
Debiasing Crowdsourced Batches

Honglei Zhuang, Aditya Parameswaran, Dan Roth and Jiawei Han
Department of Computer Science

University of Illinois at Urbana-Champaign
{hzhuang3, adityagp, danr, hanj}@illinois.edu

ABSTRACT
Crowdsourcing is the de-facto standard for gathering annotated data.
While, in theory, data annotation tasks are assumed to be attempted
by workers independently, in practice, data annotation tasks are of-
ten grouped into batches to be presented and annotated by workers
together, in order to save on the time or cost overhead of providing
instructions or necessary background. Thus, even though indepen-
dence is usually assumed between annotations on data items within
the same batch, in most cases, a worker’s judgment on a data item
can still be affected by other data items within the batch, leading
to additional errors in collected labels. In this paper, we study the
data annotation bias when data items are presented as batches to
be judged by workers simultaneously. We propose a novel worker
model to characterize the annotating behavior on small data batches,
and present how to train the worker model on annotation data sets.
We also present a debiasing technique to remove the effect of such
annotation bias from adversely affecting the accuracy of labels ob-
tained. Our experimental results on both synthetic data and real-
world data demonstrate the effectiveness of our proposed method.

1. INTRODUCTION
Crowdsourcing provides an efficient method to annotate data on

a large scale for various machine learning tasks by employing a
massive workforce drawn from global Internet users. Popular on-
line crowdsourcing platforms include Amazon Mechanical Turk1

and CrowdFlower2. However, while crowdsourcing is relatively
cheap compared to employing experts, getting large quantities of
training data annotated by crowds (say thousands, or millions of
data items) can be rather expensive.

A key mechanism, often employed in practice for reducing costs,
is batching, i.e., grouping multiple data items (to be annotated to-
gether) into one single task as a batch. Batching can save significant
monetary costs, since the necessary instructions and background
for completing the task needs to be provided just once for the en-
tire batch. Thus, the worker will spend less time on reviewing these

1https://www.mturk.com/
2http://www.crowdflower.com/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

instructions, and more time on annotating data items, and therefore
will be able to annotate more data items within the same time. For
instance, consider a scenario where a worker has to judge whether
a comment is relevant to a document. Here, making a judgment
for each comment requires reading through the entire document.
Instead, with batching, the worker only needs to read the entire
document once, and then make a judgment for all the comments in
the batch. In fact, even from the workers’ point of view, it is also
more attractive to label batches of data items as they can save time
on switching between different tasks. Furthermore, once they start
on a batch, they no longer have to “fight” for other high paying or
attractive tasks.

However, even though batching is an attractive option in practice
due to its cost and time savings, having workers annotate batches
can lead to severe correlation between annotations within batches.
For example, say we have a task of annotating whether a review
of the movie “The Imitation Game” crawled from IMDb is posi-
tive. As illustrated in Figure 1(a), if we only show one review to be
judged as part of each crowdsourcing unit task, workers will have
to spend some time reading the instructions and possibly looking
up the movie before they can make a single judgment on a review.
Although judgments are likely to be independent, this way of as-
signing work is too costly to be practical. Instead, if we assemble
multiple reviews of the same movie into a batch, as shown in Fig-
ure 1(b), workers can make multiple judgments after they read the
instructions. Nevertheless, in this case, the annotation of different
reviews might interfere with each other. For example, when the
review “Average In The Extreme” does not seem like a positive re-
view per se (Cf. top right in Figure 1(a)), when grouped with the
review “Stack of Lies”, it looks much more like a positive review
(Cf. top in Figure 1(b)). Similarly, when the review “Good enough
but historically sketchy” looks quite positive by itself (Cf. bottom
left in Figure 1(a)), it does not look as positive as a strongly effu-
sive review simply saying “Great movie”, as shown in the bottom
of Figure 1(b). Thus, overall these effects might be undesirable and
misleading as it is inconsistent with the case when workers make
independent judgments. Therefore, it is challenging to ascertain
true labels of data items in batches.

So far, there has been little to no work in exploring the the possi-
ble annotation error introduced by grouping data items into batches.
Although batching data items has been adopted in many crowd-
sourced tasks such as sorting [17], object recognition [32] or clus-
tering [10], and anecdotally very widely used in practice, the as-
sumption is often that the annotations are collected independently,
which is not the case. While there is limited work on judging data
items in sequence [18, 26, 27], it is not directly applicable to our
setting where a batch of data items are presented and annotated
in parallel. Our previous research [36] also noticed this specific

Label positive reviews on
the movie “The Imitation
Game”
ý Stack of Lies

Label positive reviews on
the movie “The Imitation
Game”
ý Average In The
Extreme

Label positive reviews on
the movie “The Imitation
Game”
þ Good enough but
historically sketchy

Label positive reviews on
the movie “The Imitation
Game”
þ Great movie, worth
a watch

(a) Data items judged independently

Label positive reviews on
the movie “The Imitation
Game”
ý Stack of Lies
þ Average In The
Extreme

Label positive reviews on
the movie “The Imitation
Game”
ý Good enough but
historically sketchy
þ Great movie, worth
a watch

(b) Data items judged in a batch

Figure 1: Example of correlation between annotations on data items in the same batch. Workers are asked to label whether a review on
the movie “The Imitation Game” crawled from IMDb is positive. Assign each review-movie pair to workers separately can be costly, while
assigning a batch of reviews together with a movie to workers might affect workers’ judgments.

type of annotation bias, but instead of focusing on debiasing, we
exploited the bias to develop an active learning algorithm aiming
to improve a certain classifier performance. We defer the detailed
discussion of the related work to Section 7.

There are several research challenges in solving this problem.
First, how do we model workers’ behavior when they make judg-
ments in batches? Second, how do we leverage the model to debias
the crowdsourced annotation of data batches? We make the follow-
ing contributions in answering these questions:

1. Proposing an interpretable worker annotation model on
small batches of data. We propose a novel worker model
for binary annotation behavior with data items presented as
batches. The model incorporates independent judgments and
batch judgments based on ranking. Different from the factor
graph model in our previous work [36], we focus on obtain-
ing the true labels of data items instead of improving classi-
fier performance.

2. Debiasing annotation data obtained as batches. Based on
our proposed worker model, we provide an algorithm to de-
bias the inferred labels when they are collected from data
items in small batches.

3. Conducting experiments on a real-world crowdsourcing
platform. We conduct experiments on both synthetic and
real-world crowdsourcing data sets to verify the effectiveness
of our proposed model and debiasing strategies. Experimen-
tal results show the effectiveness of our debiasing method
over other baselines.

The rest of this paper is organized as follows: Section 2 intro-
duces the background of crowdsourcing, and formalizes the re-
search problem; Section 3 proposes the worker model for anno-
tating small batches of data; Section 4 presents a strategy to de-
bias batch annotations; Section 5 describes experimental results;
Section 6 discusses extensions of our proposed method; Section 7
presents related work and Section 8 concludes.

2. PRELIMINARIES
In this section, we formally define the concepts and notations we

use in this paper; we then give a formalize the problem of debiasing
crowdsourced batches.

