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ABSTRACT 
XPath [1] has received a lot of attention in research 
during the last five years. It is widely used both as a 
standalone language and as a core component of XQuery 
[2] and XSLT [3]. Our project (titled xstream) 
concentrated on evaluation of XPath over XML streams. 
This research area contains multiple challenges resulting 
from both the richness of the language and the 
requirement of having only a single pass over the data. 
We modified and extended one of the known algorithms, 
TurboXPath [4], a tree-based IBM algorithm. We also 
provide extensive comparative analysis between 
TurboXPath and XSQ [5], currently the most advanced of 
finite automata (FA)-based algorithms. 

1. INTRODUCTION 
Querying XML streams has a variety of applications. In 
some, data occurs naturally in the streaming form (e.g. 
stock quotes, news feeds, XML routing). In others, 
streaming is beneficial for the performance reasons, since 
the data is accessed using a single sequential scan. 
Whatever the reason, evaluation of XML streams using 
XPath poses many challenges. First, the evaluation must 
be done in one pass over the data. Secondly, XPath is a 
rich functional language, whose implementation is a 
nontrivial task. In addition to that, many XPath features 
such as descendant axis, predicate evaluation, and 
wildcards require elaborate algorithms in order to be 
processed efficiently. 
 
A generic XPath query can be represented as a sequence 
of location steps, where each step contains axis, node test, 
and zero or more predicates associated with it. A last 
location step is called an output expression; this is the 
expression that answers the query. For example, in a 
query //book[price < 30]/title we are querying for titles of 
all books priced under $30. The location steps here are 
//book[price < 30] (axis is //, node test is book predicate is 
[price < 30]) and title (axis is /, node test is title, no 
predicate). The output expression here is title. 

2. RELATED WORK 
At the dawn of the XPath streaming evaluation, the 
researchers tried to solve the problem by building a finite 
automaton out of XPath query and running the SAX 
parser events through this automaton. Different forms of 
FA were tried – DFA [14] and NFA [15], built during 
preprocessing or lazily. The most recent of the FA 
algorithms is XSQ. It uses a sophisticated XPDT 
(eXtended PushDown Transducer) model for its 

hierarchical automaton, due to which it claims to provide 
the highest level of the XPath language support. 
 
On the other hand, TurboXPath is a tree-based XPath 
streaming algorithm. It first builds parse tree (PT) for the 
input query and then keeps matching the streamed 
document against the PT nodes. It uses smart matching 
arrays during the matching, avoiding exponential memory 
usage typical for FA algorithms. 
 
The name ‘TurboXPath’ is associated with several 
versions of the algorithm. It was first used in [10], then in 
[9], and finally in [4]. We use version [4] in our project 
since it is the most recent of all of the above. 

3. PRELIMINARIES 

3.1. General Implementation Information 
We implemented TurboXPath in Java using JDK 1.4.2. 
All our testing was done on Solaris 2.8. We used Apache 
Xerces 2.6.2 [6] for both XPath and XML parsers. Since 
XSQ implementation is also in Java, this allowed us to 
provide a more precise performance comparison between 
the implementations. The earlier benchmarks in [4] favor 
TurboXPath based on a comparison between its C++ and 
XSQ Java implementations. 

3.2. Benchmark 
We chose XPathMark [7] as our benchmark for both 
functional and performance analysis. Note that the link 
[7] has changed after we started our project, so we use a 
slightly older version containing 23 queries. See 
Appendix 2 for the full list of queries.  
 
The benchmark comes with an XML document, 
containing the data to run the queries on and the file of 
answers. The document contains 60K of data (785 
elements, depth = 11) modeling an Internet auction Web 
site.  
 
Our first intention was to use XMark [8] for our analysis. 
However, the investigation showed that XMark is 
primarily an XQuery benchmark and does not provide an 
adequate XPath coverage. On other hand, XPathMark 
exercises a broad variety of XPath axes, predicates, and 
functions. 
 
As we will see later in the document, XPathMark is a very 
predicate-intensive benchmark, whose 73% of the queries 
contain predicates. We do see it as a plus. In the real 
world, the queries will likely be complex, since they will 
likely be generated by application software and not typed 
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by an end-user. Hence having higher level of complexity 
in the benchmark makes it closer to the real-life 
applications. 

