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Abstract—Building visualization and analysis pipelines is a large hurdle in the adoption of visualization and workflow systems by
domain scientists. In this paper, we propose techniques to help users construct pipelines by consensus—automatically suggesting
completions based on a database of previously created pipelines. In particular, we compute correspondences between existing
pipeline subgraphs from the database, and use these to predict sets of likely pipeline additions to a given partial pipeline. By presenting
these predictions in a carefully designed interface, users can create visualizations and other data products more efficiently because
they can augment their normal work patterns with the suggested completions. We present an implementation of our technique in a
publicly-available, open-source scientific workflow system and demonstrate efficiency gains in real-world situations.
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1 INTRODUCTION

Data exploration through visualization is an effective means to un-
derstand and obtain insights from large collections of data. Not sur-
prisingly, visualization has grown into a mature area with an es-
tablished research agenda [26], and a number of software systems
have been developed that support the creation of complex visualiza-
tions [18, 6, 23, 35, 19, 29, 13, 36]. However, a wider adoption of
visualization systems has been greatly hampered due to the fact that
these systems are notoriously hard to use, in particular, for users who
are not visualization experts.

Even for systems that have sophisticated visual programming inter-
faces, such as DX, AVS and SCIRun, the path from the raw data to
insightful visualizations is laborious and error-prone. Visual program-
ming interfaces expose computational components as modules and al-
low the creation of complex visualization pipelines which combine
these modules in a dataflow, where connections between modules ex-
press the flow of data through the pipeline. They have been shown
to be useful for comparative visualization and efficient exploration
of parameter spaces [2]. Through the use of a simple programming
model (i.e., dataflows) and by providing built-in constraint checking
mechanisms (e.g., that disallow a connection between incompatible
module ports), they ease the creation of pipelines. Notwithstanding,
without detailed knowledge of the underlying computational compo-
nents, it is difficult to understand what series of modules and connec-
tions ought to be added to obtain a desired result. In essence, there is
no “roadmap”; systems provide very little feedback to help the user
figure out which modules can or should be added to the pipeline. A
novice user (i.e., an experienced programmer that is unfamiliar with
the modules and the dataflow of the system), or even an advanced user
performing a new task, often resorts to manually searching for exist-
ing pipelines to use as examples. These examples are then adapted
and iteratively refined until a solution is found. Unfortunately, this
manual, time-consuming process is the current standard for creating
visualizations rather than the exception.

Recent work has shown that provenance information (the metadata
required for reproducibility) can be used to simplify the process of
pipeline creation by allowing pipelines to be refined and queried by
example [30]. For example, a pipeline refinement can act as an anal-
ogy template for creating new visualizations. This is a powerful tool
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and can be helpful in situations when the user knows in advance what
they want the end result to be. However, during pipeline creation, it
is not always the case that the user has an analogy template readily
available for the visualization that is desired. In these cases, the user
is relegated to manually searching for examples.

In this paper, we present VisComplete, a system that aids users in
the process of creating visualizations by using a database of previously
created visualization pipelines. The system learns common paths used
in existing pipelines and predicts a set of likely module sequences that
can be presented to the user as suggestions during the design process.
The quality and nature of the suggestions depend on the data they are
derived from. Whereas in a single-user environment, suggestions are
derived based on pipelines created by a specific user, in a multi-user
environment, the “wisdom of the crowds” can be leveraged to derive
a richer set of suggestions that includes examples the user is not fa-
miliar with. User collaboration and social data reuse has proven to
be a powerful mechanism in various domains, such as recommenda-
tion systems in commercial settings (e.g., Amazon, e-Bay, Netflix),
knowledge sharing on open Web sites (e.g., Wikipedia), image label-
ing for computer vision (e.g., ESPGame) and visualization creation
(e.g., ManyEyes). The underlying theme shared by these systems
is that they use information provided by many users to solve prob-
lems that would be difficult otherwise. We apply a similar concept to
pipeline creation: pipelines created by many users enable the creation
of visualizations by consensus. For the user, VisComplete acts as an
auto-complete mechanism for pipelines, suggesting modules and con-
nections in a manner similar to a Web browser suggesting URLs. The
completions are presented graphically in a way that allows the user to
easily explore and accept suggestions or disregard them and continue
working as they were. Figure 1 shows an example of VisComplete
incorporated into a visual programming interface and Figure 2 shows
some example completions for a single module.

