
1

Orion File System : File-level Host-based Vir tualization
Amruta Joshi

Pune Institute of Computer
Technology,

Dhankavadi, Pune 411043, India
020-2437-1101

amruta_pict@yahoo.com

Faraz Shaikh
Pune Institute of Computer

Technology,
Dhankavadi, Pune 411043, India

020-2437-1101
faraz_irulz@yahoo.co.in

Sapna Todwal
Pune Institute of Computer

Technology,
Dhankavadi, Pune 411043, India

020-2437-1101
sapnatodwal@yahoo.co.in

Abstract— The aim of Orion is to implement a solution that
provides file-level host-based virtualization that provides for
better aggregation of content/information based on
semantics and properties. File-system organization today
very closely mirrors storage paradigms rather than user-
access paradigms and semantic grouping. All fil e-system
hierarchies are containers that are expressed based on their
physical presence (a separate drive letter on Windows, or a
particular mount point based on the volume in Unix).

We have implemented a solution that will allow
users to organize their files based on their convenience. We
define this convenience in the following forms:
* The ability to organize the namespace based on certain
attribute properties (file-system metadata virtualization)
* The ability to de-link position of a file in the hierarchy
from its actual storage (file metadata virtualization)
* The ability to create and manipulate namespaces using
well -known metaphors (XML schema descriptions and
schema editors)
* The ability to continue using the standard metaphors for
manipulation and access to information (file-system kernel
API’ s), thus maintaining current large body of applications
unbroken)

Currently, no other solution allows users to
organize their files using convenient semantic groupings
while continuing to use standard applications. This solution
is unique in the sense that it allows flexible namespace
construction using XML.

1. INTRODUCTION

ORION is a semantic file system capable of
providing file level aggregation according to the semantics
of the file and provide for the directory structure
virtualization of an existing file system. A semantic file
system is an information storage system that provides a
flexible associative access to the system's contents by
automaticall y extracting attributes from file with the help of
type specific transducers.[5]

Associative access is provided by extension to
existing tree-structured file system protocols, and by
protocols that are designed specificall y for content-based
access. Compatibil ity with existing file system protocols is
provided by introducing the concept of a virtual directory.
Virtual directory names are interpreted as queries, and thus
provide a flexible associative access to files and directories
in a manner compatible with existing software. Rapid
attribute-based access to system contents is implemented by
automatic extraction and indexing of key properties of files.

The automatic indexing of files and directories is called
"semantic" because user programmable transducers use
information about these semantics of files to extract the
properties for indexing. The extracted properties are then
stored in a relational database so that queries can be run
against them. Experimental results from our semantic file
system implementation ORION show that semantic file
systems present a more effective storage abstraction than the
traditional tree structured file systems for information
sharing, storage and retrieval.

2. M OTIVATION

When you have a large number of items, it is
important to have a flexible and efficient mechanism to
search for particular items based on their properties and
content.[4] This is exactly what Orion aims to achieve.

Storage Paradigm to User Access Paradigm
Orion takes a file system from storage paradigm to

user access paradigm and semantic grouping.[2] Thus Orion
takes an FS closer to the way people think about files. We
do not think of files according to where it is stored. Rather
we observe that people think about files based on their
content or properties. Hence, search for file should be based
on these rather than their storage location in the directory
hierarchy.

Orion uses grouping instead of ordering to locate
files. A grouping is interpreted by performing a set
intersection of those li sts for every object named in the
grouping.[3]

Platform rather than an application
Orion is a platform and not just an application.

Being a platform, all fil e system kernel API’ s remain
unchanged. Also existing applications automatically start
working with the new platform and can exploit its features
without any changes to the applications themselves. Also,
Orion is not targeted at any particular file type and can
support any file types that may come up in the future.

Multiple Views of the same set of files
Orion aggregates information based on its

semantics. It restructures the logical layout of the file
system and gives you the ability to have different logical
views of the same set of physical files. All fil es are stored
physicall y in the central object store. Atop this, we have a
define and mount multiple views, based on property of the

2

file li ke its type or some extended attribute of the file li ke its
owner, movie of an mp3, etc.

3. APPROACH

We have developed an approach for information
storage that both permits users to share information more
effectively, and provides reductions in programming effort
and program complexity. To be effective, this new approach
needs a transition path from existing file systems. To
achieve this goal we will develop a file system, which will
provide for file aggregation according to semantics and
virtualization of the file system’s directory structure.

