

CIDR Perspectives 2009

A Case for A Collaborative Query Management System

Nodira Khoussainova, Magdalena Balazinska, Wolfgang Gatterbauer,
YongChul Kwon, and Dan Suciu

Department of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

{nodira, magda, gatter, yongchul, suciu}@cs.washington.edu

ABSTRACT
Over the past 40 years, database management systems (DBMSs)
have evolved to provide a sophisticated variety of data manage-
ment capabilities. At the same time, tools for managing queries
over the data have remained relatively primitive. One reason for
this is that queries are typically issued through applications. They
are thus debugged once and re-used repeatedly. This mode of inter-
action, however, is changing. As scientists (and others) store and
share increasingly large volumes of data in data centers, they need
the ability to analyze the data by issuing exploratory queries. In this
paper, we argue that, in these new settings, data management sys-
tems must provide powerful query management capabilities, from
query browsing to automatic query recommendations. We first dis-
cuss the requirements for a collaborative query management sys-
tem. We outline an early system architecture and discuss the many
research challenges associated with building such an engine.

1. INTRODUCTION
Modern database management systems (DBMSs) provide so-

phisticated features to assist users in organizing, storing, manag-
ing, and retrieving data in a database. They provide, however, only
limited capabilities for managing the queries that users issue on the
data. These capabilities are limited to query-by-example [28, 37],
graphical tools for composing queries [5, 6], and query logging
aimed at physical tuning [26, 32, 33]. Traditionally, more elab-
orate query management was not necessary because applications
would only issue canned queries over the data (e.g., accounting or
inventory management applications). These queries were devel-
oped once and used repeatedly. Emerging applications in the area
of large-scale scientific data management and industrial data anal-
ysis, however, are challenging this traditional DBMS usage pattern
and, as we argue, could greatly benefit from more advanced query
management tools.

Scientists in areas such as biology, physics, astronomy and
the geosciences collect, store, retrieve, explore and analyze vast
amounts of data. Examples of large-scale scientific databases in-
clude the Sloan Digital Sky Survey (SDSS) [31], the Incorporated
Research Institutions for Seismology (IRIS) [19], and soon the

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/3.0/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2009.
4th Biennial Conference on Innovative Data Systems Research (CIDR)
January 4-7, 2009, Asilomar, California, USA.

Large Synoptic Survey Telescope (LSST) [22]. To give an idea for
the scale of these projects, the LSST is estimated to generate fif-
teen terabytes of raw data per night [22] for a total of five petabytes
per year. Similarly, analysts and engineers in companies such as
Google, Microsoft, Amazon, eBay, and Yahoo! process massive
data logs collected from the large-scale services that these com-
panies provide (e.g., clickstreams, search logs, network flow data,
etc.). They analyze these logs to make informed business decisions
and to improve their services. In both of these new environments,
and in contrast to traditional database settings, users need to exe-
cute continuously changing queries; as the desired analysis on the
data changes over time, so do the queries. Furthermore, the vol-
ume of these data sets pushes toward a usage model where the data
sits in a shared data center and all users execute queries against
this shared data store. Due to the increasing size of data sets, the
cost of running a query has escalated, making the traditional trial-
and-error method for query development too expensive. Executing
queries over the whole data set is still necessary, however, because
executing queries only on a small data sample can be insufficient
for identifying interesting analyses.

In this paper, we argue that these new environments could greatly
benefit from sophisticated query management capabilities. When
users continuously develop new queries, they need support for for-
mulating these queries. More importantly, they should leverage
knowledge about queries that they or others have previously exe-
cuted on the data. Such information can help both in query formu-
lation and in deciding what queries to ask. For example, consider
a scientist who decides to correlate two datasets. If the system
automatically recommends previous queries correlating the same
datasets but authored by another member of the research lab, the
user could either quickly determine that his analysis has already
been done or could leverage the existing query to author his own,
especially if the old query is documented with annotations. In gen-
eral, when many users submit a variety of queries over a shared
database, logging, organizing, and mining these queries can pro-
duce a wealth of information. The role of a query management sys-
tem is to effectively digest and present such information to users.

We propose to build a Collaborative Query Management Sys-
tem (CQMS) targeted at these new, large-scale, shared-data envi-
ronments. A CQMS should enable users to perform simple tasks
such as browse the log of all queries they submitted and document
their queries by annotating them. By doing so, users will be able to
quickly find, edit and re-execute past queries. Even better, the sys-
tem should support sophisticated search capabilities allowing users
to identify queries that operate on specific input data, have desired
properties (e.g. small result set, fast execution time), or produce
specific results. The system should also mine its query log and ac-
tively recommend queries to users, thus, helping them further lever-

CIDR Perspectives 2009

age previously performed analyses. When the data or the schema
changes, the system should also monitor and evaluate the validity
of the queries in its extensive collection, flagging, automatically
repairing, or even removing those queries that have become obso-
lete. Of course, clear access control rules must be set to restrict
knowledge transfer to only group members collaborating with each
other.

