The above approach yielded the solution
a = −16, b = −1, c = 10, d = 1/12, e = 4. This shows that
we can use Mode 2 to reach Inv, where

Inv(x, y) := (x2 + y2/12 ≤ 4 ∧ |16x + y| ≤ 10)

Note that being in Inv implies that −1 ≤ x ≤ 1.
In the second step, we verify that we can use the two

modes to stay inside Inv. In other words, we check that Inv
is a controlled invariant [29]. This is achieved by checking
that on the boundary of Inv, there is a mode whose dynam-
ics is inwards. The resulting formulas are verified using
QEPCAD. This concludes the proof that Inv is a controlled
invariant. Thus, we have implicitly designed switches that
achieve the desired goal of getting the inverted pendulum to
be in −1 ≤ x ≤ 1.

Figure 6(right) shows a simulation of the synthesized hy-
brid system from the initial state. Note that the system
reaches the desired region (−1 ≤ x ≤ 1) and stays there.

7. RELATED WORK
Sufficient (and sometimes even necessary) conditions for

verifying safety and reachability properties of continuous
and hybrid systems have been extensively studied [31, 25,
27, 21, 36]. The inference rule for reachability in Platzer [21]
is similar to our inference rule (Figure 2(right)) and also uses
time-bounded invariants Inv to support reachability proofs.
However, the check for invariance is different and our check

26

Figure 6: Simulation plots for the two examples. The left plot (y-position versus x-position) shows two
trajectories taken by the robot to go from (0, 0) to a destination point in the region y ≥ 10. The right plot
shows the value of the position x (dark/blue) and velocity y (light) of the pendulum (versus time) when it is
controlled using the synthesized controller.

is much weaker. We check that vector fields are pointing
“inwards” only at the boundary of Inv, whereas [21] checks
that at all points. For example, the inference rules in [21]
can not prove that |vx| ≤ 1 is an invariant under the dy-
namics v̇x = 1− vx (as in the robot example). Furthermore,
we also consider the mode switching logic synthesis problem
in this paper. Our inference rule for multimodal and hybrid
system works by finding (controlled) invariants and ranking
functions that simultaneously work for all modes. The in-
ference rules in [21] reason about different modes separately
and their application can involve fixpoint iterations.

In previous work [30], we presented sound and relatively
complete inference rules for safety verification of continuous
systems (Figure 2(left)). In [29], we generalized the safety
verification inference rule to an inference rule for controlled
safety in multimodal systems and used it for controller syn-
thesis. In this paper, we consider reachability properties
(and until properties).

The idea of defining “progress” invariant predicates over
~x,~x also appears in the work on discrete systems. Specif-
ically, it has been proposed for verifying liveness proper-
ties in the form of ranking functions, transition invariants
and progress invariants [23, 22, 6, 24, 10]. However, there
are some important distinctions. Transition invariants [23]
capture the relationship between the current state and any
previous state (at a particular program location). Progress
invariant in [10] capture the relationship between the cur-
rent state and the immediately previous state (at a particular
program location). Our progress invariant captures the re-
lationship between the current state and the particular pre-
vious state when the current mode was entered. Combining
standard invariants with progress invariants appears to be
indispensable for proving until properties.

There is a lot of work on synthesis of controllers for hybrid
systems, which can be broadly classified into two categories.
The first category finds controllers that meet some liveness
specifications, such as synthesizing a trajectory to drive a hy-
brid system from an initial state to a desired final state [17,
16]. The second category finds controllers that meet some
safety specification. Our work falls in both categories. For
a detailed discussion on the related work in the second cat-

egory, we refer the reader to Asarin et.al. [2]. There are
two main approaches for synthesis: direct approaches that
compute the controlled reachable states in the style of solv-
ing a game [2, 33], and abstraction-based approaches that
do the same, but on an abstraction or approximation of the
system [18, 8]. Some of these approaches are limited in the
kinds of continuous dynamics they can handle. They all re-
quire some form of iterative fixpoint computation. Our work
here, based on synthesizing time-bounded and progress in-
variants and ranking functions directly, is an entirely differ-
ent approach for controller synthesis that does not require
any fixpoint computation. We used the same overall ap-
proach in our previous work [29] for synthesizing switching
logic for purely safety requirements, but here we show that
the approach also works for reachability, and until, proper-
ties. Moreover, we use a different, and an entirely novel,
method to solve the ∃∀ constraints that is more general and
scalable than the approach used before [11, 29].