Associative access is designed to make it easier for
users to share information by helping them discover and
locate programs, documents, and other relevant objects. For
example, files can be located based upon transducer-
generated attributes such as author, exported or imported
procedures, words contained, type and title. ORION as a
semantic file system implementation is totally transparent to
the legacy applications which access the files on our file
system via the normal Linux file system API's. Another
approach can be making a complete user level program,
which provides a new interface altogether. Though this
approach is the easiest, it would require all new programs to
adhere to the newly introduced interface and nevertheless all
the existing legacy applications would fail .

ORION thus integrates associative access into a

tree structured file system through the concept of a virtual
directory. Virtual directory names are interpreted as queries
and thus provide flexible associative access to files and
directories in a manner compatible with existing software.
For indexing the semantic attributes of the files ORION
uses a relational database with an extensible schema. So the
search power of a relational engine is used when specifying
the queries to be associated the virtual directories. The
project thus merges the advantages from the two most
prominent storage technologies the file system and the

database to give the user a solution in the form a file system
with database like extension.[1]

The bottom line is ORION is an implementation
prototype for further semantic file systems. ORION's
interface is strictly backward compatible to traditional tree
structured file system as we understand the “people don't
li ke abrupt paradigm changes” speciall y when it comes to
storing their critical data.

4. ARCHITECTURE

ORION consists of 3 major parts viz. Object Store, Orion
View Core and Database Module. The object store and
orion view core operate below the Linux VFS layer while
the database is in user space. The object store is a flat file
system stacked atop a disk file system. Every file created in
the object store has to have a corresponding record in the
database. Hence an updating thread is activated to log in
detail s of the newly created file. It communicates with the
update daemon which actuall y updates the database. The
Orion view core is responsible for creating virtual
directories and li sting files in them. Every directory has a
query associated with it. To find out which files satisfy the
query, Orion view core uses the recordset cache. If the entry
is not found in this cache, the record is searched for in the
database by using the cache fault handler.

ORION provides the user with two different types
of attributes viz. Normal attributes and Extended attributes.

The normal attributes are the attributes like filename, owner,
size, uid, gid etc which are provided to us by the underlying
file system. The extended attributes, on the other hand, are
provided by the user in the form of name value pairs. The
main power of Orion lies in these extended attributes.

Orion uses an extensible schema for storing of
normal as well as extended attributes, catagorised in four
major datatypes viz. text, date_time, number and boolean.
Orion has five tables in the database. The attribute_record
table, containing filename, inode number and file type, is
the base table with exactly one entry for each file in the

 Cache Fault Handler

MySql Database ORION FS scheme

Database Update Daemon

<DIR nam=mp3 sql=
“ ext=mp3>
<DIR nam=pr j
sql=“ pr j=OFS” >
 XML DOV files

mount syscall

Linux 2.4 Vir tual File System (VFS) Interface

ORION view core

Recordset Cache

User-Kernel

Interaction

 IPC

mechanism

Object Store

Underlying Filesystem

 Updating

Thread

Fig 1: ORION Architecture

3

object store. This table has one to many relationship with
the four other tables in the database. These child tables store
the normal and extended attributes of the files based on their
datatype. The child tables contain inode number as the
foreign key referring to the inode number in the
arrtibute_record table, the attribute name and the attribute
value. Thus the attribute names are not made as column
names as in case of regular method of storing attributes but
extensible schema is used. So the structure is essentially
vertical than horizontal.

5. IMPLEMENTATION

As the initial setup the object store is present on an
partition and the meta-data about the files in the object store
is stored in the database. After this the content-based access
is setup in three phases.
• Creating the virtual directory structure.
• Content based Listing for the virtual directories.
• Logging the activities on the object store in the

relational database.

Creating the vir tual director ies
The information about the directory structure to be mounted
on top of the object store is stored in file. This file is in
XML format and is called data organization view file or the
DOV file. The user the issues the mount(2) system call with
two extra options, the path of the object store and the name
of the DOV file, to mount the directory structure specified
in the DOV file. The virual directory is of the form
“directory name and its associated query” . For eg: if we
need a virtual directory containing all the c files we will
name the directory as “Cfiles” and wil l associate it with the
query “And Text type li ke c” .

Content Based Directory L isting (Refer fig 2)
Suppose there is a virtual directory called Cfiles with the
associated query “And Text type li ke c” . Now when an
application like ls tries to do li sting of Cfiles as “ ls Cfiles”

then the control initiall y passes down to the VFS layer in the
function vfs_getdents(). Then the control trickles down to
the filesystem specific readdir i.e ofs_readdir.