2.1 Basic Concepts and Terminology
First we need to formalize several basic concepts in a crowd-

sourcing platform. Suppose we are given a set of data items
X = {xi}, where i = 1, . . . , n. Each data item is associated
with a label yi ∈ Y , where Y = {yi}ni=1. In following discus-
sion, we focus on a binary classification task, where Y = {0, 1},
but our framework generalizes to multi-class or rating cases seam-
lessly. According to a standard formalization in learning theory for
binary classification, we suppose each (xi, yi) is generated from a
joint probability distribution PXY . We define ηi to be the condi-
tional probability P (yi = 1|xi).

In a job or task submitted to a crowdsourcing platform, we
can assemble several data items into a batch. Each batch bj is
represented by a set of indices of data items in the batch, de-
noted as {bj1, . . . , bjk}, where k is the size of a batch. To be
strict, data items in the batch should be represented by xj =
{xbj1 , . . . , xbjk}. However, for simplicity, we denote data items
in the batch specified by bj as {xj1, . . . , xjk}. Similarly, we de-
fine yj = {yj1, . . . , yjk} to be true labels associated with data
items in xj , where yjl is the true label of xjl according to Y for
∀1 ≤ l ≤ k. In CrowdFlower language, a batch corresponds to
a single “unit”, where a worker has to judge the entire unit at the
same time; in Mechanical Turk language, a batch corresponds to
a single “HIT” (short for Human Intelligence Task). Usually, data
items in the same batch might share the same context, background,
or the same instruction, in order to reduce the overhead. For exam-
ple, if one is asked to judge whether a review about a restaurant is
positive or negative, it might save time for workers if reviews of the
same restaurant are grouped into the same batch, as they only need
to read the description of the restaurant once before they can make
multiple judgments on different reviews.

As we assemble data items into batches, each worker has to
judge the entire batch as a single judgment. Given a batch bj ,
the judgment provided by a worker can be represented as y′j =

(y′j1, . . . , y
′
jk), where y′jl ∈ Y is the annotation of data item cor-

responding to xjl, provided by the worker. Noting that the worker
annotation y′j can be different from the true label yj . We refer to
worker annotation as “annotation”, while the ground-truth label is
referred to as simply the “label”.

In CrowdFlower, as a judgment can only be made based on a
unit, workers are not allowed to submit partial results on a batch
(as with Mechanical Turk). However, one can always add an “un-
known” option for every data item, so that the workers can provide
partial results on a batch. For simplicity, we consider no partial
judgments in the rest of the paper.

Now, we are in a position to give a formal definition for a batch
of data items:

DEFINITION 1 (BATCH). Given a data set (X,Y), a batch of
data items with size k extracted from the given data set can be
represented as (bj ,xj ,yj ,y′j), where bj = (bj1, . . . , bjk) is a set
of indices for X and Y ; xj = {xj1, . . . , xjk} is a set of all the
data items, indexed by bj (i.e. xjl = xbjl); yj = {yj1, . . . , yjk}
consists of the corresponding true labels of data items in xj , also
indexed by bj; y′j = {y′j1, . . . , y′jk} is the worker annotation on
the set of the batch.

Additionally, a set of batches can be defined as:

DEFINITION 2. Given a data set (X,Y), a set of batches
extracted from the given data set is denoted as A =
(B,XB , YB , Y

′
B), where B = {bj}mj=1 consists of the indices of

each batch; XB = {xj}mj=1 is the set of data item batches, with
their corresponding true labels YB = {yj}mj=1 and worker anno-
tations Y ′B = {y′j}mj=1.

Remarks. 1) Notice that a data item xi ∈ X may certainly appear
in multiple batches inA. If data items in two different batches share
the same index as indicated by corresponding item in bj , they refer
to the same data item in X; 2) For the sake of fully utilizing the
workforce of crowds, without loss of generality, we focus on the
scenario when all batches have the identical size k. However, our
model generalizes to the case when batches have different sizes; 3)
In some real world crowdsourcing platforms, a batch can actually
be judged by multiple workers, which means there could be mul-
tiple y′j’s associated to a single (bj ,xj ,yj)— for instance, this is
referred to as multiple assignments on Mechanical Turk. However,
for the purposes of debiasing, it is equivalent to regard a single
batch as multiple identical batches, and associate each batch with a
unique judgment made by different workers.

2.2 Problem Definition
Based on the concepts described thus far, we can formalize the

problem of debiasing crowdsourced batches as the following:

PROBLEM 1 (DEBIASING CROWDSOURCED BATCHES). Sup-
pose we have a labeled data set (XL, YL) with YL known, as
well as its extracted batches and their crowdsourced annotation
(BL, XBL , YBL , Y

′
BL

). If we are then given another unlabeled
data setXU , as well as its extracted batches and crowdsourced an-
notation (BU , XBU , Y

′
BU

), the objective is to infer the true labels
YU associated with XU from the crowdsourced annotation.

Notice that our problem formulation as described above requires
as input labeled and annotated data items for training purposes. In
practice, the labeled data for training can be collected from the “test
questions” with ground-truth labels, inserted by the crowdsourcing
platform for the purpose of quality control and monitoring of work-
ers. The usage of test questions is standard practice: As an exam-
ple, in CrowdFlower, all workers have to attempt a certain number

Table 1: Notation description.
Notation Description
X Set of all the data items {xi}ni=1

Y Set of all true labels associated with data items in X
bj A set of data item indices {bjl}kl=1

xj A data item batch {xjl}kl=1 where xjl is extracted
from the data item in X with index specified by bjl

yj A label batch consists of true labels {yjl}kl=1 associ-
ated with data items in xj

y′j Worker annotation collected from a crowdsourcing
platform for data items in xj

B Set of all the batches {bj}mi=1

XB Set of all the data item batches
YB Set of all the true labels associated with data item

batches in XB
Y ′B Set of all the worker annotation from crowds on data

item batches in XB

of test questions with correct labels and need to achieve an accu-
racy over a certain threshold (e.g. 70%) before they can proceed
to work on the regular task(s). Also, additional hidden data items
with known labels can be inserted into the regular tasks to monitor
the accuracy of workers. In our setting, worker behavior on these
test questions or labeled data can additionally be used for training
purposes.

Also notice that in this version of our problem formulation, we
assume identical worker behavior. In practice, it is more often to
assume identical worker behavior, as there are usually not enough
work done by each worker to ascertain individual behavior. Also, it
is straightforward to extend our model when different workers have
different behavior when working on tasks.

3. CROWDSOURCING WORKER ANNO-
TATION MODEL ON BATCHES

In this section, we first describe our model for workers’ anno-
tation behavior on a small batch of data items; then we introduce
how to train the model based on a training data set.

Our key intuition is the follows: when a worker judges a batch of
data items, she can either: 1) choose to judge data items indepen-
dently as if they are presented alone; or 2) to rank all the data items
according to their relative inherent values and annotate the top sev-
eral items as positive, leaving the rest in the batch as negative.

