
 1 / 32

Dremel: Interactice Analysis of Web-Scale
Datasets

By Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, Theo Vassilakis

Presented by: Alex Zahdeh

 2 / 32

Overview

● Scalable, interactive ad-hoc query system for
analysis of read-only nested data

● Multi-level execution trees, columnar data
layout

● Capable of aggregation queries over trillion
row tables in seconds

● Scales to thousands of CPUs and petabytes of
data

 3 / 32

Motivation

● Need to deal with vast amounts of data spread
out over multiple commodity machines

● Interactive queries require speed
● Response times make a qualitative difference in

many analysis tasks

 4 / 32

Applications of Dremel

● Analysis of crawled web documents.

● Tracking install data for applications on Android Market

● Crash reporting for Google products

● OCR results from Google Books

● Spam analysis

● Debugging of map tiles on Google Maps

● Disk I/O statistics for hundreds of thousands of disks

● Symbols and dependencies in Google's codebase

 5 / 32

Data Exploration Example

1.Extract billions of signals from web pages using
MapReduce

2.Ad hoc SQL query against Dremel

3.More MR based processing

DEFINE TABLE t AS /path/to/data/*
SELECT TOP(signal, 100), COUNT(*) FROM t

 6 / 32

Background

● Requires a common storage layer

– Google uses GFS
● Requires shared storage format

– Protocol Buffers

 7 / 32

Data Model (Protocol Buffers)

● Nested layout
● Each record consists of one or many data fields
● Fields have a name, type, and multiplicity
● Can specify optional/required fields
● Platform neutral
● Extensible

 8 / 32

Data Model Example

 9 / 32

Nested Columnar Storage

● Store all values of a given field consecutively
● Improve retreival efficiency
● Challenges

– Lossless representation of record structure in
columnar format

– Fast encoding and decoding (assembly) of
records

 10 / 32

Repetition Levels

● Need to disambiguate
field repetition and
record repetition

● Must store a
repetition level to
each value

 11 / 32

Definition Levels

● Specifies how many fields that could be
undefined are actually present in the record

● Stored with each value

 12 / 32

Definition Levels Example

 13 / 32

Encoding

● Each column stored as a set of blocks
● Each block contains:

– Repetition level
– Definition level
– Compressed field values

● NULLS not explicity stored (determined by
definition level)

 14 / 32

Splitting Records into Columns

● Create a tree of field writers whose structure
matches the field heirarchy

● Update field writers only when they have their
own data

● Don't propogate state down the tree unless
absolutely necessary

 15 / 32

Record Assembly

● Finite State Machine that reads the field values
and levels and appends the values sequentially
to output record

● States correspond to a field reader
● Transitions labeled with repetition levels

 16 / 32

Record Assembly FSM

 17 / 32

Query Language

● Based on SQL, designed to be efficiently
implementable on columnar nested storage

● Each statement takes as input one or more
nested tables and their schemas

● Produces a nested table and its output schema

 18 / 32

Query Example

 19 / 32

Query Execution

● Multi-level serving tree
to execute queries

● Partitions of table
spread out across leaf
servers

● Queries aggregated on
the way up

● Designed for "small"
results (<1M records)

 20 / 32

Query Dispatcher

● Fault tolerance
● Job scheduling

– Slots are available execution threads on leaf
servers

– Amount of data processed larger than
number of slots

● Straggler tolerance

– Redispatch work that is taking too long

 21 / 32

Experiments

● Several datsets

● All tables three way replicated

● Contain from 100k to 800k tablets of various sizes

● Goals

– Examine access characteristics on a single machine

– Show benefits of columnar storage for MR execution

– Show Dremel's performance

 22 / 32

Datasets

 23 / 32

Record vs Column Storage

300k record fragment of Table T1 (1GB) used

 24 / 32

MR vs Dremel (for aggregation
queries)
● Single field access
● 3000 workers

 25 / 32

Serving Tree Level Impact

 26 / 32

Execution Time Histogram

 27 / 32

Scaling Dremel

 28 / 32

Query Response Distribution (1 month)

 29 / 32

Observations

● Scan based queries can be executed at
interactive speeds on disk resident
datasets of up to 1 trillion records

● Near linear scalability in the number of
columns and servers is achievable for
systems containing thousands of nodes

● MR benefits from columnar storage

● Record assembly and parsing are
expensive

– Software layers need to be optimized
to directly consume column-oriented
database

● In a multi user environment a larger
system can benefit from economies of
scale while offering a better user
experience

● Can terminate queries much earlier and
return most of the data to tradeoff speed
and accuracy

● Getting to the last few percent within tight
time bounds is hard

 30 / 32

Related Work

● Large Scale Computing

– Map Reduce, Hadoop

● Hybrid database/ computation

– HadoopDB

● Columnar Representation of
Nested Data

– Xmill

● Data Model

– Complex value models

– Nested relational models

● Query Language

– Recursive Algebra and Query
Optimizations for Nested
Relations

– Pig

● Parallel Data Processing

– Scope

– DryadLINQ

 31 / 32

Discussion Topics

● Assumes read-only queries; could this be
extended to data cleaning systems that we have
seen perviously?

– Replica consistency issues, etc.
● Protocol buffers was changed to not support

optional / required fields. Why might that be?
● How common are queries with “small“ results

sets?

 32 / 32

Thanks for watching!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

