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ABSTRACT
We present an incentive-based architecture for providing rec-
ommendations in a social network. We maintain a distinct
reputation system for each individual and we rely on users
to identify appropriate correlations and rate the items using
a system-provided recommendation language. The key idea
is to design an incentive structure and a ranking system
such that any inaccuracy in the recommendations implies
the existence of a profitable arbitrage opportunity, hence
making the system resistant to malicious spam and presen-
tation bias. We also show that, under mild assumptions,
our architecture provides users with incentive to minimize
the Kullback-Leibler divergence between the ratings and the
actual item qualities, quickly driving the system to an equi-
librium state with accurate recommendations.
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1. INTRODUCTION
Recommender systems [1] are an important Internet mon-

etization tool. They help in monetizing the heavy tail and
play an important role in the success of Internet-based busi-
nesses. The primary task of a recommender system is to
suggest items of interest to its users. To this end, any corre-
lation information regarding the similarities among various
products and among the interests of individual users may
prove very useful. Social networking services, whose success
provides a fertile field for web-based commercial activity,
offer a rich collection of such information. Coupling these
tools and exploiting the information extracted from social
networks, facilitates the generation of high-quality person-
alized recommendations.

The approach of identifying similarities between users in
the domain of social recommender systems has been applied
in the form of collaborative filtering techniques. However,
these systems make no guarantees about the quality of the
recommendations. It has been experimentally observed [7]
that in systems where individual decisions are influenced
by the decisions of others, quality alone doesn’t determine
the success of an item. We refer to this phenomenon as
presentation bias. Spam is another deterrent in the effective
functioning of these systems [4, 6]. Since the owner of an
item has much to gain from its success, there is an incentive
for agents to game the system.

Another approach, outlined by Bhattacharjee and Goel [2,
3], is to use incentive-based mechanisms for making ranking
systems robust to presentation bias and spam. The work
there assumed a simple setting of homogeneous population,
and had no provisions for the mechanisms to work in the
framework of personalized social recommendations. In this
paper, we consider recommendations in this more complex
landscape. We also show that under mild assumptions, the
architecture we present provides users with incentive to min-
imize the Kullback-Leibler divergence between the ratings
and the item qualities, leading to a fast convergence to an
equilibrium state with high-quality recommendations.

2. THE INSPECT-UTILIZE MODEL
We break down a typical interaction of a user with her

personalized reputation system into three steps. (1) In the
first step, the system provides the user with a ranked list of
recommended items (e.g. books). (2) Next, the user chooses
to inspect the top j items. (3) Finally, among these items,
the user utilizes a subset S (in the book example, purchases
some of the books) and we say that a utility generation event
has occurred for the items in S. We now present a model



which captures this interaction. The set E = {1, 2, . . . , n}
models the n items and the set U = {1, 2, . . . , m} models the
m users of the system. The users interact with their indi-
vidual reputation systems and may also update the ratings
of the items. The model specifics follow.

1. Quality. We define as qe,u, the probability that user
u utilizes item e, conditioned on the fact that u has
inspected e. We will refer to this probability as the
quality of e with respect to user u. The task of the
system is to give, for each user, an ordering of the
items according to their quality with respect to the
user. The actual value of qe,u is unknown.

2. Slots. The k slots, 1, 2, . . . , k are the placeholders for
the recommendations that are presented to each user.
We assume that the probability with which user u in-
spects slot i is known and denote it by pi,u. Obviously,
it is the case that p1,u ≥ p2,u ≥ . . . ≥ pk,u.

3. Utility. If user u utilizes an item e, we say a utility
generation event has occurred. For simplicity, we will
assume that all utility generation events result in the
same revenue, R. This implies no loss of generality,
since different revenue equivalents can be easily folded
into the quality values.

3. OUR ARCHITECTURE
We now describe our feedback and incentive-based archi-

tecture which is designed in a way that users benefit from
correcting the rankings.

1. Social graph. The users are organized in a social
graph G with one node for very u ∈ U and edges be-
tween related individuals.

2. Feedback scores. Each of the m personalized rep-
utation systems maintains n feedback scores, one for
each item. For every user u ∈ U and for every item
e ∈ E , τe,u is the feedback score of e in the personal-
ized reputation system of user u, which is not allowed
to drop below 1.