Contributions and Outline. We propose a recommendation system
that leverages information in a collection of pipelines to provide advice
to users of visualization systems and aid them in the construction of
pipelines. By modeling pipelines as graphs, we develop an algorithm
for predicting likely completions that searches for common subgraphs
in the collection. We also present an interface that displays the recom-
mended completions in an intuitive way. Our preliminary experiments
show that VisComplete has the potential to reduce the effort and time
required to construct visualizations. We found that the suggestions de-
rived by VisComplete could have reduced the number of operations
performed by users to construct pipelines by an average of over 50%.
Note that although in this paper we focus on the use of VisComplete
for visualization pipelines, the techniques we present can be applied
to general workflows.

The rest of this paper is organized as follows. In Section 2 we dis-
cuss related work. In Section 3 we present the underlying formalism
for generating pipeline suggestions, and in Section 4 we describe a



Fig. 1: The VisComplete suggestion system and interface. (a) A user starts by adding a module to the pipeline. (b) The most likely completions
are generated using indexed paths computed from a database of pipelines. (c) A suggested completion is presented to the user as semi-transparent
modules and connections. The user can browse through suggestions using the interface and choose to accept or reject the completion.

practical implementation that has been integrated into the VisTrails
system [35]. We then detail the use cases we envision in Section 5,
report our experiments and results in Section 6, and provide a discus-
sion of our algorithm in Section 7. We conclude in Section 8, where
we outline directions for future work.

2 RELATED WORK

Visualization systems have been successfully used to bring powerful
visualization techniques to a wide audience. Seminal workflow-based
visualization systems such as AVS Explorer [36], Iris Explorer [27],
and Visualization Data Explorer [13] have paved the way for more
recent systems designed using an object-oriented approach such as
SciRun [29] for computational steering and the Visualization Toolkit
(VTK) [19] for visualization. Systems that incorporate standard point-
and-click interfaces and operate on data at a larger scale, such as
VisIt [6] and ParaView [18], still use workflows as their underlying
execution engine. Development in workflow systems for visualization
is ongoing, as seen in projects such as MeVisLab [24] for medical vi-
sualization and VisTrails [35] for incorporating existing visualization
libraries with other tools in a provenance capturing framework. Our
completion strategy can be combined with and enhance workflow and
workflow-based visualization systems.

Recommendation systems have been used in different settings. Like
VisComplete, these are based on methods that predict users’ actions
based solely on the history of their previous interactions [12]. Exam-
ples include Unix command-line prediction [20], prediction of Web
requests [8, 28], and autocompletion systems such as IntelliSense [25].
Senay and Ignatius have proposed incorporating expert knowledge
into a set of rules that allow automated suggestions for visualization
construction [31], while Gilson et al. incorporate RDF-based ontolo-
gies into an information visualization tool [9]. However, these ap-
proaches necessarily require an expert that can encode the necessary
knowledge into a rule set or an ontology.

Fu et al. [8] applied association rule mining [1] to analyze Web
navigation logs and discover pages that co-occur with high frequency
in navigation paths followed by different users. This information is
then used to suggest potentially interesting pages to users. VisCom-
plete also derives predictions based on user-derived data and does so
in an automated fashion, without the need for explicit user feedback.
However, the data it considers is fundamentally different from Web
logs: VisComplete bases its predictions on a collection of graphs and
it leverages the graph structure to make these predictions. Because
association rule mining computes rules over sets of elements, it does
not capture relationships (other than co-occurrence) amongst these el-
ements.

In graphics and visualization, recommendation systems have been
proposed to simplify the creation of images and visualizations. Design
Galleries [22] were introduced to allow users to explore the space of
rendering parameters by suggesting a set of automatically generated
thumbnails. Igarashi and Hughes [14] proposed a system for creating
3D line drawings that uses rules to suggest possible completions of 3D
objects. Suggestions have also been used for view point selection in
volume rendering. Bordoloi and Shen [38] and Takahashi et al. [33]
present methods that analyze the volume from various view points to
suggest the view that best shows the features within the volume. Like
these systems, we provide the user with prioritized suggestions that the
user may choose to utilize. However, our suggestions are data-driven
and based on examples of previous interactions.