Plackett-Luce model. Before we delve into our model, we first re-
cap a probability model for generating rankings based on scores as-
sociated with items, namely the classical Plackett-Luce model [15,
21] introduced in the 70s. Without loss of generality, suppose we
are given a set of items x1, . . . , xk. Each item xi is associated
with a certain score s(xi) > 0. Here the score s(xi) models
the tendency of ranking xi higher in a randomly generated rank-
ing and can be viewed as a measure of the inherent “goodness” of
the item. A ranking of these items can be represented as a bijec-
tion π : {i}ki=1 7→ {xi}ki=1, that maps the i to the data item at the
i-th position in the ranking. The corresponding ranking list can be
represented as π(1) � · · · � π(k). In Plackett-Luce model, the
probability of generating a ranking π is:

P (π) =

k∏
i=1

s(xi)∑k
r=i s(xr)

(1)

The equation above can be interpreted as the following process:

Initially, we have a pool A of all the data items. Each time one
picks an item xi from a pool A of data items with a probability
proportional to its score, namely:

P (picking xi from A) =
s(xi)∑

xr∈A s(xr)

This item is then removed from the pool A and placed at the next
position in the ranking. Repeat this operation until A becomes
empty. The probability of generating a ranking list according to this
process is equivalent to the probability described in the Plackett-
Luce model.

Worker model. We now introduce our worker model for annotat-
ing small batches of data items. Again, without loss of generality,
suppose we are given a batch xj where xjl = xl, namely the given
data item batch can be denoted as xj = {x1, . . . , xk}. Also, recall
that for each data item xi, we denote P (yi = 1|xi) as its inherent
score ηi, which is not explicitly known.

When a worker starts to work on a certain batch of data items,
they may choose to use one of two strategies:

• Independent judging. If the worker is making judgments
based on the absolute value of ηi for each data item, we sup-
pose the worker judges each data item xi ∈ xj indepen-
dently by drawing the annotation y′i = 1 with probability ηi
and y′i = 0 with probability (1− ηi).

• Relative judging. If the worker is making judgments based
on comparing data items within the same batch without
knowing absolute value of ηi, we suppose the worker
chooses to first rank all the data items based on their prob-
ability of being positive, then annotates the top-τ items in
the ranking as positive, leaving the other items annotated as
negative. To be precise, the worker generates a ranking π for
k items in the batch according to the Plackett-Luce model,
with the scoring function defined as s(xi) = ηi. Then the
worker draws an integer 0 ≤ τ ≤ k from a certain distribu-
tion, where pτ denotes the probability of drawing the integer
τ . For data items ranked as top-τ in the ranking, denoted as
xi ∈ {π−1(1), . . . , π−1(p)} (could be empty if p = 0), the
worker annotates them as y′i = 1, while other data items not
within the top-τ of the ranking π are annotated as y′i = 0.

To combine these two different scenarios, we suppose the worker is
able to judge independently with a certain probability 0 < λ < 1,
while with probability (1 − λ) the worker can only make relative
judgments.

The intuition of this model is to capture two behavior pattern of
workers. In the independent judging scenario, workers can remain
independent in judging different data items in the same batch, with
each data item being judged based on its inherent score ηi. Never-
theless, sometimes workers might judge data items within a batch
by comparison. In the relative judging scenario, workers still have
the ability to judge the relative relationships between data items in
the same batch, which is captured by the Plackett-Luce model for
generating the ranking. In order to determine the labels of data
items, they have an expectation of label distribution, which is re-
flected by the distribution of generating τ , as it characterizes the
probability of having τ positives within k data items. For instance,
if workers expect there to be few positive items, then the probabil-
ity of τ being low is high, while if workers expect the batches to
be balanced, then the probability of τ being close to k/2 is high
comparing to other values of τ . However, this distribution does not
necessarily reflect the correct label distribution. When they try to

apply their expectation of the label distribution on the batch, bias
might occur.

We summarize the process of generating annotation for a batch
of data items in our proposed model as below:

1. Toss a coin Z ∼ Bernoulli(λ).
If Z = 1, go to Step 2; otherwise go to Step 3.

2. For each xi, generate y′i ∼ Bernoulli(ηi).
Output the results and exit.

3. Generate a ranking π based on Plackett-Luce model for data
items xi in the batch.

4. Draw τ ∼Mult(pτ).

5. For the top-τ items in ranking π, generate y′i = 1;
otherwise generate y′i = 0.
Output the results and exit.

Model learning. The parameters that need to be determined in this
worker model include: the probability of making independent judg-
ments λ, and the distribution of the number of positive annotation
when making relative judgments, represented by p0, . . . , pk, where
0 ≤ pτ ≤ 1 and

∑
pτ = 1. We assume these two parameters are

fixed for each new application of our techniques. However, for
different applications, these parameters might be different — for
instance, these parameters for content moderation may be differ-
ent from the same parameters for spam identification or sentiment
analysis.

Suppose we are given a set of nL items XL with their true la-
bels YL, or more ideally, their inherent scores {ηi}xi∈XL . If the
inherent score of a data item ηi is not given, but only yi ∈ {0, 1} is
known, as a heuristic, we can estimate ηi by ηi = (yi+ε)/(1+2ε)
where ε is a small constant, which is set to 10−3 in our experiments.
Then, we form them intomL batchesBL, send them to the crowds,
and obtain their annotation from workers, denoted as Y ′BL

.
For simplicity, we write xbjt as xjt, and similar to yjt and ηjt.

For each batch bj ∈ BL, we denote the set of items annotated by
workers as positive as X1

j = {xjt|y′jt = 1}, and the set of items
annotated as negative as X0

j = {xjt|y′jt = 0}.
We train the model by maximum likelihood estimation. The like-

lihood of the obtained annotation can be written as:

L =

mL∏
j=1

[
λ

k∏
t=1

η
yjt
jt (1− ηjt)(1−yjt)︸ ︷︷ ︸
independent judging

+(1− λ) pτjP (X1
j � X0

j)︸ ︷︷ ︸
relative judging

]

(2)

where τj = |X1
j | is the number of positive annotation in batch bj ;

P (X1
j � X0

j) denotes the probability of generating any rankings
π that rank items in X1

j higher than any items in X0
j , namely:

P (X1
j � X0

j) =
∑

π∈R(X1
j ,X

0
j)

P (π)

where R(X1, X0) = {π|π−1(x0) > π−1(x1),∀x1 ∈ X1, x0 ∈
X0}; and P (π) is defined by the Plackett-Luce model, as presented
in (1).

Applying an EM-algorithm, where at E-step, we can have

λ̂j =
λ̂
∏k
t=1 η

yjt
jt (1− ηjt)(1−yjt)

λ̂
∏k
t=1 η

yjt
jt (1− ηjt)(1−yjt) + (1− λ̂)p̂τjP (X1

j � X0
j)

(3)

And at M-step, we update the parameters λ̂ and p̂τ by

λ̂ =
1

mL

mL∑
j=1

λ̂j , p̂τ =
1

Ẑ

mL∑
j=1

(1− λ̂j)1{|X1
j |=τ}

(4)

where Ẑ =
∑mL
j=1(1− λ̂j).