Building such a CQMS raises several important technical chal-
lenges. First, managing a collection of queries is more akin to man-
aging an evolving set of source code snippets rather than managing
ordinary data. Queries have elaborate semantics and complex rela-
tionships with each other. The appropriate data model, query lan-
guage, and features for a CQMS must thus be carefully designed to
leverage the sophistication of query objects without overwhelming
the user. Second, the CQMS must be efficient because it must pro-
vide hints and recommendations interactively, as a user types a new
query. Finally, the CQMS should include a client with an intuitive,
easy-to-use interface and effective visualization methods.

In this paper, we first explore the various query management
functions that a CQMS should provide (Section 2). We sketch an
initial, system architecture for a CQMS (Section 3) and discuss the
many research challenges involved in building such a system (Sec-
tion 4). We describe related work in Section 5 and conclude in
Section 6. Overall, as the database community builds new data
management systems for large-scale data repositories [1, 7, 12,
27], we argue that these systems should include advanced query
management capabilities in the form of a CQMS engine.

2. REQUIREMENTS
In this section, we explore the different features that a Collabo-

rative Query Management System should provide to its users. We
categorize these features according to four modes of user interac-
tion. In the default Traditional Interaction Mode, users simply ask
queries over the data with minimal interference from the CQMS. In
the Search and Browse Interaction Mode, users search for queries
or browse through a set of queries. In the more advanced Assisted
Interaction Mode, the CQMS interactively assists the user in com-
posing a query. Finally, in the Administrative Interaction Mode,
users and administrators can perform various maintenance tasks on
stored queries. We now present each mode of interaction, along
with the required features in more detail. We discuss resulting re-
search challenges later in Section 4.

2.1 Traditional Interaction
In the Traditional Interaction Mode, the user submits standard

queries over the data without support from the CQMS. At the same
time, in the background, the CQMS logs and pre-processes these
queries for further use. It is essential that the CQMS does not im-
pose significant runtime overhead.

In addition, the CQMS should support and occasionally even re-
quest query annotations in this mode, especially for queries that
are difficult to re-use without proper documentation (e.g. queries
with more than a specified number of tables, or queries that include
nesting). Users can add annotations to whole queries or query frag-
ments. For example, a user could explain the choice for using an
outer join in a query, or describe their information goal for the par-
ticular query. In general, through annotations, users can capture
semantic information about their queries.

2.2 Search and Browse Interaction
One essential query management feature is the ability for users

to search for and browse through past queries. We refer to this
mode of interaction as the Search and Browse Interaction Mode.

Query feature relations

Queries(qid,qText)
DataSources(qid,relName)
Attributes(qid,attrName,relName)
Predicates(qid,attrName,relName,op,const)

Meta-query

SELECT Q.qid, Q.qText
FROM Queries Q, Attributes A1, Attributes A2
WHERE Q.qid = A1.qid AND Q.qid = A2.qid

AND A1.attrName = ’salinity’
AND A1.relName = ’WaterSalinity’
AND A2.attrName = ’temp’
AND A2.relName = ’WaterTemp’

Figure 1: Example meta-query for “find all queries that correlate wa-
ter salinity with water temperature data”.

Search. A meta-query is a query that searches for queries. Such
queries enable users to locate past queries matching specific search
conditions. The resulting queries can then be learned from, re-
executed, or used as a starting point to compose a new query. A
CQMS should offer a range of meta-querying techniques. At min-
imum, it should provide substring matching and keyword search,
like existing systems [29, 33]. Beyond this, we propose three other
paradigms for meta-querying that a CQMS should offer.

Unlike keyword and substring search, query-by-parse-tree al-
lows users to formulate conditions on the structure of the query.
With this technique, the user can precisely specify conditions on
the joined relations, selections, projections, nested subqueries, etc.
Although powerful in searching for queries based on the query text
only, this technique does not consider the query output, the query
execution time, or other important information about the query as
a whole.

The second technique, query-by-data, enables users to set condi-
tions on the query output. The user specifies that the query output
should include or exclude specific tuples. For example, the user
may remember that there are some properties that distinguish Lake
Washington from Lake Union. So they would request “all queries
whose output includes Lake Washington but not Lake Union”, and
see that all matching queries specify ‘temp < 18’. This problem is
related to machine learning; the user specifies positive and negative
training examples (tuples), and the system finds classifiers (past
queries) that separate these examples. Supporting query-by-data
efficiently is a challenging problem.