4. TURBOXPATH ANALYSIS 

4.1. Algorithm corrections 
We started with the following pseudo-code from [4]: 
 
Function startElement(x) 
1: maxIndex := nextIndex - 1 
2: for i := 0 to maxIndex do 
3:  u := pointerArray[i] 
4:  if ((ntest(u) = label(x)) or (ntest(u) = *)) then 
5:   if ((axis(u) = descendant) or 
6:          (levelArray[i] = currentLevel)) then 
7:   if (not validationArray[i]) then 
8:     for c in children(u) do 
9:      if ((c = firstSibling(c)) and 
10:             (recursionArray[u] = 0)) then 
11:           pointerArray[i] := c 
12:                  levelArray[i]:=currentLevel+1 
13:      else 
14:           pointerArray[nextIndex] := c 
15:                         levelArray[nextIndex] 
                                                   :=currentLevel+1 
16:           validationArray[nextIndex]:=0 
17:           nextIndex := nextIndex + 1 
18:  recursionArray[u]:=recursionArray[u]+1 
19: currentLevel := currentLevel + 1 
 
Function endElement(x) 
1: currentLevel := currentLevel - 1 
2: i := nextIndex - 1 
3: while (levelArray[i] > currentLevel) do 
4:   u := pointerArray[i] 
5:   if ((u = firstSibling(u) and 
6:    (recursionArray[parent(u)] = 0)) then 
7:    pointerArray[i] := parent(u) 
8:    levelArray[i] := currentLevel 
9:   else 
10:            nextIndex := nextIndex - 1 
11:     i := i - 1 
12: for i := 0 to (nextIndex - 1) do 
13:   u := pointerArray[i] 
14:   if ((ntest(u) = label(x)) or (ntest(u) = *)) then 
15:   if ((axis(u) = descendant) or 
16:           (levelArray[i] = currentLevel)) then 
17:    if (isLeaf(u)) then 
18:         validationArray[i] := evalPred(u) 
19:    else 
20:         c:=validationArray bits for children(u) 
21:         if (evalPred(c)) then  
                                validationArray[i]:=true 
22:         recursionArray[u]:=recursionArray[u]-1 
23:    if (u = $) then 
24:     queryResponse := validationArray[i] 
 
Here is the explanation of the different structures and 
variables: 
1. x – current element name. 
2. pointerArray – array of nodes being matched. 

3. validationArray – array remembering if these nodes 
were ever matched. 

4. nextIndex – index of the next available slot in 
pointerArray and validationArray. 

5. maxIndex – max node index. 
6. i – just an iteration variable. 
7. ntest(u), axis(u) – a PT node test/axis. 
8. label(x) – current element name. 
9. levelArray[i] – level (depth) at which to match the 

node. 
10. currentLevel – current depth. 
11. recursionArray[u] – level of recursion of the node u 

(i.e. how many times we’ve observed <u> inside 
<u>). 

12. queryResponse – algorithm result, whether there is a 
query match or not. 

 
We discovered and fixed the following issues with this 
algorithm. 

4.1.1. Closing child elements 
Suppose that we have a simple child-only query, e.g. 
/a/b/c. For each matching startElement(), we will be 
executing line 11 that replaces the parent PT node with its 
first (and in our case only) child. Then, when this element 
closes, in endElement(), we will need to do the reverse 
procedure: replace the child node with its parent (lines 7-
8). Unfortunately, this will never happen as no node will 
ever satisfy the condition on line 6, since we 
unconditionally increment the open element recursion 
count on line 18 of startElement(). 
 
The solution to this is not to bump up the recursion level 
for child nodes, only for descendants. The intuition 
behind this is that we stop matching child nodes (unlike 
descendants!) after the original match, so there is no 
reason to worry about their recursion count. The check for 
descendant axes must be placed both when incrementing 
the count (line 18 of startElement()) and when 
decrementing it (endElement(), line 22). 

4.1.2. Recursive documents 
A document d is recursive with respect to a query q, if 
there exists a node n in the parse tree of q and two 
elements e1, e2 in d, such that: 
1. Both e1 and e2 match n. 
2. e1 contains e2. 
 
For example, the document below is recursive with 
respect to query //a, but is not recursive with respect to 
query //b. 

<a>  
 <a> 
  <b/> 
 </a> 
 <b> 
 </b> 
</a> 
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Though this might sound like too rare of a thing to worry 
about, we observe that any document is recursive with 
respect to query //*. Also, be aware that a survey of 60 
real datasets found 35 (58%) to be recursive [13]. 
 