3. Tokens. In our model, a rater (user) is able to alter
the scores τe,u by placing tokens. A token Ti is a tuple
{u, e, r}, where u is the rater who places the token, e
the item on which the token is placed, and r a token
vector. The token vector r has m elements and each
element ru is the increase/decrease of τe,u. Restric-
tions on the possible token vectors used are imposed
by the recommendation language (details below). The
order of arrival of tokens is given by subscript i. A
constraint is that at any given time the sum of the
contributions made by a user is bounded by γ which
is a system parameter. This means that, after placing
her first few tokens, a user has to make negative con-
tributions to some scores, in order to gain the right of
making future positive contributions.

4. Recommendation language. For any u ∈ U , the
system defines a set, Lu, of allowed recommendation
vectors. These m sets constitute the recommendation
language. A vector r = (r1, r2, . . . , rm) ∈ Lu, must be
a non-negative vector whose elements have unit sum.

The token vectors used by u are scaled recommenda-
tion vectors. This means u can use vector αr, where α
is a positive or negative real number, as a token vector
if and only if r ∈ Lu. For the rest of the paper, with
a slight abuse of language and notation, we allow the
token vectors of user u to be linear combinations of the
recommendation vectors in Lu.

5. Revenue distribution. The fraction of the revenue
to be distributed as incentive among the users is deter-
mined by parameter β ≤ 1. The parameter s > 1 con-
trols the relative importance of tokens placed earlier on
an item (to incentivize discovery of new items and deal
with presentation bias). Suppose a utility generation
event occurs for an item e by user u, and results in R
amount of revenue being generated for the system. Let
T be the set of all the tokens in the system. For a given
token Ti = {u′, e, r} ∈ T , we define w(Ti) as the weight
by which τe,u was changed due to Ti. If Ti was placed
on item e, then w(Ti) = ru, otherwise w(Ti) = 0. Fur-
ther, we define, W (Ti) = 1 +

P
Tj∈T :j≤i w(Tj), as the

value of τe,u after Ti was placed. The revenue share of
the rater who placed token Ti (user u′) is given by

βR(s − 1)

Z W (Ti)

W (Ti)−w(Ti)

dx
xs

.

This definition ensures that the total shared revenue is
bounded by βR and that the share of a rater does not
depend on future tokens. For each u, we maintain an
account accu. Depending on the sign of the revenue
share, the amount is added or subtracted from accu.
The situation arising from bankruptcy of a user has
been discussed in [3].

4. MAIN RESULTS
In this section, we present our main results. We define as

visibility of item e for user u, the probability with which e is
inspected by u, after being ranked in her recommendations
and denote it ηe,u. The expected rate at which revenue is
generated for an item e, by user u, is given by ηe,uqe,u. Let,

f(e, u) = qe,u
ηe,u

τ s
e,u

.

Note that f is proportional to the profit (or loss) that the
rater can expect to make by making an instantaneous posi-
tive (or negative) contribution to the feedback score of item
e, in the reputation system of user u (since it is proportional
to the derivative of the revenue sharing expression from Sec-
tion 3). Our structure uses the ranking algorithm described
by Bhattacharjee and Goel in [3], which has the following
properties.

1. Higher feedback score implies higher visibility, that is,
τe,u ≥ τe′,u′ ⇒ ηe,u ≥ ηe′ ,u′ .

2. If τe,u ≥ τe′,u′ , then
ηe,u

τs
e,u

≤ ηe′,u′
τs

e′,u′
, where s > 1 is the

same as earlier.

3. Under mild assumptions (see [3]), the ranking algo-
rithm ensures ηe,u = λτe,u, for all e ∈ E and u ∈ U ,
where λ is a constant. Since s > 1, this subsumes the
last property (when the assumptions hold). Briefly
and informally the assumption states that the vector



of normalized ratings is majorized [5] by the vector of
normalized slot inspection probabilities.

Now, using f , we will explain the notion of a profitable ar-
bitrage opportunity.

Definition 1. For any user, the act of updating the scores
of items e1, e2, . . . , ej, using the token vectors r1, r2, . . . , rj

(remember that each token vector is a linear combination of
allowed recommendation vectors and can have both positive
and negative entries), presents a profitable arbitrage oppor-
tunity when,

jX

i=1

X

u∈U

ri
uf(ei, u) > 0 and

jX

i=1

X

u∈U

ri
u = 0.