Query-by-feature involves extracting and storing specific query
features in new relations. Features can be syntactic (e.g. relations
in the FROM clause, predicates in the WHERE clause, attributes
in the SELECT clause), metadata (e.g. author, execution time) or
semantic (e.g. cardinality, samples from output). Users are able
to issue SQL meta-queries that search for queries whose features
match specific conditions. For example, “find me all queries that
correlate water salinity with water temperature data” can be ex-
pressed as shown in Figure 1. Since such statements may be awk-
ward to write, the CQMS could automatically generate these state-
ments from partially written queries (at least for syntactic features).
For example, if a user types: SELECT FROM WaterSalinity,

WaterTemperature, the system can automatically issue the query
shown in Figure 1. Due to its efficient storage in relations and flex-
ibility in which features to capture, query-by-features may offer a
good trade-off between expressibility and efficiency.

CIDR Perspectives 2009

WaterSalinity ‘temp < 22’

‘temp < 10’

‘temp < 18’

‘S.loc_x = …’ ‘S.loc_y = …’

SELECT *
FROM WaterSalinity S, WaterTemp T, CityLocations L
WHERE T.temp < 18

2:30 2:31 2:32 2:33 2:34 2:35 time

Figure 2: Query session window of the query browser.

Browse. After finding the desired queries, the CQMS must allow
the user to browse the results. Many systems that provide query
logging [11, 15, 26, 32, 33] also allow the user to view the log
in a table or a file. However, to make the query log suitable for
browsing, the CQMS needs to present it in a comprehensible, sum-
marized format. One possible method is to present query sessions
instead of individual queries. A query session is a series of (of-
ten similar) queries with the same information goal in mind. Such
query sessions should be automatically identified, highlighted, and
visually summarized. For example, Figure 2 displays one possible
visualization of a query session; each node represents a query in the
session, and the edges indicate the difference between consecutive
queries. In this figure, left to right, the user has added the ‘Water-
Salinity’ relation to the FROM clause, tried different conditions on
‘temp’, picked ‘temp < 18’, and added two more predicates to the
WHERE clause. Unlike a listing of the six full SQL queries, this vi-
sualization allows the user to quickly understand and navigate the
query session. Subject to access control policies, users would also
benefit from browsing queries submitted by other users. In this
case, an effective query log visualization tool becomes even more
critical to avoid overwhelming the user.

Supporting such browse and search functionality raises impor-
tant research challenges related to query representation and model-
ing, efficient query-log processing (clustering, mining, etc.), main-
tenance in face of database updates, ranking (e.g., by similarity or
popularity score), interface design, and query annotations. We dis-
cuss some of these challenges further in Section 4.

2.3 Assisted Interaction
Composing SQL queries can be a difficult task even for techni-

cally savvy users such as scientists or analysts. Furthermore, even
if a user is fluent in composing queries, she can benefit from hints
regarding what queries to ask. Thus, a key role of the CQMS is
to assist users in query composition. For this, we define the As-
sisted Interaction Mode where the CQMS monitors the user as she
types queries and provides suggestions for completing and correct-
ing the queries. Figure 3 shows an example of assisted interaction
where the system suggests several completions for the query being
composed. It also shows similar queries at the bottom.

In its simplest form, query completion consists in providing users
with possible completions for relation and attribute names as the
user types a query. Although this simple capability can already
be helpful, query completion can be pushed much further. In par-
ticular, the system can make context-aware suggestions. For ex-
ample, assume that the most popular table to include in the FROM
clause is CityLocations. However, for queries that also in-
clude WaterSalinity, the most popular is WaterTemp. Thus,
if the user has already included WaterSalinity, the system
should suggest WaterTemp over CityLocations. The CQMS

SELECT *
FROM WaterSalinity S, WaterTemp T, CityLocations L
WHERE T.temp < 18 AND

S.loc_x = T.loc_x AND
S.loc_y = T.loc_y AND
L.city IN (

SeattleLakesQueryQuery1

Completions

Comparisons

Corrections

Suggest:

Submit

Similar Queries

SELECT City from Cities WHERE State = ‘WA’

SELECT City from Cities WHERE Pop > 10000

SELECT City from Cities WHERE State = ‘MI’

Annotate...

[100%] |select * from WaterSalinity, … | none |find temp and salinity of

[98%] |select temp from WaterTemp… | -1 col |find temps of seattle lak

[75%] |select temp from watertemp… | -1 col, -1 pred|find temps of michigan l

Score | Query | Diff | Annotations _

Figure 3: Query composition in the assisted interaction mode.

could similarly suggest predicates in the WHERE clause of a query
and even complete subclauses of the query. This capability requires
efficiently mining the query log for association rules. It also raises
the important challenge of when and how to present the sugges-
tions. The CQMS must not overwhelm the user!

