
CS276B Project Report: Streaming XPath Engine
Amruta Joshi Oleg Slezberg

ABSTRACT
XPath [1] has received a lot of attention in research
during the last five years. It is widely used both as a
standalone language and as a core component of XQuery
[2] and XSLT [3]. Our project (titled xstream)
concentrated on evaluation of XPath over XML streams.
This research area contains multiple challenges resulting
from both the richness of the language and the
requirement of having only a single pass over the data.
We modified and extended one of the known algorithms,
TurboXPath [4], a tree-based IBM algorithm. We also
provide extensive comparative analysis between
TurboXPath and XSQ [5], currently the most advanced of
finite automata (FA)-based algorithms.

1. INTRODUCTION
Querying XML streams has a variety of applications. In
some, data occurs naturally in the streaming form (e.g.
stock quotes, news feeds, XML routing). In others,
streaming is beneficial for the performance reasons, since
the data is accessed using a single sequential scan.
Whatever the reason, evaluation of XML streams using
XPath poses many challenges. First, the evaluation must
be done in one pass over the data. Secondly, XPath is a
rich functional language, whose implementation is a
nontrivial task. In addition to that, many XPath features
such as descendant axis, predicate evaluation, and
wildcards require elaborate algorithms in order to be
processed efficiently.

A generic XPath query can be represented as a sequence
of location steps, where each step contains axis, node test,
and zero or more predicates associated with it. A last
location step is called an output expression; this is the
expression that answers the query. For example, in a
query //book[price < 30]/title we are querying for titles of
all books priced under $30. The location steps here are
//book[price < 30] (axis is //, node test is book predicate is
[price < 30]) and title (axis is /, node test is title, no
predicate). The output expression here is title.

2. RELATED WORK
At the dawn of the XPath streaming evaluation, the
researchers tried to solve the problem by building a finite
automaton out of XPath query and running the SAX
parser events through this automaton. Different forms of
FA were tried – DFA [14] and NFA [15], built during
preprocessing or lazily. The most recent of the FA
algorithms is XSQ. It uses a sophisticated XPDT
(eXtended PushDown Transducer) model for its

hierarchical automaton, due to which it claims to provide
the highest level of the XPath language support.

On the other hand, TurboXPath is a tree-based XPath
streaming algorithm. It first builds parse tree (PT) for the
input query and then keeps matching the streamed
document against the PT nodes. It uses smart matching
arrays during the matching, avoiding exponential memory
usage typical for FA algorithms.

The name ‘TurboXPath’ is associated with several
versions of the algorithm. It was first used in [10], then in
[9], and finally in [4]. We use version [4] in our project
since it is the most recent of all of the above.

3. PRELIMINARIES

3.1. General Implementation Information
We implemented TurboXPath in Java using JDK 1.4.2.
All our testing was done on Solaris 2.8. We used Apache
Xerces 2.6.2 [6] for both XPath and XML parsers. Since
XSQ implementation is also in Java, this allowed us to
provide a more precise performance comparison between
the implementations. The earlier benchmarks in [4] favor
TurboXPath based on a comparison between its C++ and
XSQ Java implementations.

3.2. Benchmark
We chose XPathMark [7] as our benchmark for both
functional and performance analysis. Note that the link
[7] has changed after we started our project, so we use a
slightly older version containing 23 queries. See
Appendix 2 for the full list of queries.

The benchmark comes with an XML document,
containing the data to run the queries on and the file of
answers. The document contains 60K of data (785
elements, depth = 11) modeling an Internet auction Web
site.

Our first intention was to use XMark [8] for our analysis.
However, the investigation showed that XMark is
primarily an XQuery benchmark and does not provide an
adequate XPath coverage. On other hand, XPathMark
exercises a broad variety of XPath axes, predicates, and
functions.

As we will see later in the document, XPathMark is a very
predicate-intensive benchmark, whose 73% of the queries
contain predicates. We do see it as a plus. In the real
world, the queries will likely be complex, since they will
likely be generated by application software and not typed

 1

by an end-user. Hence having higher level of complexity
in the benchmark makes it closer to the real-life
applications.