Recursive documents put a lot of strain on streaming 
XPath processors as you need to keep matching n against 
both e1 and e2 when you go inside e2. This results into 
exponential number of states for FA-based algorithms. As 
first shown in [9], things are better for the tree-based 
algorithms. For example, suppose our query is //a/b. Then, 
in the startElement() code above, when we enter the outer 
instance of a, we go inside the if on line 10, to lines 11 
and 12, and replace a with b inside the array of nodes to 
match. Therefore, the inner instance of a will never be 
matched. 
 
The solution to this is to move recursionArray[u] 
increment on line 18 upwards, to precede the check on 
line 10. Symmetrically, we will need to also move a 
corresponding decrement in endElement(). The new 
descendant conditions we introduced in Closing child 
elements will need to be moved too. 

4.1.3. Array bounds 
Another small change we made was in endElement(), line 
3: We need to check (i >= 0) in order not to cross the 
array boundary. 

4.1.4. Corrected version 
Applying all corrections algorithm is (changes in bold): 
 
Function startElement(x) 
1: maxIndex := nextIndex - 1 
2: for i := 0 to maxIndex do 
3:   u := pointerArray[i] 
4:   if ((ntest(u) = label(x)) or (ntest(u) = *)) then 
5:    if ((axis(u) = descendant) or 
6:           (levelArray[i] = currentLevel)) then 
    if (axis(u) == descendant) then   
                          recursionArray[u]++; 
7:     if (not validationArray[i]) then 
8:      for c in children(u) do 
9:       if ((c = firstSibling(c)) and 
10:             (recursionArray[u] = 0))then 
11:           pointerArray[i] := c 
12:           levelArray[i]  
       :=currentLevel+1 
13:       else 
14:           pointerArray[nextIndex] := c 
15:           levelArray[nextIndex]  
       :=currentLevel + 1 
16:           validationArray[nextIndex] := 0 
17:           nextIndex := nextIndex + 1 
18:   recursionArray[u]:=recursionArray[u]+1 
19: currentLevel := currentLevel + 1 
 
 
 

Function endElement(x) 
1: currentLevel := currentLevel - 1 
2: i := nextIndex - 1 
3: while ((i >= 0) and (levelArray[i] > currentLevel))do 
4:   u := pointerArray[i] 
5:   if ((u = firstSibling(u) and 
6:    (recursionArray[parent(u)] = 0)) then 
7:    pointerArray[i] := parent(u) 
8:    levelArray[i] := currentLevel 
9:   else 
10:            nextIndex := nextIndex - 1 
11:          i := i - 1 
12: for i := 0 to (nextIndex - 1) do 
13:  u := pointerArray[i] 
14:  if ((ntest(u) = label(x)) or (ntest(u) = *)) then 
15:   if ((axis(u) = descendant) or 
16:           (levelArray[i] = currentLevel)) then 
          if (axis(u) == descendant) then 
    recursionArray[u]--; 
17:    if (isLeaf(u)) then 
18:         validationArray[i] := evalPred(u) 
19:    else 
20:         c:=validationArray bits for Children(u) 
21:         if(evalPred(c)) then 
                                validationArray[i] := true 
22:   recursionArray[u]:=recursionArray[u]+1 
23:    if (u = $) then 
24:     queryResponse:=validationArray[i] 
 

4.2. Evaluation extension 
 
There are two distinct questions that can be asked while 
processing XPath query against a streaming document: 
 
1. Does this document match the query? 

F1: XML => Boolean 
 

2. What parts of the document match the query? 
F2: XML => XML 

 
The problem F1 is called XPath filtering. F2 is known as 
XPath evaluation. Our project implements F2. Evaluation 
is a harder problem than filtering. An evaluation 
algorithm can be easily converted into a filtering 
algorithm (by comparing its result to the empty set), but 
not vice versa.  
 
Since [4] describes only a filtering algorithm, we had to 
extend it to do evaluation. This was done by 
implementing the following extensions: 
 
1. Output buffers for predicate owner nodes (i.e. nodes 

that have predicates associated with them). We 
cannot output them as we stream because the 
predicates can only be evaluated on the element close 
tag. For this, we adopted the model explained in [9]. 
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2. Predicate node buffers. This will buffer contents of 
nodes that are used inside the predicate expressions. 
This also was explored in [9]. 

 
 
3. Predicate evaluation. This was omitted from [4] due 

to lack of space; however, manipulation of multiple 
predicate buffers, joins between them, and 
propagation of the evaluation result are not trivial. 