The second feature we envision for the Assisted Interaction
Mode is automated query correction. Like a spell checker, while
a user types a query, the CQMS suggests corrections to relation
and attribute names but also changes to entire query clauses. For
instance, if a predicate causes a query to return the empty set, the
CQMS could suggest similar, previously issued predicates that re-
turn a non-empty set for the query. The challenge lies in defining
what constitutes an error and what corrections are useful to display.

Along similar lines, a CQMS could also perform complete query
recommendations, showing logged queries similar to those the user
recently issued. Query similarity could be defined in terms of query
parse trees, features, or output data. An interesting question is how
to construct ranking functions that combine similarity measures to-
gether and with other desired properties (e.g. high popularity, effi-
cient runtime, small result cardinality, etc). Overall, we posit that
such functionality could be especially useful when a user first ex-
amines a new dataset and the system guides them from their rough
query attempts toward similar popular queries asked by other users.

Finally, new users often suffer from a steep learning curve when
trying to articulate queries. In such a case, a tutorial or step-by-step
guided instructions would greatly reduce the start up cost. How-
ever, maintaining up-to-date documentation is time consuming. By
analyzing the set of all queries and the evolution of query sessions,
we hypothesize that a CQMS may be able to automatically produce
a tutorial on the new data set or new analysis task, e.g. the system
could introduce each relation and its schema by showing the user
the most popular queries that include the relation.

2.4 Administrative Interaction
Similar to data management, query management will require a

set of administrative capabilities. Users will need the ability to
delete old queries, define access control rules on their queries (e.g.
sharing them only with members of the same research group), etc.
We call this the User Administrative Interaction Mode.

Furthermore, the system administrator will need to manage the
query log, give preference to ranking functions, exclude irrelevant
features from the similarity functions, adjust tunable parameters
such as the sample size for the query-by-data approach, mark or
delete obsolete queries, run offline processes to compute query ses-
sions, query clusters, etc. We call this the System Administrative
Interaction Mode. Similarly to automatic physical database tun-
ing [8], the CQMS should provide automatic query maintenance

CIDR Perspectives 2009

Client

DBMS Query Storage

Query
Profiler

Meta-query
Executor CQMS

VERSION: 15

Traditional Assisted Search &
Browse Administrative

Meta-Query SQL

Query
Maintenance

Query
Miner

Figure 4: QueryManager system architecture.

when possible. For example, the CQMS could automatically flag
queries that have become corrupted due to schema changes

3. SYSTEM ARCHITECTURE
In this section, we sketch a high-level design for a CQMS as

shown in Figure 4. We adopt the standard client-server architec-
ture. The CQMS client provides the four interaction modes that
we outlined in Section 2 and communicates with the CQMS server
through both standard SQL queries and meta-queries. The CQMS
server sits on top of a standard DBMS and comprises four compo-
nents.

Two of the CQMS components, the Query Profiler and the Meta-
Query Executor run online: they receive inputs from the CQMS
client and return results while the client waits. They must thus
perform all their operations with low latency. The Query Profiler
receives standard SQL queries as input and forwards them to the
DBMS. Before doing so, however, it logs the queries in the Query
Storage. Most modern DBMSs already have their own query profil-
ing systems for performance tuning [3, 10, 29]. The CQMS Query
Profiler, however, performs more sophisticated pre-processing of
the queries. For example, it extracts and stores query features.
It also logs statistics about the query execution and samples from
its output. The Meta-query Executor handles all queries over the
Query Storage. These queries are issued by the CQMS client
during Search and Browse and Assisted Interaction modes. For
Assisted Interaction modes, meta-queries may include k-nearest
neighbors (kNN) queries. The Meta-query Executor also handles
all administrative requests such as changing access control settings.

The remaining two CQMS components, the Query Miner and
Query Maintenance, run in the background. The Query Miner ana-
lyzes the query storage. It performs tasks such as clustering queries
based on similarity, association-rule mining, etc. Its goal is to ex-
tract useful information from the query log. In order to maintain
all information up-to-date, it runs periodically. The Query Main-
tenance component performs automatic maintenance of the query
log. Changes in the database schema or data distribution often
invalidate old queries, statistics, and analysis results. The Query
Maintenance component keeps the Query Storage up-to-date by
flagging outdated queries and updating query statistics. The Query
Maintenance can also perform physical tunings of the Query Stor-
age to improve performance of meta-queries.

Next, we discuss the research challenges associated with these
components.