The inequality means that the user has instantaneous profit
when making those recommendations and the equality guar-
antees that the recommendation are compliant with the γ
bound on the sum of the user’s contributions (equal negative
and positive contributions).

We now define the notion of an inverted ranking in the rec-
ommendations.

Definition 2. We say that the pair (e, e′) is a case of an
inverted ranking in the recommendations for some user u,
if qe,u < qe′ ,u and ηe,u ≥ ηe′,u.

At this point, we will define the notion of a complete recom-
mendation language.

Definition 3. Let 1u be the vector of size m with the u-
th position equal to 1 and all other positions equal to 0. We
will say that a recommendation language is complete when
it has the following properties.

1. For every u ∈ U, there exists a linear combination
of all allowed recommendation vectors, which equals
1u. That is, for every u = 1, 2, . . . , m, there exist real
numbers αu

u′,r such that,
P

u′∈U
P

r∈Lu′ α
u
u′,rr = 1u.

This property ensures that there is a way for the users
to update the score of some item e just in the reputation
system of user u.

2. For every user u, I = ( 1
m , 1

m , . . . , 1
m ) ∈ Lu. That

is, we expect that the recommendation language allows
any user to place a recommendation for every user in
the system.

We now give the following theorem, which relates any inac-
curacy in the recommendations with a profitable opportu-
nity for the users.

Theorem 1. Assuming that the recommendation language
is complete, the existence of an inverted ranking pair (e, e′)
in the recommendations for some user u, implies the exis-
tence of a profitable arbitrage opportunity for some user.

Proof. Since (e, e′) is an inverted ranking pair in the rec-
ommendations for u, we have qe,u < qe′,u and ηe,u ≥ ηe′,u.
Combining this with the properties of the ranking algo-
rithm, mentioned earlier in this section, we get f(e, u) <
f(e′, u). This means the function f is not constant for all
pairs (e, u). Let (eh, uh) = arg maxe,u f(e, u) and (el, ul) =
arg mine,u f(e, u). We also know that the recommendation

language is complete, so we will write αu,r,βu,r for the mul-
tipliers that give,

X

u

X

r∈Lu

αu,rr = 1uh and
X

u

X

r∈Lu

βu,rr = 1ul . (1)

We now examine the vector
P

u

P
r∈Lu

αu,rr. Since it is
equal to 1uh , it follows that the sum of its elements is equal
to 1, hence we get

X

u′

X

u

X

r∈Lu

αu,rru′ = 1 ⇒
X

u

X

r∈Lu

αu,r

 
X

u′

ru′

!
= 1.

From the definition of an allowed recommendation vector,
we know that the elements of every r have unit sum. Which
gives us,

P
u

P
r∈Lu

αu,r = 1. Using the same argument
we get the same result for the multipliers The set U =
{1, 2, . . . , m} models the m users of the system, who perform
the role of inspecting the recommendations and, potentially,
utilizing the items.βu,r as well. So,

X

u

X

r∈Lu

αu,r =
X

u

X

r∈Lu

βu,r = 1. (2)

Now consider that some user u performs the following recom-
mendations. Initially, u applies the token vector

P
r∈Lu

αu,rr
on item eh (we will call this Recommendation 1) to get in-
stantaneous profit,

X

r∈Lu

αu,r

X

u′

ru′f(eh, u′). (3)

Next, u applies the token vector −
P

r∈Lu
βu,rr on item el

(Recommendation 2) to get instantaneous profit,

−
X

r∈Lu

βu,r

X

u′

ru′f(el, u
′). (4)

Finally, u applies the token vector
ˆP

r∈Lu
(βu,r − αu,r)

˜
I

on some arbitrary item e′ (Recommendation 3) to get in-
stantaneous profit,

"
X

r∈Lu

(βu,r − αu,r)

#
X

u′

1
m

f(e′, u′). (5)

Observe that the sum of the contributions made by u is
exactly 0, hence, there is no danger in violating the γ limit
on the sum of the contributions. We claim that there is
some user u, such that the sum of her instantaneous profits
for placing recommendations 1, 2, and 3 is positive and,
thus, there exists a profitable arbitrage opportunity for u.
We will prove this by showing that if we take the sum of
the instantaneous profits (3), (4), (5), and sum it over all
u, we get a positive number. Starting with summing (3) for
all u and combining with (1), we get that the sum of the
instantaneous profits Recommendation 1 is,