4. DEBIASING ANNOTATION
In this section, we introduce our method that debiases annota-

tions collected for small batches of data given the trained worker
model. More precisely, given a set of nU unlabeled data itemsXU ,
assembled intomU batches represented byBU , as well as their an-
notations obtained from the crowds Y ′U , how do we infer their true
labels YU?

The basic idea is, based on the given worker model, we infer ηi
for each xi ∈ XU . Then, we simply apply the Bayes classifier to
determine the inferred label, which yields ŷi = 1 if ηi > 0.5, or
ŷi = 0 if ηi ≤ 0.5.

We again adopt a maximum likelihood estimation techique. The
log-likelihood of the obtained annotation is:

logL(η) =

mU∑
j=1

log

[
λ̂

∏
xjt1∈X1

j

ηjt1
∏

xjt0∈X0
j

(1− ηjt0)

+(1− λ̂)p̂τjP (X1
j � X0

j)

]
(5)

Notice that λ̂ and p̂τj are parameters learned from Section 3, and
P (X1

j � X0
j) is also a function of ηi’s. Similar to the previous

section, we apply an EM-algorithm here by first calculating λ̂j for
each batch at the E-step according to (3) but replacing λ and pτ by
the value we learned during the training step. Then we have:

logL(η) ≥
mU∑
j=1

λ̂j

[∑
xjt1∈X1

j

log ηjt1 +
∑

xjt0∈X0
j

log(1− ηjt0)
]

+

mU∑
j=1

(1− λ̂j)
[
log p̂τj + logP (X1

j � X0
j)
]

(6)

where the second term includes logP (X1
j � X0

j), which is hard
to optimize. We apply the idea of the EM-algorithm again here.
We use notationRj to representR(X1

j , X
0
j). For each π ∈ Rj , we

can calculate its conditional probability given X1
j � X0

j , denoted
as q̂π by:

q̂π = P (π|X1
j � X0

j ; η̂) =
P (π; η̂)∑

π∈Rj
P (π; η̂)

(7)

which is the E-step. According to Jensen’s inequality we have:

logP (X1 � X0) = log
∑
π∈Rj

P (π)

≥
∑
π∈Rj

q̂π logP (π) (8)

where the last inequality yields the objective function we want to
optimize. The correctness of EM-algorithm guarantees the conver-
gence of optimizing this function.

Furthermore, according to the minorization-maximization (MM)
algorithm used in [11], we obtain the lower bound for logP (π),

which is defined by the Plackett-Luce model, by:

logP (π) =

k−1∑
t=1

[
log ηπ−1(t) − log

k∑
s=t

ηπ−1(s)

]

≥
k−1∑
t=1

[
log ηπ−1(t) −

∑k
s=t ηπ−1(s)∑k
s=t η̂π−1(s)

]
(9)

where η̂i is the estimated parameter of last iteration.
By combining (6), (8) and (9), we obtain the objective function

to optimize as:

Q(η) =

mU∑
j=1

λ̂j

[∑
xjt1∈X1

j

log ηjt1 +
∑

xjt0∈X0
j

log(1− ηjt0)
]

+

mU∑
j=1

(1− λ̂j)
∑
π∈Rj

q̂π

k−1∑
t=1

[
log ηπ−1(t) −

∑k
s=t ηπ−1(s)∑k
s=t η̂π−1(s)

]
(10)

Notice that Q(η) is actually a lower-bound of the original log-
likelihood function. Moreover, for two EM-step and one MM-step
we apply in deriving the Q-function, it is proven that by improv-
ing Q(η) from this iteration Q(η̂), the improvement of the log-
likelihood is no less than the improvement we achieve on the Q-
function. Therefore optimizing Q(η) can also optimize the log-
likelihood.

Take the derivative, we obtain

∂Q(η)

∂ηi
=

∑
j∈M1(i)

1

ηi
−

∑
j′∈M0(i)

λ̂j′

1− ηi

−
mU∑
j=1

(1− λ̂j)
∑
π∈Rj

q̂π

[|X1
j |∑

t=1

1{π−1(i)≥t}∑k
s=t η̂π−1(s)

]
(11)

where M1(i) and M0(i) are defined as My(i) = {j : xi ∈ Xy
j }

for y ∈ {0, 1}. The updating rule can be obtained by solving
∂Q(η)/∂ηi = 0, namely

η̂i =
T1 + T2 + T3 −

√
(T1 + T2 + T3)2 − 4T1T3

2T3
(12)

where

T1 = |M1(i)|, T2 =
∑

j′∈M0(i)

λ̂j′

T3 =

mU∑
j=1

(1− λ̂j)
∑
π∈Rj

q̂π

[|X1
j |∑

t=1

1{π−1(i)≥t}∑k
s=t η̂π−1(s)

]
By iteratively updating the scores to optimize the likelihood of

the annotation on test data, we can obtain the inferred ηi of each
item. Based on this, we can determine the inferred binary label
for each data item by assigning y′i = 1 if η̂i > 0.5, or y′i = 0
otherwise. Notice that we do not further tune the threshold in this
step, as the scores we learned here are expected to be a reason-
able estimate of the true ηi’s. Therefore, if the inherent scores are
known, learning theory guarantees us that by using Bayes classifier
(namely to take 0.5 as threshold) is supposed to achieve the best
expected performance in terms of square loss.

5. EXPERIMENTAL RESULTS
In this section, we conduct experiments on a synthetic data set

and a real data set to verify the effectiveness of our proposed worker
model and debiasing technique.

Input: Data batches BU = {bj}, crowdsourced annotation
Y ′U = {y′j}; training data batches BL, crowdsourced
annotation Y ′L, true labels YL.

Output: Inferred labels YU .

// Training work model;

λ̂j ← 0.5; Initialize p̂τ by random values;1
repeat2

Update λ̂j bfor ∀1 ≤ j ≤ mL by (3);3
Update λ̂ and p̂τ by (4)4

until L converged;5

// Calculate debiased labels;
repeat6

Update ηi for ∀1 ≤ i ≤ nU by (12);7
until Q(η) converged;8
yi ← 1{ηi>0.5} for ∀1 ≤ i ≤ nU ;9
Output YU .10

Algorithm 1: Debiasing crowdsourced annotation on
batches of data items.

5.1 Experimental Data Sets
We first introduce the data sets we used in this experiments. A

summary of the data sets we use in our experiments is provided in
Table 2.

Synthetic data set. We construct synthetic data sets following
the worker annotation model we propose in Section 3. Suppose we
have n items inX , we first generate their inherent scores ηi for each
xi ∈ X from a Beta distributionBeta(α, β), then generate the true
labels Y by drawing yi from a Bernoulli distribution parameterized
by ηi for each i. In our synthetic data set, we set α = 2 and β = 4
to simulate the case when negative data items overwhelm positive
data items.