4. TURBOXPATH ANALYSIS

4.1. Algorithm corrections
We started with the following pseudo-code from [4]:

Function startElement(x)
1: maxIndex := nextIndex - 1
2: for i := 0 to maxIndex do
3: u := pointerArray[i]
4: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
5: if ((axis(u) = descendant) or
6: (levelArray[i] = currentLevel)) then
7: if (not validationArray[i]) then
8: for c in children(u) do
9: if ((c = firstSibling(c)) and
10: (recursionArray[u] = 0)) then
11: pointerArray[i] := c
12: levelArray[i]:=currentLevel+1
13: else
14: pointerArray[nextIndex] := c
15: levelArray[nextIndex]
 :=currentLevel+1
16: validationArray[nextIndex]:=0
17: nextIndex := nextIndex + 1
18: recursionArray[u]:=recursionArray[u]+1
19: currentLevel := currentLevel + 1

Function endElement(x)
1: currentLevel := currentLevel - 1
2: i := nextIndex - 1
3: while (levelArray[i] > currentLevel) do
4: u := pointerArray[i]
5: if ((u = firstSibling(u) and
6: (recursionArray[parent(u)] = 0)) then
7: pointerArray[i] := parent(u)
8: levelArray[i] := currentLevel
9: else
10: nextIndex := nextIndex - 1
11: i := i - 1
12: for i := 0 to (nextIndex - 1) do
13: u := pointerArray[i]
14: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
15: if ((axis(u) = descendant) or
16: (levelArray[i] = currentLevel)) then
17: if (isLeaf(u)) then
18: validationArray[i] := evalPred(u)
19: else
20: c:=validationArray bits for children(u)
21: if (evalPred(c)) then
 validationArray[i]:=true
22: recursionArray[u]:=recursionArray[u]-1
23: if (u = $) then
24: queryResponse := validationArray[i]

Here is the explanation of the different structures and
variables:
1. x – current element name.
2. pointerArray – array of nodes being matched.

3. validationArray – array remembering if these nodes
were ever matched.

4. nextIndex – index of the next available slot in
pointerArray and validationArray.

5. maxIndex – max node index.
6. i – just an iteration variable.
7. ntest(u), axis(u) – a PT node test/axis.
8. label(x) – current element name.
9. levelArray[i] – level (depth) at which to match the

node.
10. currentLevel – current depth.
11. recursionArray[u] – level of recursion of the node u

(i.e. how many times we’ve observed <u> inside
<u>).

12. queryResponse – algorithm result, whether there is a
query match or not.

We discovered and fixed the following issues with this
algorithm.

4.1.1. Closing child elements
Suppose that we have a simple child-only query, e.g.
/a/b/c. For each matching startElement(), we will be
executing line 11 that replaces the parent PT node with its
first (and in our case only) child. Then, when this element
closes, in endElement(), we will need to do the reverse
procedure: replace the child node with its parent (lines 7-
8). Unfortunately, this will never happen as no node will
ever satisfy the condition on line 6, since we
unconditionally increment the open element recursion
count on line 18 of startElement().

The solution to this is not to bump up the recursion level
for child nodes, only for descendants. The intuition
behind this is that we stop matching child nodes (unlike
descendants!) after the original match, so there is no
reason to worry about their recursion count. The check for
descendant axes must be placed both when incrementing
the count (line 18 of startElement()) and when
decrementing it (endElement(), line 22).

4.1.2. Recursive documents
A document d is recursive with respect to a query q, if
there exists a node n in the parse tree of q and two
elements e1, e2 in d, such that:
1. Both e1 and e2 match n.
2. e1 contains e2.

For example, the document below is recursive with
respect to query //a, but is not recursive with respect to
query //b.

<a>
 <a>

 2

Though this might sound like too rare of a thing to worry
about, we observe that any document is recursive with
respect to query //*. Also, be aware that a survey of 60
real datasets found 35 (58%) to be recursive [13].

Recursive documents put a lot of strain on streaming
XPath processors as you need to keep matching n against
both e1 and e2 when you go inside e2. This results into
exponential number of states for FA-based algorithms. As
first shown in [9], things are better for the tree-based
algorithms. For example, suppose our query is //a/b. Then,
in the startElement() code above, when we enter the outer
instance of a, we go inside the if on line 10, to lines 11
and 12, and replace a with b inside the array of nodes to
match. Therefore, the inner instance of a will never be
matched.

The solution to this is to move recursionArray[u]
increment on line 18 upwards, to precede the check on
line 10. Symmetrically, we will need to also move a
corresponding decrement in endElement(). The new
descendant conditions we introduced in Closing child
elements will need to be moved too.

4.1.3. Array bounds
Another small change we made was in endElement(), line
3: We need to check (i >= 0) in order not to cross the
array boundary.