4. RESEARCH CHALLENGES
Building a CQMS raises several important challenges. In this

section, we discuss some of the challenges associated with each of
the four core CQMS components and the CQMS client.

4.1 Query Profiler
The two fundamental challenges related to the Query Profiler are

what information to capture in what format (Data Model and Query
Storage) and how to achieve this efficiently (Profiling Strategy).

Data Model and Query Storage. A query is the primary data
type in a CQMS. Queries are complex objects with elaborate struc-
tures and semantics. The data model for queries should thus effec-
tively capture and expose these advanced query properties.

The simplest data model is to leave queries as raw text. String
search is then immediately available if the underlying storage com-
ponent supports it. With this model, however, it is difficult for users
to express complex meta-queries that rely on query structure. This
model also limits or at least complicates the query mining process.

At the other extreme, queries could be represented and stored
as canonicalized parse trees using, for example, XML. The Meta-
query Executor could then be an XQuery engine, thus allowing
users to formulate arbitrarily complex XQuery meta-queries. The
Query Miner would also benefit from this information-rich repre-
sentation. However, this model leads to complex meta-queries.

An alternate data model is to represent and store queries using
both their raw text and a set of pre-defined features (e.g., names of
joined relations, selection and group-by predicates, and projected
columns). The extracted features could be shredded and stored in
a set of relations. In contrast to using XML, this model simpli-
fies the Query Storage and Meta-Query Executor components and
offers opportunities for even more efficient indexing and compres-
sion. The above features capture only syntactic query properties.
However, runtime query properties can also serve for query man-
agement. Several common runtime features, including result car-
dinality, execution time, and the query execution plan are already
incorporated in existing query profilers. In a CQMS, we envision
that the system also captures the query result. This semantic query
feature captures information about the intent of the query. It en-
ables comparing queries as black-boxes.

Finally, in addition to modeling a query, a CQMS must also
model query sessions as discussed in Section 2. A query log for
a user then takes the form of a tree of query sessions where ver-
tices correspond to individual queries, but queries are labeled with
the unique ID of the session they belong to. Edges represent rela-
tions between queries as shown in Figure 2. Examples of relations
between queries include temporal relations, modification relations
and investigation relations (where the latter query investigates why
certain tuples are included in the first query’s output). The query
log can be stored as a standard normalized edge relation, i.e. a pair
of query identifiers and an edge type.

Profiling Strategy. The Query Profiler should not hinder ordi-
nary data processing. This raises several system design questions.

Profiling queries: If queries are modeled as raw text or as XML
parse trees, the profiling process is straightforward. Its overhead
can be almost completely removed by profiling queries during the
normal query-parse phase of the DBMS query execution (although
this would tie the CQMS more closely with the underlying DBMS).
Even without this optimization, the overhead still remains small. In
contrast, if the profiler needs to extract a variety of query features,
the overhead depends on the selected features and extraction algo-
rithms. Most syntactic features should be easy to log, but if the
system needs to do a variety of additional lookups, such as logging
the differences with the previous query in a session, the overhead
may quickly grow. Such additional tasks are thus best left to the
Query Miner, even if this imposes some latency in when the data
becomes available for meta-querying.

Profiling query results: Since it is usually infeasible to log the
whole output of a query, we must find techniques to summarize

CIDR Perspectives 2009

the output succinctly. This problem is closely related to selectivity
estimation [16] and standard approaches exist including building
histograms or sampling. An interesting additional option is to ad-
just the maximum size allowed for the output summary depending
on the query execution time. For example, if a query takes two
hours to complete and outputs ten rows, then the system should
store the whole output. However, if a query takes only two seconds
and outputs two million rows, there is no need to store the output.

4.2 Meta-Query Executor
As discussed in Section 2, a CQMS could support many types of

meta-queries (query-by-parse-tree, query-by-features, and query-
by-data). A key question is what query language to use for these
meta-queries. Are existing languages sufficient to express them?
SQL is a viable option when queries are represented as raw text
or as a set of features. XQuery is possible for the parse-tree
model. However, in both cases, the meta-queries can quickly be-
come complex. Users may need assistance in authoring the meta-
queries themselves! Approaches for addressing this problem in-
clude either creating a simpler language for meta-queries or pro-
viding a tool in the CQMS client that will generate meta-queries
from more intuitive user interactions (e.g. from a partly specified
SQL query). Both approaches can lead to interesting research prob-
lems, although the latter technique is likely superior as it maintains
the power of existing languages while providing good support for
users.