X

u

X

r∈Lu

αu,r

X

u′

ru′f(eh, u′) = f(eh, uh). (6)

Similarly, for Recommendation 2, from (1) and (4) we get,

−
X

u

X

r∈Lu

βu,r

X

u′

ru′f(el, u
′) = −f(el, ul). (7)



Finally, for Recommendation 3, summing (5) for all u and
combining with (2), we get,

X

u

"
X

r∈Lu

(βu,r − αu,r)

#
X

u′

1
m

f(e′, u′) = 0. (8)

Now, summing expressions (6), (7), and (8), we get that
the sum of the instantaneous profits that each user would
have by placing recommendations 1, 2, and 3, unilaterally,
is f(eh, uh) − f(el, ul) > 0.

We now prove a conditional theorem which implies that at
equilibrium the feedback scores are correlated with the qual-
ity scores. The precondition refers to the mild assumptions
given in the description of the algorithm in [3] and men-
tioned in the beggining of this section.

Theorem 2. If there exists a ranking algorithm which en-
sures visibility ηe,u = λτe.u, where λ is a constant for all
(e, u), then there exists an arbitrage opportunity unless the
ratio qe,u

τs−1
e,u

is constant for all (e, u).

Proof. Suppose
qe,u

τs−1
e,u

is not constant for all (e, u). Then,

there exist two pairs (e∗, u∗), (e′, c′) such that f(e∗, u∗) <
f(e′, u′). Following arguments similar to the ones used in
the last proof, we can prove that there exists an arbitrage
opportunity.

We now focus on the quadratic incentive scheme, that is,
the case s = 2. Consider the following potential function,

P(q, τ ) = −
X

e,u

qe,u log τe,u.

Notice that if we interpret q and τ as distributions, then
the above potential function is equivalent to the Kullback-
Leibler divergence (remember that q is fixed), which is,

DKL(q||τ ) =
X

e,u

qe,u log
qe,u

τe,u
.

In the light of this observation, the next theorem says that it
is most profitable for users to leave feedback which provides
the most additional information relative to the current state
of the system, leading to an equilibrium where all items are
correctly rated for all users.

Theorem 3. If there exists a ranking algorithm which en-
sures visibility ηe,u = λτe,u, where λ is a constant for all
(e, u), then,

1. The potential function P is minimized when the feed-
back scores are directly proportional to the quality scores,
that is, there exists a constant α for all (e, u) such that
τe,u = αqe,u.

2. At any given time, the most profitable arbitrage op-
portunity is presented by the recommendation which
minimizes the potential function P the most (given the
restrictions placed by the recommendation language).

Proof. The proof presented here follows the proof of the
famous Gibbs’ inequality in information theory. However,
for the sake of completeness, we give the details here.

Let Q =
P

e,u qe,u and T =
P

e,u τe,u (both Q and T are
constant). We modify P to get,

P∗(q, τ ) =
X

e,u

qe,u

Q
log

τe,uQ
qe,uT

.

Since qe,u’s are fixed, P is minimized where P∗ is maximized,
and vice versa. Note that log x ≤ x− 1, with equality if and
only if x = 1. We get,

P∗(q, τ ) ≤
X

e,u

τe,u

T
−
X

e,u

qe,u

Q
= 0.

Hence, the potential function P is uniquely minimized at
τe,u = qe,u

T
Q . The second part of the theorem follows from

the observation that the partial derivative of P(q, τ ) with
respect to τe,u is f(e, u).

5. DISCUSSION
At this point, we conclude the paper with a discussion of

how our scheme might be applied in practical systems. Con-
sider a Netflix-like recommender system and an underlying
social structure. The set of items is the set of movies and the
social graph is given by the social structure. A recommenda-
tion can be made to all users who like sci-fi movies, or to all
those belonging to a specific age group. Also, some user, who
might know a user u (a friend) well, can specifically recom-
mend a movie to u. All those recommendations can be made
possible by including the appropriate vectors in the recom-
mendation language. Every user interacts with a designed
interface, which presents options compatible with human
intuition and then translates the user’s selections into rec-
ommendation vectors. The recommendation language can
also be used to capture correlations between the interests
of individual users, given from collaborative filtering tech-
niques. The quality of a movie with respect to a user is the
probability that the user rents a movie conditional on the
fact that she inspects the recommendation.
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