4.1.4. Corrected version
Applying all corrections algorithm is (changes in bold):

Function startElement(x)
1: maxIndex := nextIndex - 1
2: for i := 0 to maxIndex do
3: u := pointerArray[i]
4: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
5: if ((axis(u) = descendant) or
6: (levelArray[i] = currentLevel)) then
 if (axis(u) == descendant) then
 recursionArray[u]++;
7: if (not validationArray[i]) then
8: for c in children(u) do
9: if ((c = firstSibling(c)) and
10: (recursionArray[u] = 0))then
11: pointerArray[i] := c
12: levelArray[i]
 :=currentLevel+1
13: else
14: pointerArray[nextIndex] := c
15: levelArray[nextIndex]
 :=currentLevel + 1
16: validationArray[nextIndex] := 0
17: nextIndex := nextIndex + 1
18: recursionArray[u]:=recursionArray[u]+1
19: currentLevel := currentLevel + 1

Function endElement(x)
1: currentLevel := currentLevel - 1
2: i := nextIndex - 1
3: while ((i >= 0) and (levelArray[i] > currentLevel))do
4: u := pointerArray[i]
5: if ((u = firstSibling(u) and
6: (recursionArray[parent(u)] = 0)) then
7: pointerArray[i] := parent(u)
8: levelArray[i] := currentLevel
9: else
10: nextIndex := nextIndex - 1
11: i := i - 1
12: for i := 0 to (nextIndex - 1) do
13: u := pointerArray[i]
14: if ((ntest(u) = label(x)) or (ntest(u) = *)) then
15: if ((axis(u) = descendant) or
16: (levelArray[i] = currentLevel)) then
 if (axis(u) == descendant) then
 recursionArray[u]--;
17: if (isLeaf(u)) then
18: validationArray[i] := evalPred(u)
19: else
20: c:=validationArray bits for Children(u)
21: if(evalPred(c)) then
 validationArray[i] := true
22: recursionArray[u]:=recursionArray[u]+1
23: if (u = $) then
24: queryResponse:=validationArray[i]

4.2. Evaluation extension

There are two distinct questions that can be asked while
processing XPath query against a streaming document:

1. Does this document match the query?

F1: XML => Boolean

2. What parts of the document match the query?
F2: XML => XML

The problem F1 is called XPath filtering. F2 is known as
XPath evaluation. Our project implements F2. Evaluation
is a harder problem than filtering. An evaluation
algorithm can be easily converted into a filtering
algorithm (by comparing its result to the empty set), but
not vice versa.

Since [4] describes only a filtering algorithm, we had to
extend it to do evaluation. This was done by
implementing the following extensions:

1. Output buffers for predicate owner nodes (i.e. nodes

that have predicates associated with them). We
cannot output them as we stream because the
predicates can only be evaluated on the element close
tag. For this, we adopted the model explained in [9].

 3

2. Predicate node buffers. This will buffer contents of
nodes that are used inside the predicate expressions.
This also was explored in [9].

3. Predicate evaluation. This was omitted from [4] due

to lack of space; however, manipulation of multiple
predicate buffers, joins between them, and
propagation of the evaluation result are not trivial.

In addition, we had to redo the validationArray updations
(e.g. remove startElement(), line 7) to adapt it to the needs
of an evaluation algorithm.

4.3. Multiple expressions
There is one other thing that we noticed working on the
TurboXPath implementation. In [9], the authors present
TurboXPath as not capable of evaluating multiple XPath
expressions simultaneously on the same XML stream.
This is something that was successfully done in many
earlier algorithms, e.g. [11] and [12]. However, since
TurboXPath is capable of processing multiple output
nodes, we can just combine the queries, OR-ing them
together:
 q = (q1) | (q2) | … | (qn);
which produces a single query that can be handled by
TurboXPath. Evaluating q will achieve the effect of
evaluating (q1, q2, …, qn) simultaneously. Note that
eliminating common sub-expressions on q (as a post-

Query XSQ
result

XSQ failure reason xstream
result

Xstream failure reason

Q1 fail * is unsupported. pass n/a
Q2 pass n/a pass n/a
Q3 pass n/a pass n/a
Q4 pass n/a pass n/a
Q5 fail Backward axes

unsupported.
fail Transforms into a DAG query, these are unsupported

(see Backward axis processing for more details).
Q6 fail Backward axes unsupported. fail Transforms into a recursive query w/predicate, these

are unsupported (unlike recursive queries w/o
predicates).

Q7 fail Following axis unsupported. fail Following axis is unsupported.
Q8 fail Preceding axis unsupported. fail Preceding axis is unsupported.
Q9 fail Following axis unsupported. fail Following axis is unsupported.
Q10 fail Preceding axis unsupported. fail Preceding axis is unsupported.
Q11 fail Functions are unsupported. fail DTDs are unsupported.
Q12 fail Functions are unsupported. fail DTDs are unsupported.
Q13 fail Functions are unsupported. fail DTDs are unsupported.
Q14 fail Functions are unsupported. fail DTDs are unsupported.
Q15 fail Functions are unsupported. fail DTDs are unsupported.
Q16 fail “And” predicates

unsupported.
fail Multivariate (> 1 location step) predicates are

unsupported.
Q17 fail Functions are unsupported. fail DTDs are unsupported.
Q18 fail Functions are unsupported. fail Positional predicates are unsupported.
Q19 fail Functions are unsupported. pass n/a
Q20 fail A bug, does not work for

string constants with spaces.
pass n/a

Q21 fail * is unsupported. pass n/a
Q22 pass n/a pass n/a
Q23 fail Functions are unsupported. fail DTDs are unsupported.
#passed
(of 23)

4 8

Coverag
e (%)

17% 34%

 4

processing) will optimize the PT. This is not mandatory
for the TurboXPath to work though. Note that this is a
purely theoretical contribution.