An emerging trend in image processing is to enhance images based
on a database of existing images. Hays and Efros [10] recently pre-
sented a system for filling in missing regions of an image by searching
a database for similar images. Along similar lines Lalonde et al. [21]
recently introduced Photo Clip Art, a method for intelligently insert-
ing clip art objects from a database to an existing image. Properties
of the objects are learned from the database so that they may be sized
and oriented automatically, depending on where they are inserted into
the image. The use of databases for completion has also been used for
3D modeling. Tsang et al. [34] proposed a modeling technique that
utilizes previously created geometry stored in a database of shapes to
suggest completions of objects. Like these methods, our completions
are computed by learning from a database to find similarities. But
instead of images, our technique relies on workflow specifications to
derive predictions.

Another important trend is that of social visualization. Web-based
systems such as VisPortal [3, 15] provide the means for collaborative
visualization from disjoint locations. Web sites such as Sens.us [11],
Swivel [32], and ManyEyes [37] allow many users to create, share,
and discuss visualizations. One key feature of these systems is that
they leverage the knowledge of a large group of people to effectively
understand disparate data. Similarly, VisComplete uses a collection of
pipelines possibly created by many users to derive suggestions.

3 GENERATING DATA-DRIVEN SUGGESTIONS

VisComplete suggests partial completions (i.e., a set of structural
changes) for pipelines as they are being created by a user. These sug-
gestions are derived using structural information obtained from a col-
lection G of already-completed pipelines.

Pipelines are specified as graphs, where nodes represent modules
(or processes) and edges determine how data flows through the mod-
ules. More formally, a pipeline specification is a directed acyclic graph



Fig. 2: Three of the first four suggested completions for a “vtkDataSetReader” are shown along with corresponding visualizations. The visual-
izations were created using these completions for a time step of the Tokamak Reactor dataset that was not used in the training data.

G(M,C), where M consists of a set of modules and C is a set of con-
nections between modules in M. A module is a complex object which
contains a set of input and output ports through which data flows in
and out of the module. A connection between two modules ma and mb
connects an output port of ma to an input port of mb.
Problem Definition. The problem of deriving pipeline completions
can be defined as follows. Given a partial graph G, we wish to find a set
of completions C(G) that reflect the structures that exist in a collection
of completed graphs. A completion of G, Gc, is a supergraph of G.

Our solution to this problem consists of two main steps. First, we
pre-process the collection of pipelines G and create Gpath, a compact
representation of G that summarizes relationships between common
structures (i.e., sequences of modules) in the collection (Section 3.1).
Given a partial pipeline p, completions are generated by querying
Gpath to identify modules and connections that have been used in con-
junction with p in the collection (Section 3.2).

3.1 Mining Pipelines
To derive completions, we need to identify graph fragments that co-
occur in the collection of pipelines G . Intuitively, if a certain fragment
always appears connected to a second fragment in our collection, we
ought to predict one of those fragments when we see the other.

Because we are dealing with directed acyclic graphs, we can iden-
tify potential completions for a vertex v in a pipeline by associating
subgraphs downstream from v with those that are upstream. A sub-
graph S is downstream (upstream) of a vertex v if for every v′ ∈ S,
there exists a path from v to v′ (v′ to v). In many cases where we wish
to complete a graph, we will know either the downstream or upstream
structure and wish to complete the opposite direction. Note that this
problem is symmetric: we can change one problem to the other by
simply reversing the direction of the edges.

However, due to the (very) large number of possible subgraphs in G ,
generating predictions based on subgraphs can be prohibitively expen-
sive. Thus, instead of subgraphs we use paths, i.e., a linear sequence
of connected modules. Specifically, we compute the frequencies for
each path in G . Completions are then determined by finding which
path extensions are likely given the existing paths.
Generating the Path Summary. To efficiently derive completions
from a collection of pipelines G , we begin by generating a summary
of all paths contained in the pipelines. Because completions are de-
rived for a specific vertex v in a partial pipeline (we call this vertex
the completion anchor), we extract all possible paths that end or begin
with v and associate them with the vertices that are directly connected
downstream or upstream of v. Note that this leads to many fewer en-
tries than the alternative of extracting all possible subgraph pairs. And
as we discuss in Section 6, paths are effective and lead to good predic-
tions.