 
In addition, we had to redo the validationArray updations 
(e.g. remove startElement(), line 7) to adapt it to the needs 
of an evaluation algorithm. 

4.3. Multiple expressions 
There is one other thing that we noticed working on the 
TurboXPath implementation. In [9], the authors present 
TurboXPath as not capable of evaluating multiple XPath 
expressions simultaneously on the same XML stream. 
This is something that was successfully done in many 
earlier algorithms, e.g. [11] and [12].  However, since 
TurboXPath is capable of processing multiple output 
nodes, we can just combine the queries, OR-ing them 
together: 
 q = (q1) | (q2) | … | (qn); 
which produces a single query that can be handled by 
TurboXPath. Evaluating q will achieve the effect of 
evaluating (q1, q2, …, qn) simultaneously. Note that 
eliminating common sub-expressions on q (as a post-

Query XSQ 
result 

XSQ failure reason xstream 
result 

Xstream failure reason 

Q1 fail * is unsupported. pass n/a 
Q2 pass n/a pass n/a 
Q3 pass n/a pass n/a 
Q4 pass n/a pass n/a 
Q5 fail Backward axes  

unsupported. 
fail Transforms into a DAG query, these are unsupported 

(see Backward axis processing for more details). 
Q6 fail Backward axes unsupported. fail Transforms into a recursive query w/predicate, these 

are unsupported (unlike recursive queries w/o 
predicates). 

Q7 fail Following axis unsupported. fail Following axis is unsupported. 
Q8 fail Preceding axis unsupported. fail Preceding axis is unsupported. 
Q9 fail Following axis unsupported. fail Following axis is unsupported. 
Q10 fail Preceding axis unsupported. fail Preceding axis is unsupported. 
Q11 fail Functions are unsupported. fail DTDs are unsupported. 
Q12 fail Functions are unsupported. fail DTDs are unsupported. 
Q13 fail Functions are unsupported. fail DTDs are unsupported. 
Q14 fail Functions are unsupported. fail DTDs are unsupported. 
Q15 fail Functions are unsupported. fail DTDs are unsupported. 
Q16 fail “And” predicates 

unsupported. 
fail Multivariate (> 1 location step) predicates are 

unsupported. 
Q17 fail Functions are unsupported. fail DTDs are unsupported. 
Q18 fail Functions are unsupported. fail Positional predicates are unsupported. 
Q19 fail Functions are unsupported. pass n/a 
Q20 fail A bug, does not work for 

string constants with spaces. 
pass n/a 

Q21 fail * is unsupported. pass n/a 
Q22 pass n/a pass n/a 
Q23 fail Functions are unsupported. fail DTDs are unsupported. 
#passed 
(of 23) 

4   8  

Coverag
e (%) 

17%  34%  
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processing) will optimize the PT. This is not mandatory 
for the TurboXPath to work though. Note that this is a 
purely theoretical contribution. 
 

5. COMPARATIVE ANALYSIS 
A big part of our project was comparing our 
implementation with XSQ, a newest and the most 
advanced of FA-based algorithms. We used 
XPathMark, described in section 2.3, for both 
functional and performance analysis. 

5.1. Functionality 
The functional coverage analysis were performed by 
running XPathMark queries and verifying the output 
correctness by comparing it to the correct answers 
(supplied as a part of the benchmark). 
 
Table on previous page shows the results for both the 
implementations and explanations for possible failures. 
Note that, in XSQ case, our reasons for failure might 
not be 100% accurate, they are based on our 
observations. One of the reasons for XSQ low coverage 
is the fact that 17 out of the 23 XPathMark queries have 
predicates. XSQ processes correctly only one of these 
queries (Q22). 
 

Let’s investigate the reasons behind the inadequate 
XSQ predicate support. 

5.1.1. Predicate evaluation 
In order to illustrate how FA and tree-based predicate 
evaluation works, let’s take the following query from 
[5]: /pub/book[author]/price.  
 
The XSQ XPDT is is shown on Figure 1. The 
corresponding TurboXPath PT can be found on figure 
2. Note that in PT an arrow denotes a predicate 
dependency; double circle – an output node. 
 

 
Figure 2: TurboXPath PT for 
/pub/book[author]/price

 

Figure 1: XSQ XDPT for /pub/book[author]/price  
 
 
 
 
 
 

 
The figures look very similar. In fact, if you eliminate 
close tag XPDT transitions and the output queue 
actions, they will look almost identical. With one 
notable exception, though. 
 