5. COMPARATIVE ANALYSIS
A big part of our project was comparing our
implementation with XSQ, a newest and the most
advanced of FA-based algorithms. We used
XPathMark, described in section 2.3, for both
functional and performance analysis.

5.1. Functionality
The functional coverage analysis were performed by
running XPathMark queries and verifying the output
correctness by comparing it to the correct answers
(supplied as a part of the benchmark).

Table on previous page shows the results for both the
implementations and explanations for possible failures.
Note that, in XSQ case, our reasons for failure might
not be 100% accurate, they are based on our
observations. One of the reasons for XSQ low coverage
is the fact that 17 out of the 23 XPathMark queries have
predicates. XSQ processes correctly only one of these
queries (Q22).

Let’s investigate the reasons behind the inadequate
XSQ predicate support.

5.1.1. Predicate evaluation
In order to illustrate how FA and tree-based predicate
evaluation works, let’s take the following query from
[5]: /pub/book[author]/price.

The XSQ XPDT is is shown on Figure 1. The
corresponding TurboXPath PT can be found on figure
2. Note that in PT an arrow denotes a predicate
dependency; double circle – an output node.

Figure 2: TurboXPath PT for
/pub/book[author]/price

Figure 1: XSQ XDPT for /pub/book[author]/price

The figures look very similar. In fact, if you eliminate
close tag XPDT transitions and the output queue
actions, they will look almost identical. With one
notable exception, though.

Queries with predicates (e.g. author in our example)
increase the number of children of the predicate
owner node (in our example, book). In this example,
we keep track of 2 book’s children, author and price;
this can potentially be any number of child nodes.

Moreover, we will need to keep track of all
permutations of the children. Note how from XPDT
state 6 we have a transition to state 7 on </author>.
And, in state 7, we start matching <price> again, just
as we tried in state 5.

In a general case, if a node has m children, you would
need m! states/transitions to handle the situation.

On other hand, TurboXPath avoids this by using the
smart matching array logic described in the
TurboXPath analysis section. While FA-based
algorithms can potentially add O(m!) transitions to
take care of the predicate owner node children,

 5

TurboXPath handles it with m entries in the matching
array.

So while in XSQ sibling nodes are aware of each
other (by having explicit transitions like $7 => $9), in
TurboXPath they are independent and only the parent
node knows the dependencies and analyzes them on
parent element close (lines 20-21 in endElement()).
The tree structure helps this operation a lot, as it
contains the necessary parent-child dependency
information.

This implies that for predicate queries:
1. FAs are more complicated to build, since they

require the sibling interdependencies analysis.
2. FAs will occupy more memory as opposed to

O(n) for TurboXPath, where n is number of PT
nodes. The memory requirement implication is
less important as the number of nodes in PT is
usually insignificant comparing to the number of
elements in the XML stream. In the example
above, PT had 5 nodes and XPDT had 9 states.

Indeed, it does look like XPDT (FA equipped with
predicates on transition edges) has the same
expressive power as the tree model extended with the
matching array (note that the example we showed
does not illustrate conditional transitions, but they are
part of the XPDT model).

However, predicate support is more difficult in FA-
based algorithms as the predicate evaluation does not
fit neatly into the main model (unlike in trees). The
implementation of this support is complex, this is
why we usually don’t see an extensive predicate
coverage in FA algorithm implementations.

To answer one of the block 2 questions, we do not
classify any of the XPathMark queries as impossible
to implement with FA. It is just the correct
implementation is very difficult, so they usually
would not be implemented (or get implemented
incorrectly, just like in XSQ).

Lastly, an interesting idea would be to merge the two
models – i.e. extend an FA algorithm with the
TurboXPath-style matching array. It is workable if
we have an FA extended with predicates on transition
edges (e.g. XPDT), since in this case we can use
matching array lookups in the transition predicate
expressions.

5.2. Performance
All our performance analyses were taken on elaine2,
900 MHz 2-CPU Solaris 2.8 machine with 2 GB of
memory. Unless noted otherwise, we used the

XPathMark original document (60K text, 785
elements, depth of 11) containing Internet auction
style data.

We will first show the results using regular
XPathMark benchmark (uses fixed document
size/depth and query types) and later evaluate the
performance again using variable document
size/depth and/or various query types.