Independent of query language and data model, we expect four
major classes of meta-queries: keyword meta-queries, complex
meta-queries explicitly stating conditions on query features or
structure, meta-queries with conditions on query outputs, and kNN
queries. The first two classes of queries should be straightforward
to support once the query data model, meta-query language, and
storage layer are designed. The latter two types of queries, how-
ever, are significantly more challenging to provide. The first chal-
lenge lies in the meta-query semantics, i.e. what it means for two
queries or the output of two queries to be similar. The second chal-
lenge lies in meta-query performance. Meta-querying must be in-
teractive, which can be challenging depending on the distance func-
tions chosen for queries and their outputs.

4.3 Query Mining
The CQMS Query Storage can grow considerably over time.

Mining this archive can benefit all non-traditional interaction
modes. There are various types of query analysis possible. Due
to space constraints, we discuss only two prominent ones.

Clustering: By clustering queries, a CQMS can not only save
storage space (through better compression of similar queries) but
can also provide more sophisticated query management capabili-
ties. For example, the CQMS can better deduplicate meta-query
results or at least group results into sets of similar queries. It can
also provide better query recommendations and similarity search-
ing. The idea of query clustering has been around for years [4, 17,
23]. However, previous tools were not designed to help database
users but rather database administrators or query optimizers. Sim-
ilarly, if the CQMS clusters entire query sessions, it can provide
better services. For example, a meta-query could be restricted to
return only results from similar query sessions, or query recom-
mendations can be limited to queries from users who have similar
query session patterns as the current user.

Association Rules: By learning association rules [2], which cap-
ture relationships between values in a database, a CQMS could pro-
vide more advanced support for query composition. For example,
by mining common edit patterns, the CQMS could provide better

completion or correction suggestions. Similarly, by mining com-
mon query evolution patterns and correlating them with query run-
time features, a CQMS could automatically generate a tutorial for
new users demonstrating common mistakes and good practices.

Challenges in Mining. First, the definition of similarity between
queries should be reconsidered from the perspective of users and
query management tasks. To be usable, the system needs to go be-
yond string similarity. Better options include parse tree similarity
(perhaps after removing the constants from the tree), or looking at
similarities between query features. Second, more advanced multi-
relational mining [14, 36] and graph mining [9] could produce use-
ful information since queries and sessions form a graph and can
be spread across multiple relations. However, such advanced tech-
niques could impose a greater runtime cost. Finally, incremental
mining algorithms and, in general, incremental maintenance will
likely be necessary considering the possibly rapid growth of the
query log in a large-scale shared database.

4.4 Query Maintenance
The Query Maintenance component strives to maintain all infor-

mation in the Query Storage up-to-date. In this section, we dis-
cuss challenges caused by schema evolution and data distribution
changes, as well as the challenges of measuring and maintaining
query quality.

Queries logged in the Query Storage operate on an underlying
large database whose schema can change. Schema evolution can
cause some of the stored queries to stop working. The CQMS
should be able to efficiently identify affected queries and handle
them appropriately. Identifying affected queries can be imple-
mented by comparing the timestamp of a query with that of the last
schema modification on any input relation. Handling potentially in-
valid queries is more challenging. A simple option is to drop such
queries from the storage, but this approach may drop significant
numbers of queries. Another option is to systematically repair the
queries by applying appropriate changes, but how to perform such
repairs automatically is an open question.

Significant changes in data distribution may invalidate runtime
query features discussed in Section 4.1. A naı̈ve and overly expen-
sive solution is to rerun all queries periodically to renew their statis-
tics. A better approach is to re-execute queries only when there is
reason to believe their statistics have significantly changed. This
solution may prove to be efficient if there is an accurate method for
detecting such changes. The system could also update the statistics
more frequently for popular or important queries.

In addition, the system must maintain a measure of the query
quality because the system is most useful if it can quickly and accu-
rately provide users with queries that are not only relevant but also
of high-quality. The definition of high-quality may differ across
various applications. For example, quality can be defined in terms
of query efficiency, query simplicity, source tables’ quality, etc.
Measuring query quality is thus a difficult but important task.

4.5 CQMS Client
We envision the Assisted and the Search and Browse interactions

to become the default interaction modes for scientists, industry ana-
lysts, and other users working closely with large-scale, shared data
sets, especially if they are new to databases. The challenge for
the CQMS client is to make these modes of interaction intuitive
to use. For this, we need new interaction and visualization tech-
niques, which we intend to adapt from results in software engineer-
ing and human-computer interaction (HCI) research. In particular,
we envision the CQMS client to take the appearance of a modern,
integrated development environment, such as Eclipse [34].

CIDR Perspectives 2009

A mixed-initiative interface is one that offers both automated
reasoning and the ability of direct manipulation to its users. The
CQMS client is an example of such an interface. Therefore, HCI
research on mixed-initiative interfaces [18] can guide us in design-
ing a simple and intuitive interface for the CQMS client.