Our approach of using templates to search for certificates
(inductive invariants or ranking functions) is closer to the
approach used in control for proving stability. Templates
are used to search for Lyapunov functions. Due to the way
Lyapunov functions are defined, the resulting ∃∀ formula
is of a much simpler form, namely ∃~a∀~x(p > 0 ∧ q < 0)
(that is, there are no implications (disjunctions) in the for-
mula). Such formulas can be effectively solved using sum-
of-squares (SOS) technique based on semidefinite program-
ming and convex optimization [20, 19, 26, 4]. Disjunctions,
however, introduce technical difficulties. One way of over-
coming them is based on combining simulations with SOS
programming [34]; see also Section 6.3.

8. CONCLUSIONS AND FUTURE WORK
We presented inference rules for verification of reachabil-

ity for continuous systems and controlled reachability, and
controlled-until properties, for multi-modal systems. We
used the proof of the controlled reachability (controlled-until
property) to synthesize a controller for achieving a given
reachability (until) specification.

Discovering effective, sound and relatively complete (nec-

27

essary and sufficient) inference rules for verification of con-
tinuous and hybrid systems is challenging. Nevertheless,
this is an active area of research; primarily because of its
use in verification and synthesis via the bounded verifica-
tion and bounded synthesis paradigm. In bounded verifica-
tion and bounded synthesis, templates are used to search for
witnesses for proofs. The use of templates leads to ∃∀ for-
mulas. We outlined an approach for solving such formulas
that combines numeric and symbolic reasoning and works
for nonlinear expressions.

Possible avenues for future work include evaluating the
effectiveness of our approach for solving ∃∀ formulas, and
automatically discovering the right templates.

Acknowledgements. We thank the referees for their in-
sightful comments.

9. REFERENCES
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.

Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(3):3–34, 1995.

[2] E. Asarin, O. Bournez, T. Dang, O. Maler, and
A. Pnueli. Effective synthesis of switching controllers
for linear systems. Proc. IEEE, 88(7):1011–25, 2000.

[3] F. Blanchini. Set invariance in control. Automatica,
35:1747–1767, 1999.

[4] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[5] K. Burns and M. Gidea. Differential Geometry and
Topology: With a view to dynamical systems.
Chapman & Hall, 2005.

[6] M. Colon and H. Sipma. Synthesis of linear ranking
functions. In TACAS, pages 67–81, 2001. LNCS 2031.

[7] P. Cuijpers and M. Reniers. Lost in translation:
Hybrid-time flows vs real-time transitions. In Proc.
11th HSCC, pages 116–129, 2008. LNCS 4981.

[8] J. Cury, B. Krogh, and T. Niinomi. Supervisory
controllers for hybrid systems based on approximating
automata. IEEE Trans. Aut. Ctrl, 43:564–568, 1998.

[9] R. W. Floyd. Assigning meaning to programs. In Proc.
Symp. in Appl. Math, 1967.

[10] S. Gulwani, S. Jain, and E. Koskinen. Control-flow
refinement and progress invariants for bound analysis.
In PLDI, 2009.

[11] S. Gulwani and A. Tiwari. Constraint-based approach
for analysis of hybrid systems. In CAV, volume 5123
of LNCS, pages 190–203. Springer, 2008.

[12] T. A. Henzinger. A theory of hyrid automata. In Proc.
11th IEEE LICS, pages 278–292, 1996.

[13] C. A. R. Hoare. An axiomatic basis of computer
programming. Comm. ACM, 12(10):576–580, 1969.