We consider our benchmark results more accurate
comparing to these provided by [9] as:
1. We compared two Java implementations (and

not C++ with Java implementations).
2. Our implementations were using the same SAX

parser ([6]).

5.2.1. Speed
We ran all queries that XSQ processes correctly (Q2,
Q3, Q4, Q22) on both XSQ and xstream, averaging
over the query time and calculating the QPS.

The part measured was evaluation only (i.e. XPath
parsing time was excluded). This is because in most
of the scenarios, the queries are fixed and the
documents are not, so we are more interested in the
XPath evaluation speed as opposed to the XPath
parsing speed.

Our observation is that xstream consistently
outperforms XSQ, on a rate of 25 to 60 percent. On
this particular set of queries, we measured xstream
QPS as 5.75, as opposed to 4.39 for XSQ. I.e.
xstream is 30% faster.

Then, we turned our attention to the relative
overhead: how much does xstream add on top of just
plain SAX processing (which is a must for both
algorithms)? In order to determine this, we wrote
xdummy – a simple SAX processor that parses the
XML document and does nothing.

Based on the xstream measurements, 81% of the time
is spent on XML parsing and only 19% -- on the
XPath evaluation. Therefore, TurboXPath does not
add a lot of extra cost on top of the plain SAX
parsing.

5.2.2. Memory usage
We had not planned to provide detailed memory
usage analysis, but we observed an interesting trend
in the following maximum memory sizes during the
experiments above:

 6

Implementation Maximum memory
usage, MB

xdummy 53
xstream 53
XSQ 58

I.e. xstream adds virtually nothing on top of the plain
SAX parsing (of course, this is not exactly true since
we do allocate sizable chunks of memory).
Nevertheless, while xstream relative memory use was
less than 1 MB (not visible in ‘top’), XSQ adds a
very well measurable 10% on top of the plain
processing.

5.2.3. Document size
We took the same queries from the previous section
and ran them on the same document copy-pasted 10
times and 100 times. Here is the QPS data we
measured:

Size XSQ xstream
60K 4.39 5.75
600K 0.87 1.91
6M 0.10 0.53

xstream is a clear winner, more than twice faster as
XSQ on 600K document and 5 times faster on the
6M input.

Also, note that both the implementations kept their
memory usage constant comparing to the original
60K document processing.

5.2.4. Document depth
One experiment we conducted was to see the effect
the recursion depth has on query evaluation. We
created documents of the following template:

 <a>…<a>…

where <a> and tags are present variable number
of times.

We tried to issue the query //a/b. This query must
keep matching all open a tags until they close, since
while the a tag is open, it can always be followed by
another b (which, in this case, would be output as a
result).

The below table shows the QPS for different depths:

Depth XSQ xstream
10 18.11 15.82
50 9.52 7.43
100 n/a 5.81

200 n/a 4.06
400 n/a 3.11
800 n/a 2.80

Unfortunately, the XSQ numbers were not completed
as it hangs when the depth is 63 or more.

The results are consistent with the earlier statement
[4] that the TurboXPath behavior is linear in terms of
the recursion depth.

The memory usage was mostly unaffected for lower
depths and grew slightly (+1MB) for higher depths.

Lastly, an interesting fact is that while QPS of
xstream for 800 nested nodes is 2.80, the QPS of
xstream for 800 sequential nodes (i.e. the same file
size/element count) is 7.40.

5.2.5. Query types
There are only three features of XPath that can cause
queries to run slower. They are descendant axis,
‘any’ node test, and predicates.

5.2.4.1. Descendant axis
When processing a location step with descendant
axis, if the node test is satisfied, the location step will
still be matched in the future in case the recursion
happens. Therefore, the number of location steps to
match grows by one in this case.

We already analyzed the performance of descendant
axis in the recursive case (see previous section).

To estimate the behavior in non-recursive case, we
took Q2,
/site/closed_auctions/closed_auction/annotation/descr
iption/parlist/listitem/text/keyword, as our child axis
query and
//site//closed_auctions//closed_auction//annotation//d
escription//parlist//listitem//text//keyword as our
descendant axis query. We ran the queries on our
regular XPathMark document. Since the document is
non-recursive in terms of the query, both queries
return the same results.

We obtained the following QPS numbers:

/, XSQ //, XSQ /, xstream //, xstream
5.00 4.38 5.81 5.64

For xstream, the performance of the axes is virtually
identical. However, descendant axes are noticeably
slower for XSQ.

 7

The generic difference between XSQ and xstream
performance is in line with what we’ve experienced
earlier.

5.2.4.2. ‘Any’ node test
Any node test is expressed in XPath as ‘*’. For
example, querying for any element that has sub-
element price greater than $50, is //*[price > 50].

‘Any’ node test introduces uncertainty, just like the
descendant axis, and can severely affect the
performance, especially when both are used together.