Our initial ideas for query completion and correction come from
existing tools. For example, we propose to initially use drop-down
menus, a standard technique from search interfaces and code ed-
itors, for auto-complete suggestions. For corrections, we borrow
from spell checkers: indicate corrections by coloring the affected
text and show a pop-up menu with details of the suggested correc-
tion when the user hovers over the text. Visualizing the difference
between a query and its recommended queries is difficult because
the differences may not be apparent in the query text. As a first
attempt, we propose a separate sub-window to show the additional
information such as the semantic similarity, popularity, date of last
execution, etc. The novel challenge for the client interaction is the
presence of possible completions and corrections at any point in the
query and at different levels of granularity (e.g. the current token,
the current predicate, or the current clause). Clearly, if not designed
well, the query completion tool can be a painful work companion.
Its design, implementation, and evaluation thus requires real HCI
expertise.

Finally, an important aspect of query browsing is that a user
should be able to quickly identify key differences and dependen-
cies between queries. Such differences or dependencies can occur
on various axes such as differences in data sources, selection pred-
icates, annotations, popularity, execution time, etc. Thus the key
challenge for the query browser is to effectively present all this in-
formation in a comprehensible and navigable visualization.

5. RELATED WORK
Today’s DBMSs provide limited query management capabilities.

The closest to our proposal are the DB2 Query Management Fa-
cility [11], Query Patroller [29] and EMS SQL Management Stu-
dio for Oracle [15]. These tools support graphically composing
queries, logging queries, sharing query repositories, and viewing
the query plan of stored queries. Query Patroller also analyzes
queries before execution to ensure good performance. There are
also systems that support only graphical composition [5, 6] and
those that support query logging [26, 32, 33] but primarily for phys-
ical database tuning. Also related are tools that allow ‘query by ex-
ample’, where the user sets the attributes of a sample object, which
is then converted into a SQL query [28, 37]. However, none of these
tools allow users to annotate queries or perform advanced searches
over stored queries.

Many relational mining techniques [13] are directly applicable
for query mining, especially multi-relational mining [14, 36] since
queries are likely to be stored in multiple database relations. Re-
lated also is the work on association rule mining [2].

Query clustering is often used in database performance tuning,
e.g. Aouiche et al. [4, 23] cluster queries to reduce the search space
for the materialized view selection problem, and Ghosh et al. [17]
use clustering for amortizing the cost of query optimization.

Work that may be adapted for query similarity includes the Con-
text Distance Measure framework [21] designed for computing
the distance between two objects defined across multiple relations.
Also relevant is the work in Kim’s thesis [20], which explores the
structure of code change. In this work, the author explores ways
of measuring the similarity between two programs’ source codes.
Kim also proposes a method for succinctly describing the differ-
ence between two source codes which could be helpful for tersely
describing the differences between queries in a query session.

Assisting programming tasks has been a long issue in software
engineering research. Recent approaches mine open-source soft-
ware code repositories to extract reusable patterns and provide
context-sensitive assistance like completion and recommendation
within the development environment [24, 25, 30, 35]. The goal of
such research closely matches that of a CQMS: help users write
“correct” queries easily. A CQMS, in fact, aids new assistance tool
development because the developer no longer has to consider assis-
tance logic and data management. They simply use meta-queries.

6. CONCLUSION
New environments are emerging where large numbers of users

need to develop and run complex queries over a very large, shared
data repository. Examples include large scientific databases and
Web-related data. These users are not SQL savvy, yet they need to
perform complex analysis on the data and are further constrained
by the high cost of running and testing their queries, often on a
shared server cluster. We have argued for the need of a Collabora-
tive Query Management System that logs and organizes all queries,
and assists users in formulating new ones. Such a system, however,
poses several research challenges, which we have discussed in the
paper. Our goal is to address these challenges, build a CQMS, and
test it in a scientific database environment.

7. ACKNOWLEDGMENTS
This work was partially supported by NSF Grants IIS-0713123,

IIS-0454425, IIS-0627585 and IIS-0428168. The authors would
also like to thank the reviewers for their helpful feedback.

8. REFERENCES
[1] SciDB. http://confluence.slac.stanford.edu/

display/XLDB/SciDB.
[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association

rules between sets of items in large databases. In Proc.
SIGMOD, pages 207–216. ACM, 1993.

[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe,
V. Narasayya, and M. Syamala. Database tuning advisor for
Microsoft SQL Server 2005: demo. In Proc. SIGMOD,
pages 930–932. ACM, 2005.

[4] K. Aouiche, P.-E. Jouve, and J. Darmont. Clustering-based
materialized view selection in data warehouses. In
ADBIS’06, volume 4152 of LNCS, pages 81–95, 2006.