More concretely, we extract all possible paths of length N, and split
them into a path of length N−1 and a single vertex. Note that we do
this in both forward and reverse directions with respect to the directed
edges. This allows us to offer completions for pipeline pieces when
they are built top-down and bottom-up. The path summary Gpath is
stored as a set of (path, vertex) pairs sorted by the number of occur-
rences in the database and indexed by the last vertex of the path (the
anchor). Since predictions begin at the anchor vertex, indexing the
path summary by this vertex leads to faster access to the predictions.

As an example of the path summary generation, consider the graph
shown in Figure 3. We have the following upstream paths ending with
D: A→C→D, B→C→D, C→D, and D. In addition, we also have
the following downstream vertices: E and F . The set of correlations
between the upstream paths and downstream vertices is shown in Fig-
ure 3. As we compute these correlations for all starting vertices over
all graphs, some paths will have higher frequencies than others. The
frequency (or support) for the paths is used for ranking purposes: pre-
dictions derived from paths with higher frequency are ranked higher.

Besides paths, we also extract additional information that aid in the
construction of completions. Because we wish to predict full pipeline
structures, not just paths, we compute statistics for the in- and out-
degrees of each vertex type. This information is important in deter-
mining where to extend a completion at each iteration (see Figure 4).
We also extract the frequency of connection types for each pair of
modules. Since two modules can be connected through different pairs
of ports, this information allows us to predict the most frequent con-
nection type.

3.2 Generating Predictions

Predicting a completion given the path summary and an anchor module
v is simple: given the set of paths associated with v, we identify the
vertices that are most likely to follow these paths. As shown in the
following algorithm, we iteratively develop our list of predictions by
adding new vertices using this criteria.

A

C

B

D

E F

path vertex
A→C→ D E
A→C→ D F
B→C→ D E
B→C→ D F

C→ D E
C→ D F

D E
D F

Fig. 3: Deriving a path summary for the vertex D.



Fig. 4: Predictions are iteratively refined. At each step, a prediction can be extended upstream and downstream; in the second step, the algorithm
only suggests a downstream addition. Also, predictions in either direction may include branches in the pipeline, as shown in the center.

GENERATE-PREDICTIONS(P)
predictions← FIRST-PREDICTION(P)
result← [ ]
while |predictions |> 0

do prediction← REMOVE-FIRST(predictions)
new-predictions← REFINE(prediction)
if |new-predictions |= 0

then result← result+prediction
else predictions← predictions+new-predictions

At each step, we refine existing predictions by generating new predic-
tions that add a new vertex based on the path summary information.
Note that because there can be more than one possible new vertex, we
may add more than one new prediction for each existing prediction.
Figure 4 illustrates two steps in the prediction process.

To initialize the list of predictions, we use the specified anchor mod-
ules (provided as input). At this point, each prediction is simply a base
prediction that describes the anchor modules and possibly how they
connect to the pipeline. After initialization, we iteratively refine the
list of predictions by adding to each suggestion. Because there are a
large number of predictions, we need some criteria to order them so
that users can easily locate useful results. We introduce confidence to
measure the goodness of the predictions.

Given the set of upstream (or downstream depending on which di-
rection we are currently predicting) paths, the confidence of a single
vertex c(v) is the measure of how likely that vertex is, given the up-
stream paths. To compute the confidence of a single vertex, we need
to take into account the information given by all upstream paths. For
this reason, the values in Gpath are not normalized; we use the exact
counts. Then, as illustrated by Figure 5, we combine the counts from
each path. This means we do not need any weighting based on the
frequency of paths; the formula takes this into account automatically.
Specifically,

c(v) =
∑P∈upstream(v) count(v | P)

∑P∈upstream(v) count(P)

Then, the confidence of a graph G is the product of the confidences of
each of its vertices:

c(G) = ∏
v∈G

c(v)

While each vertex confidence is not entirely independent, this measure
gives a reasonable approximation for the total confidence of the graph.
Because we perform our predictions iteratively, we calculate the con-
fidence of the new prediction pi+1 as the product of the confidence of
the old prediction pi and the confidence of the new vertex v:

c(pi+1) = c(pi) · c(v)

For computational stability, our implementation uses log-confidences
so the products are actually sums.

