
BlinkDB: Queries with Bounded Error and
Bounded Response Times on Very Large Data

Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, Ion Stoica

Presented by Liqi Xu

Problem: very large data
SELECT AVG(SessionTime)

FROM Sessions

WHERE City = ‘New York’

● 100 million tuples for ‘New York’
● Problem:

○ High cost in execution time and space
● Idea: trade result accuracy for response time and space
● Sampling:

○ 10,000 tuples for ‘New York ’
○ return an approximate result (with error bound)

■ E.g. appox. avg 234.23 ± 5.32

Problems: approx. techniques
efficiency v.s. flexibility of the queries

SELECT AVG(SessionTime)

FROM Sessions

WHERE City = ‘New York’

Frequencies of group
and filter predicates do
not change over time

No future queries are
known in advance

All future queries
are known in
advance

Frequencies of set of
columns used for
group and filter
predicates do not
change over time

Problems: approx. techniques
efficiency v.s. flexibility of the queries

SELECT AVG(SessionTime)

FROM Sessions

WHERE City = ‘Urbana’

Frequencies of group
and filter predicates do
not change over time

No future queries are
known in advance

All future queries
are known in
advance

Frequencies of set of
columns used for
group and filter
predicates do not
change over time‘current’ sampling Online Aggregation

BlinkDB
● “a distributed sampling-based approximate query processing system”
● Efficient

○ ~TBs data in seconds
○ with meaningful error bounds

SELECT COUNT(*)
FROM Sessions
WHERE Genere = ‘western’
GROUP BY OS
WITHIN 5 SECONDS

SELECT COUNT(*)
FROM Sessions
WHERE Genre = ‘western’
GROUP BY OS
ERROR WITHIN 10% AT CONFIDENCE 95%

BlinkDB
● “a distributed sampling-based approximate query processing system”
● Efficient

○ ~TBs data in seconds
○ with meaningful error bounds

● More general queries
○ Only assumption:

■ “query column sets” (QCSs) are stable
■ QCSs: columns used for grouping and filtering (ie. in WHERE, GROUP BY, and HAVING)

BlinkDB Architecture

offline

run-time

Sample creation
● Construct stratified samples

Problem with Uniform Samples

Sampling_rate = ⅓

1. higher possibility of missing
under-representing groups

ID City Age Session_Time

1 NYC 20 212

2 Urbana 40 532

3 NYC 30 243

4 Urbana 40 291

5 NYC 20 453

6 NYC 30 293

ID City Age Session_Time

3 NYC 30 243

5 NYC 20 453

SELECT AVG(SessionTime)
FROM Sessions
WHERE City = ‘Urbana’’

Problem with Uniform Samples

Sampling_rate = ⅔

1. higher possibility of missing
under-representing groups

2. Error of each aggregate
is NOT equal

ID City Age Session_Time

1 NYC 20 212

2 Urbana 40 532

3 NYC 30 243

4 Urbana 40 291

5 NYC 20 453

6 NYC 30 293

ID City Age Session_Time

1 NYC 20 212

3 NYC 30 243

4 Urbana 40 291

6 NYC 30 293

Stratified Samples (on City)

ID City Age Session_Time

1 NYC 20 212

2 Urbana 40 532

3 NYC 30 243

4 Urbana 40 291

5 NYC 20 453

6 NYC 30 293

Sampling_rate(NYC) = 1/4
Sampling_rate(Urbana) = 1/2

Assign equal sample size to each groups

ID City Age Session_Time

3 NYC 30 243

4 Urbana 40 291

Stratified Samples (on City)

ID City Age Session_Time

1 NYC 20 212

2 Urbana 40 532

3 NYC 30 243

4 Urbana 40 291

5 NYC 20 453

6 NYC 30 293

Sampling_rate(NYC) = 3/4
Sampling_rate(Urbana) = 2/2

ID City Age Session_Time

1 NYC 20 212

3 NYC 30 243

4 Urbana 40 291

5 NYC 20 453

6 NYC 30 293

Storage cost of stratified samples
● Build several multi-dimensional stratified samples

○ increase query accuracy and latency

● n columns 2^n possible stratified samples
ID City Age Session_Time

1 NYC 20 212

2 Urbana 40 532

3 NYC 30 243

4 Urbana 40 291

5 NYC 20 453

6 NYC 30 293

[City]
[Age]
[Session_Time]
[City, Age]
[City, Session_Time]
[Age, Session_Time]
[City, Age, Session_Time]

Storage cost of stratified samples
● Build several multi-dimensional stratified samples

○ increase query accuracy and latency

● n columns 2^n possible stratified samples
● Solution:

○ Find subsets of column sets that maximize the weighted sum of coverage of the QCSs of the
queries q_j

Optimization formulation

Overall storage
capacity budget

storage cost of
all samples

probability of a
query type in
workload

Sparsity of the data

Coverage probability
of each query type

System Overview

Online sample selection
● Given a Query Q with specified time/error constraints

○ BlinkDB generate different query plans for the same query Q

● How to pick the plan that best satisfies the time/error constraints?

Strategy
● Select appropriate sample(s)
● execute the query Q on small samples of those appropriate samples(s), in

order to gather statistics about
○ query’s selectivity

○ complexity

○ underlying distribution of its query

● For each candidate sample
○ construct an Error Latency Profile (ELP)
○ statistically predict for larger samples

Example
● System has 3 stratified samples

○ [date, country]
○ [date designated media area for a video
○ [date, ended_flag]

● Construct an ELP for each of the samples

SELECT AVG(SessionTime)

FROM Sessions

WHERE City = Galena’

Implementation enable queries with response
time and error bounds

create/update the set
of random and multi-
dimensional samples

assign query sized
samples iteratively

return error bars
and confidence
interval

Evaluation Setting
● Conviva Workload

○ 17 TB in size
○ log of media accessed by Conviva users across 30 days
○ A sige big fact table with ~ 5.5 billion rows & 104 columns
○ raw query log constitutes 19,296 queries

● TPC-H workload
○ 1 TB of data
○ 22 benchmark queries

● For both of the workloads
○ partitioned data across 100 nodes
○ 50% storage budget

BlinkDB v.s. No Sampling
SELECT AVG(Session_Time)
FROM Sessions
WHERE date = …
GROUP BY City

Response time v.s. Error
● Uniform samples: 50% of entire data
● Single Column: stratified on 1 column
● Multi-Column: stratifies on <= 3 columns

Time Guarantees
sample of 20 Conviva queries
ran each of them 10 times
on 17 TB data set

Error Guarantees
sample of 20 Conviva queries
ran each of them 10 times
on 17 TB data set