In step 1 ofs_readdir() asks for the recordset
corresponding to Cfiles in the recordset cache. If there is a
cache hit then the pointer to the recordset is returned.
Else as shown in step 2 , in case of cache fault the query for
the directory and the pid of the process waiting for li sting is
sent to the user space deamon called cache fault handler.
Corresponding to this request a thread is executed in the

deamon in step 2.1. As seen in step 2.2 this query is
converted to a SQL query . In step 2.3 this query is executed
and the duplicates are resolved.Finally in step 2.4 the
recordet cache is populated with the recordset of the form
“inode-no. filename” and the process waiting for the
recordset is woken up.

Now when ofs_lookup actuall y does lookup in step
3.1 on the directory Cfiles, the inodes are extracted from the
objectstore with the inode numbers in the recordset cache
using function iget(sb,inode-no). Then finally in step 3.2 the
dentry cache is populated with the names attached using
function d_add().

Logging Activities on the Object Store (Refer Fig 3)
Now whenever a new file is created or edited on

the views in the Orion file system, the appropriate updates
have to be done in the database existing in the user space, i.e
the activites happening in the object store have to be logged
on into the database.

Lets take an example. Suppose an application like
touch creates a new file called newfile.xyz , then the control
initiall y passes down to the function vfs_create() . It then
passes the control to the file system specific create function
ofs_create(). In step1 the ofs_create() function makes the
vnodes i.e the dentry and the inode compatible with the
underlying file system. After this when the control actuall y
goes down to the create function of the underlying file
system, the call is trapped. In the precall of create (step 2),

Fig 2: Content Based Directory Listing

ORION CORE
 ofs_readdir()

S
Q
L
+
P
I
D

R
S
+
P
I
D

/mnt/objStore
0024500 0024501

0024505 0024506

0024513 00245614

VFS getdents()

getrecordset(iNo)

 ofs_lookup()

�

Cache Fault Handler
[Root]# ls CFiles ���

create_query
���

CFiles
AND Text Type li ke C DB Exec Query

2.3

�
i

no
��� ���

User Mode
Kernel Mode

Dentry Cache

4

the Orion store filter updates the database to reflect the
changes in the object store. Similarly even other system
calls li ke unlink, set_attr and rename are trapped to make
appropriate updates in the database.

Now in this example, in the actual create call in
step 3 the file is actually created with its original name i.e
newfile.xyz. In the postcall of create i.e in step 4, the name
newfile.xyz is renamed by its inode number in the flat object
store so that the new file created becomes a part of the
object store. Along with this the process (here “touch”)
which invoked the create operation is woken up which
otherwise is sleeping through out the process. Thus the
created new file is registered into the database.

Thus Orion is a filesystem empowered with
querying abil ities on file's extended attributes and
virtualization of directory structure.

6. CONCLUSION

Thus after the completion of the “ORION Filesystem” we
have successfully implemented a semantic file system. All
the requirements given in the scope of the project were met.
Initial performance results show that adding a semantic
access protocol over a traditional file system doesn’ t add
much overhead. The major gain of using such a file system
is organization of data is a cleaner and easier way. With
hard disk sizes reaching up to 100 GB and people storing
more and more semantic rich data on their file system, a

semantic file system capable of organizing its contents
automaticall y is definitely a must have. No wonder
Microsoft is spending a lot of money in the research and
development of their own semantic Filesystem WINFS.

ACKNOWLEDGEMENT

We would li ke to express our heartfelt gratitude our guide,
Mr. Anandamoy Roy Chowdhary, Calsoft Inc. Pvt. Ltd,
Pune for his excellent guidance and direction. We would
also li ke to thank our internal guide, Dr. C.V.K. Rao, PICT,
Pune for the constant encouragement and assistance he
provided us at every stage of the project.

REFERENCES

[1] "Practical File System Design with the Be File System",
1st Edition By Dominic Giampaolo, Morgan Kaufmann
Publications.
[2] "File System and Storage Advancement in Windows
Longhorn" by Q. Clark
[3] "The Naming System Venture", Hans Reiser (Jan 2001)
[4] "Revolutionary File Storage System Lets Users Search
and Manage Files Based on Content", Richard Grimes.
[5] "Semantic File Systems", David K. Gifford, Pierre
Jouvelot, Mark A. Sheldon, James W. O'Toole, Operating
Systems Review, v25 n5 1991

ORION Store Fil ter Pre Calls Create()

Post Calls Create()

[root#] touch ./view/newFile.xyz

VFS create(dentry,inode)

ofs_create() �

0024500 0024501

0024505 0024506

00245614

0024500

0024505

0024513

Update Database

User Mode
Kernel Mode

�

�

�
newFile.xyz

Fig 3: Logging Of Activities on the object store