[14] H. Hong and C. Brown. Quantifier elimination
procedure by cylindrical algebraic decomposition.
www.usna.edu/Users/cs/qepcad/B/QEPCAD.html.

[15] R. M. Keller. Formal verification of parallel programs.
Comm. of the ACM, 19(7), 1976.

[16] T. Koo and S. Sastry. Mode switching synthesis for
reachability specification. In Proc. HSCC 2001, LNCS
2034, pages 333–346, 2001.

[17] P. Manon and C. Valentin-Roubinet. Controller

synthesis for hybrid systems with linear vector fields.
In Proc. IEEE Intl. Symp. on Intelligent Ctrl/Intell.
Systems and Semiotics, pages 17–22, 1999.

[18] T. Moor and J. Raisch. Discrete control of switched
linear systems. In Proc. Eur. Ctrl Conf. ECC’99, 1999.

[19] P. Parrilo and S. Lall. Sdp relaxations and algebraic
optimization in control. European J of control,
9(2-3):307–321, 2003.

[20] P. A. Parrilo. Structured semidefinite programs and
semialgebraic geometric methods in robustness and
optimization. PhD thesis, CalTech, 2000.

[21] A. Platzer. Differential dynamic logic for hybrid
systems. J. Autom. Reasoning, 41(2):143–189, 2008.

[22] A. Podelski and A. Rybalchenko. A complete method
for synthesis of linear ranking functions. In VMCAI,
LNCS. Springer, 2004.

[23] A. Podelski and A. Rybalchenko. Transition
invariants. In LICS. IEEE Computer Society, 2004.

[24] A. Podelski and S. Wagner. Model checking of hybrid
systems: from reachabilty towards stabilty. In HSCC,
LNCS 3927. Springer, 2006.

[25] S. Prajna and A. Jadbabaie. Safety verification of
hybrid systems using barrier certificates. In HSCC,
volume 2993 of LNCS, pages 477–492, 2004.

[26] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A.
Parrilo. SOSTOOLS and its control applications.
Positive Polynomials in Control, pages 273–292, 2005.

[27] S. Prajna and A. Rantzer. Primal-dual tests for safety
and reachability. In HSCC, volume 3414 of LNCS,
pages 542–556. Springer, 2005.

[28] S. Sankaranarayanan, H. Sipma, and Z. Manna.
Constructing invariants for hybrid systems. In HSCC,
volume 2993 of LNCS, pages 539–554, 2004.

[29] A. Taly, S. Gulwani, and A. Tiwari. Synthesizing
switching logic using constraint solving. In VMCAI,
volume 5403 of LNCS, pages 305–319. Springer, 2009.

[30] A. Taly and A. Tiwari. Deductive verification of
continuous dynamical systems. In FST&TCS, 2009.

[31] A. Tiwari. Approximate reachability for linear
systems. In HSCC, pages 514–525, 2003. LNCS 2623.

[32] A. Tiwari and G. Khanna. Nonlinear Systems:
Approximating reach sets. In HSCC, volume 2993 of
LNCS, pages 600–614. Springer, Mar. 2004.

[33] C. Tomlin, L. Lygeros, and S. Sastry. A game-theoretic
approach to controller design for hybrid systems. Proc.
of the IEEE, 88(7):949–970, 2000.

[34] U. Topcu, A. Packard, P. Seiler, and T. Wheeler.
Stability region analysis using simulations and
sum-of-squares programming. In Proc. American
Control Conference, ACC, pages 6009–6014, 2007.

[35] A. J. van der Schaft and J. M. Schumacher, editors.
An introduction to hybrid dynamical systems, volume
251 of Lect. Notes in Ctrl. and Inf. Sci. Springer, 2000.

[36] T. Wongpiromsarn, S. Mitra, R. M. Murray, and
A. G. Lamperski. Periodically controlled hybrid
systems. In HSCC, volume 5469 of LNCS, pages
396–410. Springer, 2009.

28