XSQ does not support ‘any’ node test, so we were not
able to compare the implementations. For xstream,
we experimentally confirmed that ‘any’ node test
performance is linear in the number of nodes it
matches.

5.2.4.3. Predicate evaluation
Predicate evaluation can incur performance overhead
for two reasons:
1. Time needed to evaluate the predicate.
2. Since we can see the output node before the

predicate evaluates to true, we might need to
buffer the output. For predicate-free queries, the
matching elements can be output as they are
streamed. Buffering effectively makes one extra
pass over the matching data and will, therefore,
take more time.

To test the predicate performance, we created the
following document:

 <a><c>11</c> … <c>11</c><c>10</c>

where there are 10,000 c elements with the value of
11 followed by one with the value of 10.

We compared two queries. First, //a, is predicate-free.
Second, //a[c < 11], is a predicate query. Both queries
will return the same result (the entire document).

Also, note that only the last c element satisfies the
predicate, so buffering of the entire a element is
mandatory. In addition, 10,000 predicate evaluations
will be performed.

Here are the QPS results:

Query XSQ xstream
//a 0.2 3.27
//a[c < 11] 0.17 2.90

Here we again experienced the fact the XSQ does not
scale very well. With that said, the relative cost of
predicate processing is consistent – approximately
10% for both the implementations.

6. FUTURE DIRECTIONS
We believe that xstream provides a stable starting
point for a fully functional XPath stream evaluator.
Given the project time constraints, it was not feasible
to implement the entire language. Therefore, the
future directions would be to build on the current
implementation and cover a bigger XPath subset.
Some of the things that can be added are described
below.

6.1. Backward axis processing
This can be done by adding the Xaos query
transformation [10] as part of the PT post-processing.
We only provided partial implementation of the
transformation, handling only the cases where the
transformation preserves the PT tree properties.

In certain cases, however, the transformation will
break the tree properties of the PT and will turn it
into a DAG. For example, applying Xaos on the
query //a//b/ancestor::c will turn it into and this is
something TurboXPath (yet?) does not know how to
handle.

6.2. Function support
XPath language contains several predefined
functions. Also, new functions can be defined.

We are aware of no prior attempt to implement XPath
functions on a stream. However, we suggest
representing the function calls as function trees, in a
manner identical to the predicate trees. Then the
function evaluation can just reuse the same predicate
evaluation model.

We successfully implemented this idea for the
contains() and count() functions. More functions can
be supported using the suggested model.

 8

6.3. Expression types
XPath is a rich language allowing many different
types of expressions, including arithmetic
expressions, boolean expressions, and so on.

In this project, we only implemented expression
types covered by our benchmark. Many more can be
implemented on top of the already created
infrastructure.

6.4. Predicate pipelining
In addition, no research so far has addressed the
XPath feature of being able to have multiple
predicates off the same node. In this case, the
predicates should be applied in the “pipeline”
fashion, i.e. the input of predicate i is the output of
predicate i-1.

For example, for the following document:
<bib>
 <book>
 Unix
 <price>29.99</price>

</book>
 <book>
 Windows
 <price>39.99</price>

</book>
</bib>

//book[2][price > 35] should match the Windows
book, whereas //book[price > 35][2] should result in
no matches.

Note that the positional predicates are 1-based in
XPath.

This might be an area of a limited practical benefit,
but we see it as very challenging to solve from a
theoretical standpoint. So far no known algorithm
(including TurboXPath and XSQ) can handle
multiple sequential predicates.

7. CONCLUSION
In this report, we presented xstream, our
implementation of the TurboXPath streaming
algorithm. The implementation task was not
straightforward. We had to fix several bugs in the
algorithm pseudo-code, extend and enhance it to
perform the XPath evaluation. We ran XPathMark
benchmarks on our implementation, comparing it
with the XSQ both functionality-wise and
performance-wise.

From the functionality standpoint, the XSQ covers a
disappointing 17%. This was a surprise to us,
considering the fact that it is the most functional of
the existing FA algorithms. However, in an
afterthought it makes sense, given the fact that 73%
of benchmark queries contain predicates, which
require complex processing (inter-sibling analyses) in
the FA model. Despite the above, we consider
XPathMark a good benchmark, since this is a type of
queries a real application would generate. Our
implementation was able to achieve twice as better
functional coverage accordingly to the benchmark.

From the performance perspective, both
implementations performed reasonably well, though
xstream has a steady upper hand (30% faster). In any
case, the 81% of the evaluation time is spent just
parsing the XML, so the relative overhead of both the
implementations is acceptable.

We believe that our benchmarks provide a more
precise picture of the performance difference
comparing to the prior work [9], since here we use
the same runtime environment (JVM) and the same
XML parser (Xerces) for both the implementations.