Queries with predicates (e.g. author in our example) 
increase the number of children of the predicate 
owner node (in our example, book). In this example, 
we keep track of 2 book’s children, author and price; 
this can potentially be any number of child nodes.  
 
Moreover, we will need to keep track of all 
permutations of the children. Note how from XPDT 
state 6 we have a transition to state 7 on </author>. 
And, in state 7, we start matching <price> again, just 
as we tried in state 5.  
 
In a general case, if a node has m children, you would 
need m! states/transitions to handle the situation. 
 
On other hand, TurboXPath avoids this by using the 
smart matching array logic described in the 
TurboXPath analysis section. While FA-based 
algorithms can potentially add O(m!) transitions to 
take care of the predicate owner node children, 
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TurboXPath handles it with m entries in the matching 
array.  
 
So while in XSQ sibling nodes are aware of each 
other (by having explicit transitions like $7 => $9), in 
TurboXPath they are independent and only the parent 
node knows the dependencies and analyzes them on 
parent element close (lines 20-21 in endElement()). 
The tree structure helps this operation a lot, as it 
contains the necessary parent-child dependency 
information. 
 
This implies that for predicate queries: 
1. FAs are more complicated to build, since they 

require the sibling interdependencies analysis. 
2. FAs will occupy more memory as opposed to 

O(n) for TurboXPath, where n is number of PT 
nodes. The memory requirement implication is 
less important as the number of nodes in PT is 
usually insignificant comparing to the number of 
elements in the XML stream. In the example 
above, PT had 5 nodes and XPDT had 9 states. 

 
Indeed, it does look like XPDT (FA equipped with 
predicates on transition edges) has the same 
expressive power as the tree model extended with the 
matching array (note that the example we showed 
does not illustrate conditional transitions, but they are 
part of the XPDT model). 
 
However, predicate support is more difficult in FA-
based algorithms as the predicate evaluation does not 
fit neatly into the main model (unlike in trees). The 
implementation of this support is complex, this is 
why we usually don’t see an extensive predicate 
coverage in FA algorithm implementations. 
 
To answer one of the block 2 questions, we do not 
classify any of the XPathMark queries as impossible 
to implement with FA. It is just the correct 
implementation is very difficult, so they usually 
would not be implemented (or get implemented 
incorrectly, just like in XSQ). 
 
Lastly, an interesting idea would be to merge the two 
models – i.e. extend an FA algorithm with the 
TurboXPath-style matching array. It is workable if 
we have an FA extended with predicates on transition 
edges (e.g. XPDT), since in this case we can use 
matching array lookups in the transition predicate 
expressions. 

5.2. Performance 
All our performance analyses were taken on elaine2, 
900 MHz 2-CPU Solaris 2.8 machine with 2 GB of 
memory. Unless noted otherwise, we used the 

XPathMark original document (60K text, 785 
elements, depth of 11) containing Internet auction 
style data. 
 
We will first show the results using regular 
XPathMark benchmark (uses fixed document 
size/depth and query types) and later evaluate the 
performance again using variable document 
size/depth and/or various query types. 
 
We consider our benchmark results more accurate 
comparing to these provided by [9] as: 
1. We compared two Java implementations (and 

not C++ with Java implementations). 
2. Our implementations were using the same SAX 

parser ([6]). 

5.2.1. Speed 
We ran all queries that XSQ processes correctly (Q2, 
Q3, Q4, Q22) on both XSQ and xstream, averaging 
over the query time and calculating the QPS. 
 
The part measured was evaluation only (i.e. XPath 
parsing time was excluded). This is because in most 
of the scenarios, the queries are fixed and the 
documents are not, so we are more interested in the 
XPath evaluation speed as opposed to the XPath 
parsing speed. 
 
Our observation is that xstream consistently 
outperforms XSQ, on a rate of  25 to 60 percent. On 
this particular set of queries, we measured xstream 
QPS as 5.75, as opposed to 4.39 for XSQ. I.e. 
xstream is 30% faster. 
 
Then, we turned our attention to the relative 
overhead: how much does xstream add on top of just 
plain SAX processing (which is a must for both 
algorithms)? In order to determine this, we wrote 
xdummy – a simple SAX processor that parses the 
XML document and does nothing. 
 
Based on the xstream measurements, 81% of the time 
is spent on XML parsing and only 19% -- on the 
XPath evaluation. Therefore, TurboXPath does not 
add a lot of extra cost on top of the plain SAX 
parsing. 

