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Overview

● Scalable, interactive ad-hoc query system for 
analysis of read-only nested data

● Multi-level execution trees, columnar data 
layout

● Capable of aggregation queries over trillion 
row tables in seconds

● Scales to thousands of CPUs and petabytes of 
data



  3 / 32

Motivation

● Need to deal with vast amounts of data spread 
out over multiple commodity machines

● Interactive queries require speed
● Response times make a qualitative difference in 

many analysis tasks



  4 / 32

Applications of Dremel

● Analysis of crawled web documents.

● Tracking install data for applications on Android Market

● Crash reporting for Google products

● OCR results from Google Books

● Spam analysis

● Debugging of map tiles on Google Maps

● Disk I/O statistics for hundreds of thousands of disks

● Symbols and dependencies in Google's codebase
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Data Exploration Example

1.Extract billions of signals from web pages using 
MapReduce

2.Ad hoc SQL query against Dremel

3.More MR based processing

DEFINE TABLE t AS /path/to/data/*
SELECT TOP(signal, 100), COUNT(*) FROM t
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Background

● Requires a common storage layer

– Google uses GFS
● Requires shared storage format

– Protocol Buffers
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Data Model (Protocol Buffers)

● Nested layout
● Each record consists of one or many data fields
● Fields have a name, type, and multiplicity
● Can specify optional/required fields
● Platform neutral
● Extensible
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Data Model Example
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Nested Columnar Storage

● Store all values of a given field consecutively
● Improve retreival efficiency
● Challenges

– Lossless representation of record structure in 
columnar format

– Fast encoding and decoding (assembly) of 
records



  10 / 32

Repetition Levels

● Need to disambiguate 
field repetition and 
record repetition

● Must store a 
repetition level to 
each value
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Definition Levels

● Specifies how many fields that could be 
undefined are actually present in the record

● Stored with each value
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Definition Levels Example
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Encoding

● Each column stored as a set of blocks
● Each block contains:

– Repetition level
– Definition level
– Compressed field values

● NULLS not explicity stored (determined by 
definition level)
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Splitting Records into Columns

● Create a tree of field writers whose structure 
matches the field heirarchy

● Update field writers only when they have their 
own data

● Don't propogate state down the tree unless 
absolutely necessary
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Record Assembly

● Finite State Machine that reads the field values 
and levels and appends the values sequentially 
to output record

● States correspond to a field reader
● Transitions labeled with repetition levels
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Record Assembly FSM
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Query Language

● Based on SQL, designed to be efficiently 
implementable on columnar nested storage

● Each statement takes as input one or more 
nested tables and their schemas

● Produces a nested table and its output schema
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Query Example
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Query Execution

● Multi-level serving tree 
to execute queries

● Partitions of table 
spread out across leaf 
servers

● Queries aggregated on 
the way up

● Designed for "small" 
results (<1M records)
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Query Dispatcher

● Fault tolerance
● Job scheduling

– Slots are available execution threads on leaf 
servers

– Amount of data processed larger than 
number of slots 

● Straggler tolerance

– Redispatch work that is taking too long
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Experiments

● Several datsets

● All tables three way replicated

● Contain from 100k to 800k tablets of various sizes

● Goals

– Examine access characteristics on a single machine

– Show benefits of columnar storage for MR execution

– Show Dremel's performance



  22 / 32

Datasets
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Record vs Column Storage

300k record fragment of Table T1 (1GB) used
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MR vs Dremel (for aggregation 
queries)
● Single field access
● 3000 workers
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Serving Tree Level Impact
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Execution Time Histogram
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Scaling Dremel
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Query Response Distribution (1 month)
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Observations

● Scan based queries can be executed at 
interactive speeds on disk resident 
datasets of up to 1 trillion records

● Near linear scalability in the number of 
columns and servers is achievable for 
systems containing thousands of nodes

● MR benefits from columnar storage

● Record assembly and parsing are 
expensive

– Software layers need to be optimized 
to directly consume column-oriented 
database

● In a multi user environment a larger 
system can benefit from economies of 
scale while offering a better user 
experience

● Can terminate queries much earlier and 
return most of the data to tradeoff speed 
and accuracy

● Getting to the last few percent within tight 
time bounds is hard



  30 / 32

Related Work

● Large Scale Computing

– Map Reduce, Hadoop

● Hybrid database/ computation

– HadoopDB

● Columnar Representation of 
Nested Data

– Xmill

● Data Model

– Complex value models

– Nested relational models

● Query Language

– Recursive Algebra and Query 
Optimizations for Nested 
Relations

– Pig

● Parallel Data Processing

– Scope

– DryadLINQ
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Discussion Topics

● Assumes read-only queries; could this be 
extended to data cleaning systems that we have 
seen perviously?

– Replica consistency issues, etc.
● Protocol buffers was changed to not support 

optional / required fields. Why might that be?
● How common are queries with “small“ results 

sets?
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Thanks for watching!
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