In general, it looks like the major advantage of
TurboXPath over XSQ is its usage of the matching
arrays. Since we could potentially extend XSQ with
these arrays, it is probably too early to discredit the
entire FA enterprise.

Streaming XPath evaluation remains a significant
technical challenge, due to both the richness of the
language and the limitation of having only a single
pass on the data. While our implementation provides
a successful first step, more areas of the XPath
language are still to be addressed, including function
support and predicate pipelining.

8. REFERENCES
[1] James Clark and Steve DeRose. XML Path
Language (XPath)http://www.w3.org/TR/xpath
[2] Scott Boag, Don Chamberlin, Mary F. Fernández,
Daniela Florescu, Jonathan Robie, and Jérôme
Siméon. XQuery 1.0: An XML Query Language
http://www.w3.org/TR/xquery/
[3] James Clark. XSL Transformations (XSLT)
 http://www.w3.org/TR/xslt
[4] Ziv Bar-Yossef, Marcus Fontoura, and Vanja
Josifovski. On the Memory Requirements of XPath
Evaluation over XML Streams
http://www.almaden.ibm.com/cs/people/fontoura/pap
ers/pods2004.pdf

 9

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xslt
http://www.almaden.ibm.com/cs/people/fontoura/papers/pods2004.pdf
http://www.almaden.ibm.com/cs/people/fontoura/papers/pods2004.pdf

[5] Feng Peng and Sudarshan S. Chawathe. XSQ A
Streaming XPath Engine (Technical Report)
http://www.cs.umd.edu/projects/xsq/xsqtr.ps
[6] Xerces2 Java Parser 2.6.2 Release
http://xml.apache.org/xerces2-j/
[7] Massimo Franceschet. XPathMark: An XPath
benchmark for XMark
http://staff.science.uva.nl/~francesc/xpathmark/bench
mark.pdf
[8] XMark — An XML Benchmark Project
 http://monetdb.cwi.nl/xml/index.html
[9] Vanja Josifovski, Marcus Fontoura, and Attila
Barta. Querying XML Streams
http://www.almaden.ibm.com/cs/people/fontoura/pap
ers/turboxpath.pdf
[10] Charles Barton, Philippe Charles, Deepak Goyal,
Mukund Raghavachari, Marcus Fontoura, and Vanja
Josifovski. Streaming XPath Processing with
Forward and Backward Axes
http://www.cs.nyu.edu/~deepak/publications/icde.pdf
[11] Mehmet Altınel and Michael J. Franklin.
Efficient Filtering of XML Documents for Selective
Dissemination
http://www.cs.berkeley.edu/~franklin/Papers/XFilter
VLDB00.pdf
[12] Yanlei Diao, Mehmet Altinel, Michael J.
Franklin, Hao Zhang, and Peter Fischer. Path Sharing
and Predicate Evaluation for High-Performance XML
Filtering
http://www.cs.berkeley.edu/~diaoyl/publications/yfilt
er-tods-2003.pdf
[13] Byron Choi. What are Real DTDs Like?
http://www.cis.upenn.edu/~kkchoi/realdtds.pdf
[14] Todd J. Green, Gerome Miklau, Makoto
Onizuka, and Dan Suciu. Processing XML Streams
with Deterministic Automata
http://www.cs.washington.edu/homes/suciu/paper-
techreport.pdf
[15] Yanlei Diao, Mehmet Altinel, and Michael J.
Franklin. NFA-based Filtering for Efficient and
Scalable XML Routing
http://sunsite.berkeley.edu/Dienst/Repository/2.0/Bod
y/ncstrl.ucb/CSD-01-1159/pdf

9. APPENDIX 1: DEMO
All our work can be reviewed at
/afs/ir.stanford.edu/users/o/l/olegs/public/cs276b/d
emo. The bin sub-directory contains all executables,
the src directory – the source code.

9.1. Usage

xstream <file> <query>

where

 file – the XML file to evaluate query against
 query – the XPath query

xstream will print out only sections of <file> that
match the <query>. The last output line is the
evaluation time (in milliseconds).

For example:
elaine1:~/public/cs276b/demo/bin> ./xstream
document1.xml "//keyword/bold"
<bold> giving stood stagger </bold><bold> cell
rivers flesh loyal pith </bold>
155

9.2. Files

9.2.1. bin
1. Scripts.

perf – performance measurement script.
xsq – XSQ helper script.
xstream – xstream helper script.

2. Java libraries.

grappa1_2.jar – XSQ GUI package (needed for it
to run).

xercesImpl.jar – Xerces parser.
xsqf.jar – XSQ package.
xstream.jar – xstream package.

3. XML files.

document1.xml – XPathMark benchmark file.
document1_xsq.xml – XPathMark benchmark

file, slightly modified for XSQ needs.
P9-benchmark.xml – XPathMark benchmark

description, including correct answers.