5.2.2. Memory usage 
We had not planned to provide detailed memory 
usage analysis, but we observed an interesting trend 
in the following maximum memory sizes during the 
experiments above: 
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Implementation Maximum memory 
usage, MB 

xdummy 53 
xstream 53 
XSQ 58 
 
I.e. xstream adds virtually nothing on top of the plain 
SAX parsing (of course, this is not exactly true since 
we do allocate sizable chunks of memory). 
Nevertheless, while xstream relative memory use was 
less than 1 MB (not visible in ‘top’), XSQ adds a 
very well measurable 10% on top of the plain 
processing. 

5.2.3. Document size 
We took the same queries from the previous section 
and ran them on the same document copy-pasted 10 
times and 100 times. Here is the QPS data we 
measured: 
 
Size XSQ xstream 
60K 4.39 5.75 
600K 0.87 1.91 
6M 0.10 0.53 
 
xstream is a clear winner, more than twice faster as 
XSQ on 600K document and 5 times faster on the 
6M input. 
 
Also, note that both the implementations kept their 
memory usage constant comparing to the original 
60K document processing. 

5.2.4. Document depth 
One experiment we conducted was to see the effect 
the recursion depth has on query evaluation. We 
created documents of the following template: 
 
 <a>…<a><b/></a>…</a> 
 
where <a> and </a> tags are present variable number 
of times. 
 
We tried to issue the query //a/b. This query must 
keep matching all open a tags until they close, since 
while the a tag is open, it can always be followed by 
another b (which, in this case, would be output as a 
result). 
 
The below table shows the QPS for different depths: 
 
Depth XSQ xstream 
10 18.11 15.82 
50 9.52 7.43 
100 n/a 5.81 

200 n/a 4.06 
400 n/a 3.11 
800 n/a 2.80 
 
Unfortunately, the XSQ numbers were not completed 
as it hangs when the depth is 63 or more.  
 
The results are consistent with the earlier statement 
[4] that the TurboXPath behavior is linear in terms of 
the recursion depth. 
 
The memory usage was mostly unaffected for lower 
depths and grew slightly (+1MB) for higher depths. 
 
Lastly, an interesting fact is that while QPS of 
xstream for 800 nested nodes is 2.80, the QPS of 
xstream for 800 sequential nodes (i.e. the same file 
size/element count) is 7.40. 

5.2.5. Query types 
There are only three features of XPath that can cause 
queries to run slower. They are descendant axis, 
‘any’ node test, and predicates. 

5.2.4.1. Descendant axis 
When processing a location step with descendant 
axis, if the node test is satisfied, the location step will 
still be matched in the future in case the recursion 
happens. Therefore, the number of location steps to 
match grows by one in this case. 
 
We already analyzed the performance of descendant 
axis in the recursive case (see previous section). 
 
To estimate the behavior in non-recursive case, we 
took Q2, 
/site/closed_auctions/closed_auction/annotation/descr
iption/parlist/listitem/text/keyword, as our child axis 
query and 
//site//closed_auctions//closed_auction//annotation//d
escription//parlist//listitem//text//keyword as our 
descendant axis query. We ran the queries on our 
regular XPathMark document. Since the document is 
non-recursive in terms of the query, both queries 
return the same results. 
 
We obtained the following QPS numbers: 
 
/, XSQ  //, XSQ /, xstream  //, xstream 
5.00 4.38 5.81 5.64 
 
For xstream, the performance of the axes is virtually 
identical. However, descendant axes are noticeably 
slower for XSQ.  
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The generic difference between XSQ and xstream 
performance is in line with what we’ve experienced 
earlier. 

5.2.4.2. ‘Any’ node test 
Any node test is expressed in XPath as ‘*’. For 
example, querying for any element that has sub-
element price greater than $50, is //*[price > 50]. 
 
‘Any’ node test introduces uncertainty, just like the 
descendant axis, and can severely affect the 
performance, especially when both are used together. 
  
XSQ does not support ‘any’ node test, so we were not 
able to compare the implementations. For xstream, 
we experimentally confirmed that ‘any’ node test 
performance is linear in the number of nodes it 
matches. 

5.2.4.3. Predicate evaluation 
Predicate evaluation can incur performance overhead 
for two reasons: 
1. Time needed to evaluate the predicate. 
2. Since we can see the output node before the 

predicate evaluates to true, we might need to 
buffer the output. For predicate-free queries, the 
matching elements can be output as they are 
streamed. Buffering effectively makes one extra 
pass over the matching data and will, therefore, 
take more time. 