Because we wish to derive predictions that are not just paths, our re-
finement step begins by identifying the vertex in the current prediction
that we wish to extend our prediction from. Recall that we computed
the average in- and out-degree for each vertex type in the mining step.
Then, for each vertex, we can compute the difference between the av-
erage degree for its type and its current degree for the current predic-
tion direction. We choose to extend completions at vertices where the
current degree is much smaller than the average degree. We also in-
corporate this measure into our vertex confidence so that predictions
that contain vertices with too many edges are ranked lower:

cd(v) = c(v)+degree-difference(v)

We stop iteratively refining our predictions after a given number
of steps or when no new predictions are generated. At this point, we
sort all of the suggestions by confidence and return them. Note that
if we have too many suggestions, we can choose to prune our set of
predictions at each step by eliminating those which fall below a certain
threshold.

3.3 Biasing the Predictions

The prediction mechanism described above relies primarily on the fre-
quency of paths to rank the predictions. There are, however, other fac-
tors that can be used to influence the ranking. For example, if a user
has been working on volume rendering pipelines, completions that em-
phasize modules related to that technique could be ranked higher than
those dealing with other techniques. In addition, some users will pre-
fer certain completions over others because they more closely mirror
their own work or their own pipeline structures. Again, it makes sense
to bias completions toward user preferences. We can adapt our algo-
rithm to include such bias by incorporating a weighting factor in the
confidence computation. Specifically, we adjust our counts by weight-
ing the contribution of each path according to a pipeline importance
factor determined by a user’s preferences.

4 IMPLEMENTATION

Our implementation is split into three specific steps: determining when
completion should be invoked, computing the set of possible comple-
tions, and presenting these suggestions to the user. Computing the
possible completions requires the machinery developed in the previ-
ous section. The other steps are essential to make the approach usable.
The interface, in particular, plays a significant role in allowing users to
make use of suggestions while also being able to quickly dismiss them
when they are not desired.



Fig. 5: At each iteration, we examine all upstream paths to suggest a new downstream vertex. We select the vertex that has the largest frequency
given all upstream paths. In this example, “vtkDataSetMapper” would be the selected addition.

4.1 Triggering a Completion

We want to provide an environment where suggestions are offered au-
tomatically but do not interfere with a user’s normal work patterns.
There are two circumstances in pipeline creation where it makes sense
to automatically trigger a completion: when a user adds a new module
and when a user adds a new connection. In each of these cases, we are
given new information about the pipeline structure that can be used to
narrow down possible completions. Because users may also wish to
invoke completion without modifying the pipeline, we also provide an
explicit command to start the completion process.

In each of the triggering situations, we begin the suggestion process
by identifying the modules that serve as anchors for the completions.
For new connections, we use both of the newly connected modules,
and for a user-requested completion, we use the selected module(s).
However, when a user adds a new module, it is not connected to the
rest of the existing pipeline. Thus, it can be difficult to offer mean-
ingful suggestions since we have no surrounding structure to leverage.
We address this issue by first finding the most probable connection to
the existing pipeline, and then continue with the completion process.

Finding the initial connection for an added module may be difficult
when there are multiple modules in the existing pipeline than can be
connected to the new module. However, because visual programming
interfaces allow users to drag and place new modules in the pipeline,
we can use the initial position of the module to help infer a likely con-
nection. To accomplish this, we compute the user’s layout direction
based on the existing pipeline, and locate the module that is nearest to
the new module and can be connected to it.

4.2 Computing the Suggestions

As outlined in the previous section, we compute possible completions
that emanate from a set of anchor modules in the existing pipeline
using path summaries derived from a database of pipelines, and rank
them by their confidence values. Depending on the anchor modules,
a very large set of completions can be derived and a user is unlikely
to examine a long list of suggestions. Therefore, we prune our pre-
dictions to avoid rare cases. This both speeds up computation and
reduces the likelihood that we provide meaningless suggestions to the
user. Specifically, because our predictions are refined iteratively, we
prune a prediction if its confidence is significantly lower than its par-
ent’s confidence. Currently, this is implemented as a constant thresh-
old, but we can use knowledge of the current distribution or iteration
to improve our pruning.