Then, we generate m batches of size k by sampling without re-
placement for each batch. Notice that by the phrase “without re-
placement” we mean there are no identical data items within the
same batch, while the same item can still appear in multiple batches
as we do replace the items back into the pool after a batch is gener-
ated. Thereby we obtain the set of batchesB. For each bj inB, we
generate the workers’ annotation y′j from our proposed batch an-
notation model. The probability of making independent judgments
λ is set as 0.5. The distribution of determining number of positive
annotations pτ is also assigned to be:

pτ ∝ (τ + 1)−ρ

where ρ is positive constant, set as 2 in our experiments.

Comments data set. We utilize a real world crowdsourcing data
set for annotating comments, which is used in [36]. The origi-
nal crowdsourcing task was to identify inappropriate comments on
LinkedIn posts published by companies or LinkedIn influencers.
Inappropriate comments are defined as comments containing pro-
motional, profane, blatant soliciting, random greeting comments,
as well as comments with only web links and contact informa-
tion. In order to collect annotation of comments, for each post, k
comments are sampled and sent to CrowdFlower as a batch (unit).
Workers are also provided with a codebook (i.e., a sequence of in-
structions) explaining how to annotate the data items. Each com-
ment is regarded as a data item and can be annotated as positive
(inappropriate comment) or negative (acceptable comment). Each
batch is annotated by 5 or more workers.

In order to provide test questions and track the performance
of each worker, some of the batches are annotated by 9 trained
LinkedIn employees (experts) with the same codebook and inter-

Table 2: Data set statistics.
Data set k nL mL nU mU

Synthetic 5 1,000 10,000 5,000 50,000
Comments 5 110 1,099 651 5,267

face as used for crowd workers. The average Cohen’s kappa for
all expert pairs is 0.7881. For this experiments, we only adopt
the batches with all of their data items annotated by both crowds
and experts as we can use the experts’ annotation as ground truth
(aggregated by majority voting). Out of these batches, the 1,099
batches that are annotated before a worker actually starts on the job
are utilized as training data set BL. while the other 5,267 batches
are utilized as the test data set BU to infer the 651 data items the
5,267 batches covered.

5.2 Experimental Setup
Methods evaluated. We compare the performance of our pro-
posed method with several baselines:

• Majority Voting (MV). For each data item in the test data set,
simply determine its inferred label by the way it is annotated
by the majority of workers. This aggregation strategy is often
used in practice [28].

• Majority Voting with Tuned Threshold (MVT). Instead of
simply applying majority voting, we calculate the ratio of
positive annotation on each item as a score, and tune the
threshold for determining the binary inferred label. Based
on a given training set of annotation and true labels, we find
the threshold yielding the best F1-score on training data set,
and apply the same threshold on the test data set.

• Plackett-Luce Model (PL). A strategy is to fit the Plackett-
Luce model on the test data by inferring the scores s(xi) as-
sociated with each data items. We apply a Bayesian regular-
ization on the inferred scores to confine it to be 0 ≤ s(xi) ≤
1. We then infer a positive label to each data item with an
inferred score s(xi) > 0.5 and a negative label otherwise.

* Batch Annotation Model (BAM). The debiasing strategy pro-
posed in Section 3 and 4.

Evaluation methodology. For baselines without training, we di-
rectly apply them on the test data set; for our proposed method as
well as MVT, we first train the worker model on the training data
set, then apply the debiasing strategy based on the trained worker
model on the test data set. We compare the inferred labels to the
ground-truth and evaluate the performance in terms of accuracy,
precision, recall and F1-score.

Trials and setup. For our proposed model, in training phase, we
initialize λ to be 0.5 and pτ to be a random value between 0 and 1;
in debiasing phase, we initialize the all the inferred scores as 0.1.
For training the worker model, we set a fixed number of iteration
as 100. Our experimental results presented later show the model
converges within a number of iterations much fewer than 100. For
debiasing, we calculate the log-likelihood of the model and stop
when the relative change of log-likelihood is within 0.001.

5.3 Experimental Results
Now we present the experimental results. We first verify the

learning algorithm of our model on the synthetic data set, then
present the learned model parameters on a real data set; we also

0 1 2 3 4 5
τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
τ

Generative parameters

Learned parameters

(a) Parameter comparison of
pτ ’s

0 20 40 60 80 100
Iteration number

24.10

24.08

24.06

24.04

24.02

24.00

23.98

23.96

23.94

23.92

Lo
g
-l

ik
e
lih

o
o
d
 (

1
0
^

3
)

(b) Convergence analysis

Figure 2: Learning worker model from the synthetic training data
set.

0.0 0.2 0.4 0.6 0.8 1.0
λ

0.4

0.2

0.0

0.2

0.4

λ̂
−
λ

(a) Estimation error of λ

1.0 1.5 2.0 2.5 3.0
ρ

0.000

0.002

0.004

0.006

0.008

0.010

||p̂
τ−
p
τ||

2

(b) Estimation error of pτ

Figure 3: Analysis of estimation error of parameters in the worker
model under different configurations.

evaluate the effectiveness of our debiasing strategy on both syn-
thetic data set and real data set, which demonstrates an improve-
ment in terms of F1-score; finally we conduct a study on differ-
ent configurations of experiments as a guideline for setting up a
batched crowdsourcing task.

Worker model learning. We first verify the effectiveness of learn-
ing our proposed worker model. On our synthetic data set, the
“true” value of probability of making independent judgments λ is
set to 0.5. We learn the model from the synthetic training data and
obtain the inferred λ̂ as 0.4998, which reasonably recovers the orig-
inal value. We also compare the original model parameters pτ ’s to
the inferred parameters in Figure 2(a). The black dashed line repre-
sents the original parameters used for generating synthetic annota-
tion data, while the red solid line shows the inferred parameters of
worker model, which seems as a precise fit of the original param-
eter. We also show the curve of log-likelihood of the training data
set, which seems to converge within 20 iterations.

To further confirm the robustness of our learning method, we
modify the configuration of synthetic data generation, and train the
worker model on different data sets to check if they can recover
the original parameters. We still take the same configuration of
nL = 1, 000 and mL = 10, 000. The estimation error analysis is
shown in Figure 3. Figure 3(a) shows the difference between the
inferred parameter λ̂ and the “true” parameter λ, given the annota-
tion data generated by λ varying from 0.1 to 0.9. It can be observed
that the error is reasonable small, basically within 0.1. Figure 3(b)
shows the `2 norm of the difference between the estimated distri-
bution p̂τ and the “true” distribution pτ , when pτ is generated with
respect to different ρ varying from 1 to 3. In most of the settings,
the error is below 2 × 10−3, which is fairly low. Although we
only instantiate pτ ’s using a power-law distribution, as the learning
method does not confine the learned distribution to be parametric,
it can be directly applied to any other type of distributions.