 
To test the predicate performance, we created the 
following document: 
 
 <a><c>11</c> … <c>11</c><c>10</c></a> 
 
where there are 10,000 c elements with the value of 
11 followed by one with the value of 10.  
 
We compared two queries. First, //a, is predicate-free. 
Second, //a[c < 11], is a predicate query. Both queries 
will return the same result (the entire document).  
 
Also, note that only the last c element satisfies the 
predicate, so buffering of the entire a element is 
mandatory. In addition, 10,000 predicate evaluations 
will be performed. 
 
Here are the QPS results: 
 
Query XSQ xstream 
//a 0.2 3.27 
//a[c < 11] 0.17 2.90 
 

Here we again experienced the fact the XSQ does not 
scale very well. With that said, the relative cost of 
predicate processing is consistent – approximately 
10% for both the implementations. 

6. FUTURE DIRECTIONS 
We believe that xstream provides a stable starting 
point for a fully functional XPath stream evaluator. 
Given the project time constraints, it was not feasible 
to implement the entire language. Therefore, the 
future directions would be to build on the current 
implementation and cover a bigger XPath subset. 
Some of the things that can be added are described 
below. 

6.1. Backward axis processing 
This can be done by adding the Xaos query 
transformation [10] as part of the PT post-processing. 
We only provided partial implementation of the 
transformation, handling only the cases where the 
transformation preserves the PT tree properties.  
 
In certain cases, however, the transformation will 
break the tree properties of the PT and will turn it 
into a DAG. For example, applying Xaos on the 
query //a//b/ancestor::c will turn it into and this is 
something TurboXPath (yet?) does not know how to 
handle. 

  

6.2. Function support 
XPath language contains several predefined 
functions. Also, new functions can be defined. 
 
We are aware of no prior attempt to implement XPath 
functions on a stream. However, we suggest 
representing the function calls as function trees, in a 
manner identical to the predicate trees. Then the 
function evaluation can just reuse the same predicate 
evaluation model. 
 
We successfully implemented this idea for the 
contains() and count() functions. More functions can 
be supported using the suggested model. 
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6.3. Expression types 
XPath is a rich language allowing many different 
types of expressions, including arithmetic 
expressions, boolean expressions, and so on. 
 
In this project, we only implemented expression 
types covered by our benchmark. Many more can be 
implemented on top of the already created 
infrastructure. 

6.4. Predicate pipelining 
In addition, no research so far has addressed the 
XPath feature of being able to have multiple 
predicates off the same node. In this case, the 
predicates should be applied in the “pipeline” 
fashion, i.e. the input of predicate i is the output of 
predicate i-1. 
 
For example, for the following document: 
<bib> 
 <book> 
  Unix 
  <price>29.99</price> 

</book> 
 <book> 
  Windows 
  <price>39.99</price> 

</book> 
</bib> 
 
//book[2][price > 35] should match the Windows 
book, whereas //book[price > 35][2] should result in 
no matches. 
 
Note that the positional predicates are 1-based in 
XPath. 
 
This might be an area of a limited practical benefit, 
but we see it as very challenging to solve from a 
theoretical standpoint. So far no known algorithm 
(including TurboXPath and XSQ) can handle 
multiple sequential predicates.  

7. CONCLUSION 
In this report, we presented xstream, our 
implementation of the TurboXPath streaming 
algorithm. The implementation task was not 
straightforward. We had to fix several bugs in the 
algorithm pseudo-code, extend and enhance it to 
perform the XPath evaluation. We ran XPathMark 
benchmarks on our implementation, comparing it 
with the XSQ both functionality-wise and 
performance-wise. 
 

From the functionality standpoint, the XSQ covers a 
disappointing 17%. This was a surprise to us, 
considering the fact that it is the most functional of 
the existing FA algorithms. However, in an 
afterthought it makes sense, given the fact that 73% 
of benchmark queries contain predicates, which 
require complex processing (inter-sibling analyses) in 
the FA model. Despite the above, we consider 
XPathMark a good benchmark, since this is a type of 
queries a real application would generate. Our 
implementation was able to achieve twice as better 
functional coverage accordingly to the benchmark. 
 
From the performance perspective, both 
implementations performed reasonably well, though 
xstream has a steady upper hand (30% faster). In any 
case, the 81% of the evaluation time is spent just 
parsing the XML, so the relative overhead of both the 
implementations is acceptable. 
 