[5] BaseNow. Database front-end applications. About SQL
Query Builder. http://www.basenow.com/help/About_
SQL_Query_Builder.asp.

[6] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual
query systems for databases: A survey. Journal of Visual
Languages & Computing, 8(2):215–260, 1997.

[7] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: Easy and efficient parallel
processing of massive data sets. In Proc. VLDB, 2008.

[8] S. Chaudhuri and V. Narasayya. Self-tuning database
systems: a decade of progress. In Proc. VLDB, pages 3–14,
2007.

[9] D. J. Cook and L. B. Holder. Mining Graph Data. John
Wiley & Sons, 2006.

[10] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and
M. Ziauddin. Automatic SQL tuning in Oracle 10g. In Proc.
VLDB, pages 1098–1109, 2004.

[11] DB2 Query Management Facility.
http://www.ibm.com/software/data/qmf/.

CIDR Perspectives 2009

[12] D. DeWitt, E. Robinson, S. Shankar, E. Paulson,
J. Naughton, A. Krioukov, and J. Royalty. Clustera: An
integrated computation and data management system. In
Proc. VLDB, 2008.

[13] S. Džeroski. Relational Data Mining. Springer-Verlag New
York, Inc., 2001.

[14] S. Džeroski. Multi-relational data mining: an introduction.
SIGKDD Explor. Newsl., 5(1):1–16, 2003.

[15] EMS SQL Management Studio for Oracle. http:
//www.sqlmanager.net/en/products/studio/oracle.

[16] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation
using probabilistic models. SIGMOD Rec., 30(2):461–472,
2001.

[17] A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa. Plan
selection based on query clustering. In Proc. VLDB, pages
179–190, 2002.

[18] E. Horvitz. Principles of mixed-initiative user interfaces. In
Proc. SIGCHI, pages 159–166. ACM, 1999.

[19] Incorporated Research Institutions for Seismology.
http://www.iris.edu.

[20] M. Kim. Analyzing and Inferring the Structure of Code
Changes. PhD thesis, 2008. Adviser: David Notkin.

[21] Y. Kwon, W. Y. Lee, M. Balazinska, and G. Xu. Clustering
events on streams using complex context information. In
Mining Complex Data, ICDM 2008 Fourth International
Workshop, 2008. to appear.

[22] Large Synoptic Survey Telescope. http://www.lsst.org/.
[23] H. Mahboubi, K. Aouiche, and J. Darmont. Materialized

view selection by query clustering in XML data warehouses.
CoRR, abs/0809.1963, 2008.

[24] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid
mining: helping to navigate the API jungle. SIGPLAN
Notice, 40(6):48–61, 2005.

[25] F. McCarey, M. O. Cinneide, and N. Kushmerick. A
recommender agent for software libraries: An evaluation of
memory-based and model-based collaborative filtering. In
Proc. IAT, pages 154–162. IEEE, 2006.

[26] Microsoft TechNet. SQL Server TechCenter: Configuring the
analysis services query log.
http://www.microsoft.com/technet/prodtechnol/

sql/2005/technologies/config_ssas_querylog.mspx.
[27] C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig Latin: a not-so-foreign language for data
processing. In Proc. SIGMOD, pages 1099–1110. ACM,
2008.

[28] Reading objects using query by example. Oracle TopLink
developer’s guide 10g release 3 (10.1.3).
http://www.oracle.com/technology/products/ias/

toplink/doc/1013/main/_html/qrybas002.htm.
[29] Query Patroller. http:

//www.ibm.com/software/data/db2/querypatroller/.
[30] N. Sahavechaphan and K. Claypool. XSnippet: mining for

sample code. SIGPLAN Notice, 41(10):413–430, 2006.
[31] Sloan Digital Sky Survey. http://www.sdss.org/.
[32] Siebel business analytics server administration guide:

Administering the query log. http:
//download.oracle.com/docs/cd/E12103_01/books/

admintool/admintool_AdministerQuery14.html.
[33] Teradata Utility Pack.

http://www.teradata.com/t/page/94310/.
[34] The Eclipse Foundation. Eclipse.

http://www.eclipse.org/.
[35] S. Thummalapenta and T. Xie. Parseweb: a programmer

assistant for reusing open source code on the web. In Proc. of
ASE, pages 204–213. ACM, 2007.

[36] X. Yin. Scalable mining and link analysis across multiple
database relations. PhD thesis, 2007. Adviser: Jiawei Han.

[37] M. M. Zloof. Query-by-example: the invocation and
definition of tables and forms. In Proc. VLDB, pages 1–24,
1975.