Learned model on real data set. Given the effectiveness of our

0 1 2 3 4 5
τ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
τ

Learned parameters

(a) Parameter analysis of pτ ’s

0 20 40 60 80 100
Iteration number

560.5

560.0

559.5

559.0

558.5

558.0

557.5

557.0

556.5

Lo
g
-l

ik
e
lih

o
o
d

(b) Convergence analysis

Figure 4: Learning worker model from the comments training data
set.

learning method verified, we apply the worker model trying to fit
the data set of annotating inappropriate comments. The learned
probability of a worker making independent judgments λ̂ is 0.7877.
The learned distribution for determining the number of positive an-
notations in a batch is presented in Figure 4(a). It shows that a
worker tends to annotate the entire batch as negative (i.e. accept-
able comment) with a probability over 0.6, while picking only 1
of them as positive (i.e. inappropriate comment) also occurs with a
relative high probability around 0.25. The workers seem to be re-
luctant to annotate more than 1 comments in a size-5 batch. This is
coherent with most people’s intuition that inappropriate comments
are rare comparing to the entire set of comments.

The convergence analysis is shown in Figure 4(b). The model
converges within 50 iterations.

Performance comparison. We proceed to evaluate the perfor-
mance of different aggregation strategies on both data sets. The
overall performance results are shown in Table 3. In both data sets,
our proposed debiasing strategy is a clear winner in terms of F1-
score, and also achieves the best accuracies.

In synthetic data set, majority voting, without tuning the thresh-
old (default set to 0.5), fails to identify most of the positive data
items, and therefore achieves an extremely low recall. Only after
the threshold is tuned on a training data set can it achieve a reason-
able F1-score of 71%. PL-model, in contrast, achieves a relatively
low precision of 52%. Our proposed method is able to achieve the
best overall performance in terms of F1-score and accuracy, and
the precision and recall achieved by our method are also relatively
balanced. Notice that we do not directly apply any threshold tuning
for our method and simply takes the threshold as 0.5.

In comments data set, the naïve majority voting strategy again
obtains a poor recall below 80%. After tuning the threshold, its re-
call rises to around 85%, but still lower than our proposed method.
The scores learned by PL-model yield a comparable recall to major-
ity voting with tuned threshold, but fail to achieve a high precision.
Our proposed method achieves a comparable precision of 93% and
a higher recall of 87%, and therefore beat all the other baselines in
terms of F1-score (90%).

Batch number m vs. item number n. An interesting ques-
tion to study is, for a certain number of items, how many (random)
batches of data items does one need to label to obtain an aggre-
gated result accurate enough. We study this question by generating
synthetic data sets with different settings of number of batches mL

and mU while number of data items nL and nU are fixed. In this
experiments, we set nL = 1, 000 and nU = 5, 000, and gener-
ate synthetic data sets with mL/nL = mU/nU = 2, 5, 10, and
20. We then apply all the strategies on these data sets. To min-
imize randomness, for each setting we repeat the data generation
and application of debiasing strategies for 10 times, then report the

Table 3: Performance comparison of Majority Voting (MV),
Plackett-Luce Model (PL) and Batch Annotation Model (BAM).
All results are shown as percents.

Data set Method Acc. Prc. Rcl. F1

Synthetic

MV 83.04 98.91 00.10 17.67
MVT 88.06 64.69 80.06 71.56

PL 82.74 52.25 92.75 66.85
BAM 89.88 70.93 78.04 74.31

Comments

MV 95.55 93.75 79.65 86.12
MVT 96.16 92.31 84.96 88.48

PL 94.62 85.45 83.19 84.30
BAM 96.77 93.40 87.61 90.41

0 5 10 15 20

m/n
0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

MV

MVT

PL

BAM

(a) Accuracy with different
m/n ratio

0 5 10 15 20

m/n
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
1
-s

co
re

MV

MVT

PL

BAM

(b) F1-score with different
m/n ratio

Figure 5: Performance of debiasing strategies on synthetic data sets
generated by setting both mL/nL and mU/nU as 2, 5, 10, 20 re-
spectively.

average performance.
Results are shown in Figure 5. As we can observe, under all the

different settings, the proposed method consistently outperforms
other baselines, in terms of both accuracy and F1-score. Major-
ity voting with tuned threshold (MVT) is able to achieve compa-
rable results to our proposed method when m/n are large enough
(e.g.m/n = 20). However, whenm/n is relatively small, our pro-
posed method can achieve much better results than most of other
baselines. When m/n = 2, it achieves an accuracy approximately
9% higher than MVT, and an F1-score around 5% more than MVT.
An exception is the naïve majority voting strategy that achieves the
best accuracy when m/n = 2. This is due to the skewed distri-
bution of data labels, and by simply labeling all the data items as
negative can get an accuracy of approximately 80%. In compari-
son, the F1-score of MV is only around 30%.

Another observation that we can make about Figure 5(b) is that
the performance of majority voting drops as m/n increases. This
result indicates when workers are biased and no debiasing tech-
niques are applied, increasing the quantity of labels collected does
not help.

Size of training data set. As our method requires a small set
of training data, there might be some concerns about how large
a training data set is sufficient. We test the performance of two
methods that rely on training data sets — MVT and our proposed
method — on synthetic data sets and the comments data set. For the
synthetic data set, we keep the size of test data set as nU = 5, 000
and mU = 50, 000, and vary the size of training data set by setting
nL as 10, 20, 50, 100, 200, 500, and 1, 000, while setting mL as
10nL. For each configuration, we generate synthetic data sets 10
times and utilize the average performance on these 10 data sets to
evaluate the debiasing performance. For the comments data set,
we randomly sample mL batches from the training data set, where

101 102 103

nL

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

MVT

BAM

(a) Accuracy with different
sizes of training data set

101 102 103

nL

0.55

0.60

0.65

0.70

0.75

0.80

F
1
-s

co
re

MVT

BAM

(b) F1-score with different sizes
of training data set

Figure 6: Performance of debiasing strategies on synthetic data sets
generated by different size of training data set nL (mL = 10nL),
while the size of testing data set remains nU = 5, 000 and mU =
50, 000.

100 200 300 400 500 600 700 800 9001000
mL

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

u
ra

cy

MVT

BAM

(a) Accuracy with different
sizes of training data set

100 200 300 400 500 600 700 800 9001000
mL

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

F
1
-s

co
re

MVT

BAM

(b) F1-score with different sizes
of training data set

Figure 7: Performance of debiasing strategies on comments data set
where the training data set is randomly sampled from the original
training set with different size of mL, while the testing data set
remains the same.

mL is set to 100, 200, . . . , 1000. Again, for each configuration of
training data size, we repeat the random sampling for 10 times and
report the average performance.

The results of synthetic data set are shown in Figure 6. As ob-
served, when training data set is extremely small (e.g. nL = 10),
the performance of MVT drops in terms of both accuracy and F1-
score (73% and 56% respectively). As the size of training data
set increases, the performance of MVT becomes comparable to
our proposed method. However, the performance of our proposed
method is surprisingly stable, even when there are only 10 items
and 100 batches as training data, which is as 1/500 large as the
data set used for testing. The results imply our proposed method
can obtain very high performance with a small cost of labeling
ground-truth data for collecting training data.

The results for the comments data set are shown in Figure 7.
Again, when training data size is extremely small (e.g.mL = 100),
the performance of MVT drops substantially (89% in accuracy and
75% in F1-score), while its performance gets more and more com-
parable to our method as the training data size increases. In con-
trast, our proposed method maintains a fairly stable performance
for different sizes of the training data set. This verifies again the
ability of our proposed method to yield high-quality results with a
sufficiently small training data set.