VisComplete provides the user with suggestions that assist in the
creation of the pipeline structure. Parameters are also essential com-
ponents in visualizations, but because the choice of parameters is fre-
quently data-dependent, we do not integrate parameter selection with
our technique. Instead, we focus on helping users complete pipelines,
and direct them to existing techniques [17, 16, 2] to explore the pa-
rameter space. Note that it might be beneficial to extend VisComplete
to identify commonly used parameters that a user might consider ex-
ploring, but we leave this for future work.

4.3 The Suggestion Interface
In concert with our goal of unobtrusiveness, we provide an intuitive
and efficient interface that enables users to explore the space of pos-
sible completions. Auto-complete interfaces for text generally show
a set of possible completions in a one-dimensional list that is refined
as the user types. For pipelines this task is more difficult because it is
not feasible to show multiple completions at once, as this would result
in visual clutter. The complexity of deriving the completion is also
greater. For this reason, our interface is two-dimensional: the first di-
mension is a list of maximal completions while the second dimension
provides the ability to increase or decrease the extent of the comple-
tion.

Current text completion interfaces defer to the user by showing
completions but allowing the user to continue to type if he does not
wish to use the completions. We strive for similar behavior by auto-
matically showing a completion along with a simple navigation panel
when a completion is triggered. The user can choose to interact with
the completion interface or disregard it completely by continuing to
work, which will cause the completion interface to automatically dis-
appear. The navigation interface contains a set of arrows for selecting
different completions (left and right) and depths of the current com-
pletion (up and down). In addition, the rank of the current completion
is displayed to assist in the navigation and accept and cancel buttons
are provided (see Figure 1(c)). All of these completion actions, along
with the ability to start a new completion with a selected module, are
also available in a menu and as shortcut keys.

The suggested completions appear in the interface as semi-
transparent modules and connections, so that they are easy to distin-
guish from the existing pipeline components. The suggested modules
are also arranged in an intuitive way using a set of simple heuristics
that respect the layout of the current pipeline. The first new suggested
module is always placed near the anchor module. The offset of the
new module from the anchor module is determined by averaging the
direction and distance of each module in the existing pipeline. The
offset for each additional suggested module is calculated by applying
this same rule to the module it is appended to. Branches in the sug-
gested completion are simply offset by a constant factor. These heuris-
tics keep the spacing uniform and can handle upstream or downstream
completions whether pipelines are built top-down or left-right.

5 USE CASES

We envision VisComplete being used in different ways to simplify the
task of pipeline construction. In what follows, we discuss use cases
which consider different types of tasks and different user experience
levels. The types of tasks performed by a user can range from the
very repetitive to the unique. Obviously, if the user performs tasks that
are very similar to those in the database of pipelines, the completions
that are suggested are very full—almost the entire pipeline can be cre-
ated using one or two modules (see Figure 2 for examples). On the
other hand, if the task that is being performed is not often repeated
and nothing similar in the database can be found, VisComplete will
only be able to assist with smaller portions of the pipeline at a time.



Fig. 6: One of the test visualization pipelines applied to a time step of the Tokamak Reactor dataset. VisComplete could have made many
completions that would have reduced the amount of time creating the pipeline. In this case about half of the modules and completions could
have been completed automatically.

This can still be of great help for the user because it will show them
possible directions to proceed in their pipeline construction, albeit at a
smaller scale.

The experience level of users that could take advantage of VisCom-
plete also varies. For a novice user, VisComplete replaces the process
of searching for and tweaking an example that will perform their de-
sired visualization. For example, a user who is new to VTK and desires
to compute an isosurface of a volume might consult documentation
to determine that a “vtkContourFilter” module is necessary and then
search online for an example pipeline using this module. After down-
loading the example, they may be able to manipulate it to produce the
desired visualization. Using VisComplete, this process is simplified—
the user needs only to start the pipeline by adding a “vtkContourFilter”
module and their pipeline will be constructed for them (see Figure 1).
Multiple possible completions can easily be explored and unlike ex-
amples downloaded from the Web, VisComplete can customize the
suggestions by providing completions that more closely reflect a spe-
cific user’s previous or more current work.

For experienced users, VisComplete still offers substantial benefits.
Because experts may not wish to see full pipelines as completions,
the default depth of the completions can be adjusted as a preference
so that only minor modifications are suggested at each step. Thus,
at the smallest completion scale, a user can leverage just the initial
connection completion to automatically connect new modules to their
pipeline. The user could also choose to ignore suggested completions
as they add modules until the pipeline is specific enough to shrink
the number of suggestions. Unlike the novice user who may iterate
through many suggestions at each step, the experienced user will likely
choose to ignore the suggestions until they provide the desired com-
pletion on the first try.