We believe that our benchmarks provide a more 
precise picture of the performance difference 
comparing to the prior work [9], since here we use 
the same runtime environment (JVM) and the same 
XML parser (Xerces) for both the implementations. 
 
In general, it looks like the major advantage of 
TurboXPath over XSQ is its usage of the matching 
arrays. Since we could potentially extend XSQ with 
these arrays, it is probably too early to discredit the 
entire FA enterprise. 
 
Streaming XPath evaluation remains a significant 
technical challenge, due to both the richness of the 
language and the limitation of having only a single 
pass on the data. While our implementation provides 
a successful first step, more areas of the XPath 
language are still to be addressed, including function 
support and predicate pipelining. 
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9. APPENDIX 1: DEMO 
All our work can be reviewed at 
/afs/ir.stanford.edu/users/o/l/olegs/public/cs276b/d
emo. The bin sub-directory contains all executables, 
the src directory – the source code. 

9.1. Usage 
 
xstream <file> <query> 
 
where 

 file – the XML file to evaluate query against 
 query – the XPath query 
 
xstream will print out only sections of <file> that 
match the <query>. The last output line is the 
evaluation time (in milliseconds). 
 
For example: 
elaine1:~/public/cs276b/demo/bin> ./xstream 
document1.xml "//keyword/bold" 
<bold> giving stood stagger </bold><bold> cell 
rivers flesh loyal pith </bold> 
155 
 

9.2. Files 

9.2.1. bin 
1. Scripts. 

perf – performance measurement script. 
xsq – XSQ helper script. 
xstream – xstream helper script. 

 
2. Java libraries. 

grappa1_2.jar – XSQ GUI package (needed for it 
to run). 

xercesImpl.jar – Xerces parser. 
xsqf.jar – XSQ package. 
xstream.jar – xstream package. 

 
3. XML files. 

document1.xml – XPathMark benchmark file. 
document1_xsq.xml – XPathMark benchmark 

file, slightly modified for XSQ needs. 
P9-benchmark.xml – XPathMark benchmark 

description, including correct answers. 
 

4. Query files. 
perf.in – performance benchmark queries. 
xmark.in – all XPathMark queries. 

9.2.2. src 
QueryTree.java – PT class. 
QueryTreeBuilder.java – XPath parser invocation, PT 
construction. 
TurboXPath.java – implementation of the evaluator 
algorithm. 
makefile – make file to build the source. 
xstream.java – the main program. 
xdummy.java – the plain SAX XML parsing program 
(no evaluation).  
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10. APPENDIX 2: XPATHMARK QUERIES 
Q1 /site/regions/*/item 
Q2 /site/closed_auctions/closed_auction/annotation/description/parlist/listitem/text/keyword 
Q3 //keyword 
Q4 //listitem//keyword 
Q5 /site/regions/*/item[parent::namerica or parent::samerica] 
Q6 //keyword/ancestor::listitem 
Q7 /site/open_auctions/open_auction[bidder[personref/@person='person0']/following-
sibling::bidder[personref/@person='person1']] 
Q8 /site/open_auctions/open_auction[@id='open_auction0']/bidder/preceding-sibling::bidder 
Q9 /site/regions/*/item[@id='item0']/following::item 
Q10 
/site/open_auctions/open_auction/bidder[personref/@person='person1']/preceding::bidder[personref/@person='pers
on0'] 
Q11 id('person0')/name 
Q12 id(/site/people/person[@id='person1']/watches/watch/@open_auction) 
Q13 id(id(/site/people/person[@id='person1']/watches/watch/@open_auction)/seller/@person) 
Q14 id(/site/closed_auctions/closed_auction[buyer/@person='person4']/itemref/@item)[parent::europe] 
Q15 id(/site/closed_auctions/closed_auction[id(seller/@person)/name='Kaivalya Potorti']/itemref/@item) 
Q16 /site/people/person[address and (phone or homepage)] 
Q17 /site/people/person[not(id(watches/watch/@open_auction)/reserve)] 
Q18 /site/open_auctions/open_auction/bidder[position()=1 and position()=last()] 
Q19 /site/open_auctions/open_auction[count(bidder)>5] 
Q20 /site/regions/australia/item[location='United States'] 
Q21 /site/regions/*/item[contains(description,'gold')] 
Q22 /site/closed_auctions/closed_auction[price<50] 
Q23 /site/closed_auctions/closed_auction[id(seller/@person)/profile/@income > 2 * 
id(buyer/@person)/profile/@income] 
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