6. EXTENSIONS
In this section, we discuss two straightforward extensions of our

proposed worker model and debiasing strategies, with respect to
two useful applications other than binary classification: multi-class
classification, and rating estimation.

Rating estimation. In rating estimation,each data item xi is no

longer associated with a discrete label from a finite set of labels,
but instead, a real value yi ∈ R. Suppose workers are asked to
provide ratings on each data item in batches, and our goal is to
identify the true (unknown) rating of each data item. A naïve way to
aggregate their ratings on the same item is to take the average value
of their ratings as the estimated rating. However, when multiple
data items are grouped into batches, there can be bias similar to the
one introduced in this paper.

Although we do not explicitly formalize our problem for a rat-
ing task, with some straightforward modifications, our techniques
can still be applied. Without loss of generality, we can assume
0 < yi < ∞. If the actual rating can be negative, we can al-
ways apply a certain sigmoid function to normalize the scores to
be positive values. For independent judging, we can design a well-
regularized distribution with expectation of yi for a worker to draw
a rating, e.g. Gaussian distribution centered at yi. For relative judg-
ing, we can still assume the worker to generate a ranking from
Plackett-Luce model with parameters yi’s, and introduce distribu-
tions for generating rating of data items at different positions in
the ranking, which are to be learned from the training data. For
example, workers may tend to generate a rating from Gaussian dis-
tribution centered at µ1 = 5.0 for a top-ranked data item π(1),
but generate a rating from another Gaussian distribution centered
at µ5 = 1.0 for a data item ranked as the fifth π(5). If the train-
ing data is sparse and the ratings can take on any real values, it is
probably preferable to employ some parametric distributions. Once
the design of model is accomplished, it is straightforward to apply
the same technique described in this paper to derive the debiasing
strategy by maximizing the likelihood of observed annotations to
estimate the underlying ratings for unrated data items.

Multi-class classification. In a multi-class classification problem,
the label set Y may contain more than 2 possible labels. Workers
are usually requested to assign data items with different labels. This
is a natural extension from binary classification problem.

If the labels in Y have an order, for example, judging whether
a review is “very helpful”, “helpful” or “not helpful”, the problem
reduces to a rating estimation problem, where the possible value
of rating are discrete values. We can simply apply the extended
strategy described above.

If the labels in Y do not have an order, the problem can be re-
duces to several binary classification problems, which is straight-
forward to apply our strategy for debiasing workers’ annotations.

7. RELATED WORK
In this section, we first introduce existing studies on annotation

bias of crowds, when data items are presented either independently,
or in a sequence or batches; we then introduce rank aggregation
techniques as well as their application on crowdsourced ranking or
rating.

Annotation bias in independent judgments. A number of stud-
ies have been conducted on verifying and quantifying annotation
bias of crowd workers. Snow et al. [29] explore the performance
of annotations by non-expert workers for several NLP tasks. De-
meester et al. [8] discuss the disagreement between different users
on assessment of web search results.

There are also extensive studies on modeling worker behaviors.
Raykar et al. [23, 24, 25] study how to learn a model with noisy
labeling. Specifically, they employ a logistic regression classi-
fier, and insert hidden variables indicating whether a worker tells
the truth. Karger et al. [12] propose an iterative algorithm to in-
fer workers’ reliability and aggregating their answers. Whitehill et
al. [35] model the annotator ability, data item difficulty, and infer

the true label from the crowds in a unified model. Most of these
work also proposes various generative model to capture worker be-
havior. However, they assume judgments on different data items
are independent, which is not necessarily true when data items are
grouped into batches.

Venanzi et al. [33] propose a community-based label aggregation
model to identify different types of workers, and correct their labels
correspondingly. Das et al. [7] address the interactions of opinions
between people connected by networks. They focus on another as-
pect of dependencies, which is the dependencies between workers,
while in our studies, we are more concerned about dependencies
between data items and their judgments.

Annotation bias in sequential and batch judgments. A few re-
searchers also notice the correlation between judgments on differ-
ent data items, but their work are mainly developed in the setting
when data items are reviewed in a sequence. Scholer et al. [26,
27] study the annotation disagreements in a relevance assessment
data set. They discover correlations between annotations of similar
data items. They also explore “threshold priming” in annotation,
where the annotators tend to make similar judgments or apply sim-
ilar standard on consecutive data items they review. However, their
work focuses on the scenario when data items are organized in a
long sequence. It confines the dependencies to exist only between
consecutive data items. Also, they focus more on qualitative con-
clusions, without a quantitative model to characterize and measure
the discovered factors. Carterette et al. [4] provide several assessor
models for the TREC data set. Mozer et al. [18] study the similar
“relativity of judgments” phenomenon on sequential tasks instead
of small batches. Again, their focus is more on data items presented
as a long sequence, while we focus more on data items presented
in batches simultaneously.

Our recent work [36] also considers a similar setting when data
items are organized in small batches; we verify the existence of
annotation bias caused by batching data items. Our focus in that
paper was to design an active learning algorithm to smartly assem-
ble batches, aiming to improve the performance of the classifier
trained on this annotation batches. Our focus was not on improv-
ing the quality of labels collected, and we still used majority voting
to obtain labels for data items. In this paper, we focus on debias-
ing the obtained labels directly, the higher label quality can benefit
tasks including training and/or evaluating classifiers, with a broader
range of applications.

Crowdsourced ranking and rating. In our model, we employ
the Plackett-Luce model to capture worker behavior, and aggre-
gate worker annotations on batches as rankings in order to infer
true labels. There is a related thread of work on rank aggregation;
however, to the best of our knowledge, we are the first to model
crowds’ annotating behavior on batches by ranking, and propose a
debiasing strategy.

Studies on aggregating multiple rankings into a consistent rank-
ing can be dated back to the seminal work of Arrow [2]. Negah-
ban et al. [19] study how to aggregate pairwise comparisons into a
ranking by utilizing the Bradley-Terry model [3], which is a simpli-
fied version of Plackett-Luce model utilized in this paper. Hunter et
al. [11] propose the minorization-maximization (MM) algorithm to
infer Plackett-Luce model from multiple partial orderings. Soufi-
ani et al. [30] generalize Negahban et al.’s work and proposed a
class of generalized method-of-moments (GMM) algorithm to in-
fer parameters of Plackett-Luce model from multiple orderings, and
compare the performance against MM-algorithm. They then fur-
ther extend their algorithm to be applied to a more general class of
ranking models called random utility models (RUMs) [31]. In ad-

dition, the technique for rank aggregation has also been studied in
context of information retrieval [9, 13, 14, 22, 34]. These studies do
not explicitly address the crowdsourcing settings to actually model
the worker behavior. Directly applying their techniques (e.g. [11])
may not necessarily lead to better performance, as shown in our
experiments.