6 EVALUATION

6.1 Data and Validation Process

To evaluate the effectiveness of our completion technique, we used a
set containing 2875 visualization pipelines along with logs of the ac-
tions used to construct each pipeline. These pipelines were constructed
by 30 students during a scientific visualization course.1 Throughout
the semester, the students were assigned five different tasks and carried
them out using the VisTrails system, which captures detailed prove-

1http://www.vistrails.org/index.php/SciVisFall2007

nance of the pipeline design process: the series of the actions a user
followed to create and refine a set of related pipelines [7].

The first four tasks were straightforward and required little exper-
imentation, but the final task was open-ended; users were given a
dataset without any restrictions on the use of available visualization
techniques. As these users learned about various techniques over the
semester, their proficiency in the area of visualization presumably pro-
gressed from a novice level toward the expert level.

To predict the performance gains VisComplete might attain, we
created user models based on the provenance logs captured by Vis-
Trails. User modeling has been used in the HCI community for many
years [4, 5], and we employed a low-level model for our evaluation.
Specifically, we assumed that at each step of the pipeline construction
process, a VisComplete user would either modify the pipeline accord-
ing to the current action from the log or select a completion that adds
a part of the pipeline they would eventually need. We assumed that a
user would examine at most ten completions, and because our inter-
face is two-dimensional, the user could also select a subgraph of any
completion.

Because VisComplete requires a collection of pipelines to derive
suggestions, we divided our dataset into training and test sets. The
training sets were used to construct the path summaries while the test
sets were used with the user models to measure performance.

We note that this model presumes a user’s foreknowledge of the
completed pipeline, and this certainly is not always the case. Still,
we believe this simple model approximates user behavior well enough
to gauge performance. We also assumed a greedy approach in our
model; a user would always take the largest completion that matched
their final pipeline. Note that this might not always yield the best
performance because the quality of the suggestions may improve as
the pipeline is further specified.

6.2 Results
Figure 6 shows one of the test pipelines with the components that Vis-
Complete could have completed highlighted along with its resulting
visualization. To evaluate the situation where a set of users create
pipelines that all tend to follow a similar template, we performed a
leave-one-out test for each task in our dataset. Figure 7 shows that our
suggestion algorithm could have eliminated over 50%, on average, of
the pipeline construction operations for each task. Because Task 1
was more structured than the other tasks, it achieved a higher percent-
age of reduction. Because Task 4 was more open-ended, although the



Fig. 7: Box plot of the percentages of operations that could be com-
pleted per task (higher is better). The statistics were generated for each
user by taking them out of the training data.

Fig. 8: Box plot of the percentages of operations that could be com-
pleted given two types of tasks, novice and expert. The statistics were
generated by evaluating the novice tasks using the expert tasks as train-
ing data (novice) and by evaluating the expert tasks using the novice
tasks as training data (expert).

average percentage is also high, the results show a wider variation (be-
tween 30% and 75%). This indicates that the completion interface can
be faster and more intuitive than manually choosing a template.

Because it is much more likely that our collection will contain
pipelines from a variety of tasks, we also evaluated two cases that ex-
amined the type of knowledge captured by the pipelines. Since Task 5
was more open-ended and completed after the other four tasks, we ex-
pected that most users would be proficient using the tool and closer
to the expert user described in Section 5. We ran the completion re-
sults using Tasks 1 through 4 as the training data (2250 pipelines) and
Task 5 (625 pipelines) as the test data to represent a case where novice
users are helping expert users, but we also ran this test in reverse to
determine if pipelines from expert users can aid beginners. Figure 8
shows that both tests achieved similar results; this implies that the va-
riety of pipelines from the four novice tasks balanced the knowledge
captured in the expert pipelines.

Our testing assumed that users would examine up to ten full com-
pletions before quitting. In reality, it is likely that users would give up
even quicker. To evaluate how many predictions a user might need to
examine before finding the desired completion, we recorded the index
of the chosen completion in our tests. Figure 9 shows that the the cho-
sen completion was almost always among the first four. Note that we
excluded completions that only specified the connection between the
new module and the existing pipeline because these trivial completions
are possible at each prediction index.