4. Query files.
perf.in – performance benchmark queries.
xmark.in – all XPathMark queries.

9.2.2. src
QueryTree.java – PT class.
QueryTreeBuilder.java – XPath parser invocation, PT
construction.
TurboXPath.java – implementation of the evaluator
algorithm.
makefile – make file to build the source.
xstream.java – the main program.
xdummy.java – the plain SAX XML parsing program
(no evaluation).

 10

http://www.cs.umd.edu/projects/xsq/xsqtr.ps
http://xml.apache.org/xerces2-j/
http://staff.science.uva.nl/~francesc/xpathmark/benchmark.pdf
http://staff.science.uva.nl/~francesc/xpathmark/benchmark.pdf
http://monetdb.cwi.nl/xml/index.html
http://www.almaden.ibm.com/cs/people/fontoura/papers/turboxpath.pdf
http://www.almaden.ibm.com/cs/people/fontoura/papers/turboxpath.pdf
http://www.cs.nyu.edu/~deepak/publications/icde.pdf
http://www.cs.berkeley.edu/~franklin/Papers/XFilterVLDB00.pdf
http://www.cs.berkeley.edu/~franklin/Papers/XFilterVLDB00.pdf
http://www.cs.berkeley.edu/~diaoyl/publications/yfilter-tods-2003.pdf
http://www.cs.berkeley.edu/~diaoyl/publications/yfilter-tods-2003.pdf
http://www.cis.upenn.edu/~kkchoi/realdtds.pdf
http://www.cs.washington.edu/homes/suciu/paper-techreport.pdf
http://www.cs.washington.edu/homes/suciu/paper-techreport.pdf
http://sunsite.berkeley.edu/Dienst/Repository/2.0/Body/ncstrl.ucb/CSD-01-1159/pdf
http://sunsite.berkeley.edu/Dienst/Repository/2.0/Body/ncstrl.ucb/CSD-01-1159/pdf

10. APPENDIX 2: XPATHMARK QUERIES
Q1 /site/regions/*/item
Q2 /site/closed_auctions/closed_auction/annotation/description/parlist/listitem/text/keyword
Q3 //keyword
Q4 //listitem//keyword
Q5 /site/regions/*/item[parent::namerica or parent::samerica]
Q6 //keyword/ancestor::listitem
Q7 /site/open_auctions/open_auction[bidder[personref/@person='person0']/following-
sibling::bidder[personref/@person='person1']]
Q8 /site/open_auctions/open_auction[@id='open_auction0']/bidder/preceding-sibling::bidder
Q9 /site/regions/*/item[@id='item0']/following::item
Q10
/site/open_auctions/open_auction/bidder[personref/@person='person1']/preceding::bidder[personref/@person='pers
on0']
Q11 id('person0')/name
Q12 id(/site/people/person[@id='person1']/watches/watch/@open_auction)
Q13 id(id(/site/people/person[@id='person1']/watches/watch/@open_auction)/seller/@person)
Q14 id(/site/closed_auctions/closed_auction[buyer/@person='person4']/itemref/@item)[parent::europe]
Q15 id(/site/closed_auctions/closed_auction[id(seller/@person)/name='Kaivalya Potorti']/itemref/@item)
Q16 /site/people/person[address and (phone or homepage)]
Q17 /site/people/person[not(id(watches/watch/@open_auction)/reserve)]
Q18 /site/open_auctions/open_auction/bidder[position()=1 and position()=last()]
Q19 /site/open_auctions/open_auction[count(bidder)>5]
Q20 /site/regions/australia/item[location='United States']
Q21 /site/regions/*/item[contains(description,'gold')]
Q22 /site/closed_auctions/closed_auction[price<50]
Q23 /site/closed_auctions/closed_auction[id(seller/@person)/profile/@income > 2 *
id(buyer/@person)/profile/@income]

 11

	ABSTRACT
	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	General Implementation Information
	Benchmark

	TURBOXPATH ANALYSIS
	Algorithm corrections
	Closing child elements
	Recursive documents
	Array bounds
	Corrected version

	Evaluation extension
	Multiple expressions

	COMPARATIVE ANALYSIS
	Functionality
	Predicate evaluation

	Performance
	Speed
	Memory usage
	Document size
	Document depth
	Query types
	5.2.4.1. Descendant axis
	5.2.4.2. ‘Any’ node test
	5.2.4.3. Predicate evaluation

	FUTURE DIRECTIONS
	Backward axis processing
	Function support
	Expression types
	Predicate pipelining

	CONCLUSION
	REFERENCES
	APPENDIX 1: DEMO
	Usage
	Files
	bin
	src

	APPENDIX 2: XPATHMARK QUERIES