There is related research on aggregating multiple rankings or
leveraging crowds’ power to obtain ranking of data items. Chen et
al. [6] study aggregating crowdsourced annotation on pairwise
comparison to obtain a ranking on data items. Mao et al. [16] show
how aggregated results of noisy voting obtained from crowdsourc-
ing platform may differ by using different aggregating strategies.
However, their objective is just to obtain a ranking, while our model
incorporates a ranking model but the ultimate goal is still to collect
labels for data items.

Several papers also consider crowdsourced rating.
Parameswaran et al. [20] focused on crowdsourced rating on
items, and applied their system on a peer evaluation data set of a
MOOC course. Crowdsourcing has also been utilized for rating
multimedia content quality [5] and relevance assessment [1].
However, they do not explicitly study the scenario when data items
are grouped into batches.

8. CONCLUSION
In this work we study a specific type of annotation bias in crowd-

sourcing, which occurs when data items are grouped into small
batches and submitted to workers to be judged simultaneously. We
propose a novel worker model designed to capture this type of bias,
and show how to train the worker model on annotation data. We
also show how to debias the label obtained from crowds given a
trained worker model. We conduct experiments on both synthetic
data and real world data to verify the effectiveness of our methods.

The observation of small-batch annotation bias might exist in
many scenarios other than crowdsourcing, and therefore the debi-
asing strategy can trigger a broad range of applications. For ex-
ample, the conference paper review system where each reviewer is
assigned a batch of papers can also be regarded as a small-batch
annotation.

There are several interesting directions to extend this work. For
example, one can extend the model to further incorporate the dif-
ferent behavior of each individual worker and adjust the debiasing
strategy accordingly. Also, it would be interesting to see if it is pos-
sible to improve the efficiency of debiasing by actively assemble a
batch of data items to collect the desired labels, instead of sending
randomly formed batches to the crowds.

9. REFERENCES
[1] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance

evaluation. In SIGIR Forum, volume 42, pages 9–15. ACM, 2008.
[2] K. J. Arrow. Social choice and individual values. Yale university

press, 1963.
[3] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block

designs: I. the method of paired comparisons. Biometrika, pages
324–345, 1952.

[4] B. Carterette and I. Soboroff. The effect of assessor error on ir
system evaluation. In SIGIR, pages 539–546. ACM, 2010.

[5] K.-T. Chen, C.-C. Wu, Y.-C. Chang, and C.-L. Lei. A
crowdsourceable qoe evaluation framework for multimedia content.
In Multimedia, pages 491–500. ACM, 2009.

[6] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz.
Pairwise ranking aggregation in a crowdsourced setting. In WSDM,
pages 193–202. ACM, 2013.

[7] A. Das, S. Gollapudi, R. Panigrahy, and M. Salek. Debiasing social
wisdom. In KDD, pages 500–508. ACM, 2013.

[8] T. Demeester, R. Aly, D. Hiemstra, D. Nguyen, D. Trieschnigg, and
C. Develder. Exploiting user disagreement for web search evaluation:

an experimental approach. In WSDM, pages 33–42. ACM, 2014.
[9] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation

methods for the web. In WWW, pages 613–622. ACM, 2001.
[10] R. G. Gomes, P. Welinder, A. Krause, and P. Perona.

Crowdclustering. In NIPS, pages 558–566, 2011.
[11] D. R. Hunter. Mm algorithms for generalized bradley-terry models.

Annals of Statistics, pages 384–406, 2004.
[12] D. R. Karger, S. Oh, and D. Shah. Iterative learning for reliable

crowdsourcing systems. In NIPS, pages 1953–1961, 2011.
[13] A. Klementiev, D. Roth, and K. Small. Unsupervised rank

aggregation with distance-based models. In ICML, pages 472–479.
ACM, 2008.

[14] Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li. Supervised rank
aggregation. In WWW, pages 481–490. ACM, 2007.

[15] R. D. Luce. Individual choice behavior: A theoretical analysis.
Wiley, 1959.

[16] A. Mao, A. D. Procaccia, and Y. Chen. Better human computation
through principled voting. In AAAI, 2013.

[17] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. Proceedings of the VLDB
Endowment, 5(1):13–24, 2011.

[18] M. C. Mozer, H. Pashler, M. Wilder, R. V. Lindsey, M. C. Jones, and
M. N. Jones. Decontaminating human judgments by removing
sequential dependencies. NIPS, 23, 2010.

[19] S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-wise
comparisons. In NIPS, pages 2474–2482, 2012.

[20] A. Parameswaran, S. Boyd, H. Garcia-Molina, A. Gupta,
N. Polyzotis, and J. Widom. Optimal crowd-powered rating and
filtering algorithms. VLDB, 2014.

[21] R. L. Plackett. The analysis of permutations. Applied Statistics, pages
193–202, 1975.

[22] T. Qin, X. Geng, and T.-Y. Liu. A new probabilistic model for rank
aggregation. In NIPS, pages 1948–1956, 2010.

[23] V. C. Raykar and S. Yu. Ranking annotators for crowdsourced
labeling tasks. In NIPS, pages 1809–1817, 2011.

[24] V. C. Raykar, S. Yu, L. H. Zhao, A. Jerebko, C. Florin, G. H.
Valadez, L. Bogoni, and L. Moy. Supervised learning from multiple
experts: whom to trust when everyone lies a bit. In ICML, pages
889–896. ACM, 2009.

[25] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, L. Bogoni,
and L. Moy. Learning from crowds. JMLR, 11:1297–1322, 2010.

[26] F. Scholer, D. Kelly, W.-C. Wu, H. S. Lee, and W. Webber. The effect
of threshold priming and need for cognition on relevance calibration
and assessment. In SIGIR, pages 623–632. ACM, 2013.

[27] F. Scholer, A. Turpin, and M. Sanderson. Quantifying test collection
quality based on the consistency of relevance judgements. In SIGIR,
pages 1063–1072. ACM, 2011.

[28] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get another label?
improving data quality and data mining using multiple, noisy
labelers. In KDD, pages 614–622. ACM, 2008.

[29] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and
fast—but is it good?: evaluating non-expert annotations for natural
language tasks. In EMNLP, pages 254–263, 2008.

[30] H. A. Soufiani, W. Chen, D. C. Parkes, and L. Xia. Generalized
method-of-moments for rank aggregation. In NIPS, pages
2706–2714, 2013.

[31] H. A. Soufiani, D. Parkes, and L. Xia. Computing parametric ranking
models via rank-breaking. In ICML, pages 360–368, 2014.

[32] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations for visual
object detection. In Human Computation Workshops at AAAI, 2012.

[33] M. Venanzi, J. Guiver, G. Kazai, P. Kohli, and M. Shokouhi.
Community-based bayesian aggregation models for crowdsourcing.
In WWW, pages 155–164, 2014.

[34] M. N. Volkovs and R. S. Zemel. A flexible generative model for
preference aggregation. In WWW, pages 479–488. ACM, 2012.

[35] J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, and P. L. Ruvolo.
Whose vote should count more: Optimal integration of labels from
labelers of unknown expertise. In NIPS, pages 2035–2043, 2009.

[36] H. Zhuang and J. Young. Leveraging in-batch annotation bias for
crowdsourced active learning. In WSDM, pages 243–252. ACM,
2015.