Our results show that VisComplete can significantly reduce the
number of operations required during pipeline construction. In ad-
dition, the completion percentages might be higher if our technique
were available to the users because it would likely change user’s work
patterns. For example, a user might select a completion that contains
most of the structure they require plus some extraneous components
and then delete or replace the extra pieces. Such a completion would
almost certainly save the user time but was not captured with our user

Fig. 9: Box plot of the average prediction index that was used for the
completions in Figure 7 (lower is better). These statistics provide a
measure of how many suggestions the user would have to examine
before the correct one was found.

model. Finally, the parameters (e.g., pruning threshold, degree weight-
ing) for the completion algorithms were not tuned. We plan to evaluate
these settings to possibly improve our results.

The completion examples shown in the figures of this paper, with
the exception of Figure 6, used the entire collection of pipelines to
generate predictions. Figure 6 used only the pipelines from Tasks 1–4.

7 DISCUSSION

To our knowledge, VisComplete is the first approach for automatically
suggesting pipeline completions using a database of existing pipelines.
As large volumes of data continue to be generated and stored and as
analyses and visualizations grow in complexity, the creation of new
content by consensus and the ability to learn by example are essential
to enable a broader use of data analysis and visualization tools.

The major difference between our automatic pipeline completion
technique and the related work on creating pipelines by analogy [30]
is that instead of using a single, known sequence of pipeline actions,
our method uses an entire database of pipelines. Thus, instead of com-
pleting a pipeline based on a single example, VisComplete uses many
examples. A second important difference is that instead of predict-
ing a new set of actions, our method currently predicts new structure
regardless of the ordering of the additions. This also means that Vis-
Complete only adds to the structure while analogies will delete from
the structure as well. By incorporating more provenance information,
as in analogies, VisComplete might be able to leverage more informa-
tion about the order in which additions to a pipeline are made. This
could improve the quality of the suggested completions.

We note that there will be situations where data about the types
of completions that should occur are not available. Also, some sug-
gestions might not correspond to the user’s desires. If there are no
completions, VisComplete will not derive any suggestions. If there
are completions that do not help, the user can dismiss them by either
continuing their normal work or by explicitly canceling completion.
Currently we determine the completions in an offline step (by pre-
computing the path summary, Section 3). We could update the path
summary as new pipelines are added to the repository, incorporating
new pipelines as they are created. In addition, we could learn from
user feedback by, for example, allowing users to remove suggestions
that they do not want to see again. The completions could be further
refined to give higher weights to completions that more closely mirror
the current user’s actions, even if they are not the most likely in the
database.

One important aspect of our technique is that it leverages the visual
programming environment available in many visualization systems. In
fact, it would be difficult to offer suggestions without a visual environ-
ment in which to display the structural changes. In addition, the in-
formation for the completions comes from the fact that we have struc-
tural pipelines from previous work. Without an interface to construct



pipeline structures, it would be more difficult to process the data used
to generate completions. However, we should note that turnkey appli-
cations that are based on workflow systems, such as ParaView [18],
may also be able to take advantage of completions in a more limited
way by providing a more intelligent set of default settings for the user
during their explorations.

8 CONCLUSIONS AND FUTURE WORK

We have described VisComplete, a new method for aiding in the de-
sign of visualization pipelines that leverages a database of existing
pipelines. We have demonstrated that suitable pipeline fragments can
be computed from the database and used to complete new pipelines in
real-time. Furthermore, we have shown how these completions can be
presented to the user in an intuitive way that can potentially reduce the
time required to create pipelines. Our results indicate that substantial
effort can be saved using this method for both novice and expert users.

There are several areas of future work that we would like to pursue.
As described above, we would like to update the database of pipelines
incrementally, thus allowing the completions to be refined based on
current information and feedback from the user. We plan to refine the
quality of the results by formally investigating the confidence measure
and its parameters. We would also like to explore suggesting finished
pipelines from the database in addition to the constructed completions
we currently generate. For finished pipelines, we could display not
only the completed pipeline structure but also a thumbnail of the result
from an execution of that pipeline. Finally, we plan to conduct a user
study to further evaluate our technique.
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