
Constant-Time Query Processing
Vijayshankar Raman#1, Garret Swart#2, Lin Qiao#3, Frederick Reiss#4,

Vijay Dialani#5, Donald Kossmann∗6, Inderpal Narang#7, Richard Sidle#8

#IBM Almaden Research Center, San Jose, CA, USA
{ 1ravijay@us, 3lsqiao@us, 4frreiss@us, 7inarang@us, 8rsidle@almaden}.ibm.com

2garret@swart.org

∗ETH Zurich, Zurich, Switzerland
6donald.kossmann@inf.ethz.ch

Abstract— Query performance in current systems depends
significantly on tuning: how well the query matches the available
indexes, materialized views etc. Even in a well tuned system, there
are always some queries that take much longer than others. This
frustrates users who increasingly want consistent response times
to ad hoc queries.

We argue that query processors should instead aim for
constant response times for all queries, with no assumption about
tuning. We present Blink, our first attempt at this goal, that
runs every query as a table scan over a fully denormalized
database, with hash group-by done along the way. To make
this scan efficient, Blink uses a novel compression scheme that
horizontally partitions tuples by frequency, thereby compressing
skewed data almost down to entropy, even while producing long
runs of fixed-length, easily-parseable values. We also present
a scheme for evaluating a conjunction of range and equality
predicates in SIMD fashion over compressed tuples, and different
schemes for efficient hash-based aggregation within the L2 cache.
A experimental study with a suite of arbitrary single block SQL
queries over a TPCH-like schema suggests that constant-time
queries can be efficient.

I. INTRODUCTION

Traditionally, query processors have been architected to
solve the following problem: Given a specific workload,
and a specific hardware configuration, choose the right data
structures (indexes, materialized views, ...) and the right query
plans to run the workload as fast as possible. Since the days
of System R and INGRES, numerous sophisticated query
processing algorithms and data structures have been developed
towards this goal.

However, workloads are becoming less predictable, and
more and more decision support is done interactively on
the database itself. Hardware costs are also becoming less
significant, when compared to the human cost of tuning the
system. In this environment, the mettle of the DBMS lies not in
how well it does on the queries for which it has been tuned,
or even on the “average” query – but rather in how well it
copes with the bad queries. The new standard, being driven
by user familiarity with search engines, is to run each query in
a constant time bound. We refer to this goal as constant-time
query processing.

Since queries can vary widely, meeting this goal means
assigning enough resources to each query so that it can meet
its deadline. This puts a premium on query plans that have
predictable cost, so we can estimate the needed resources, and

dynamically scalable, so that additional resources can be used
to reduce the response time.

A simple way to generate predictable query plans is to avoid
structures that benefit particular queries: no secondary indexes,
no materialized views, and using only workload-independent
horizontal partitioning schemes to stripe data across nodes.
If we denormalize the data as part of loading it, then many
queries can be run as a table scan. While table scans generally
access more tuples than index based plans, they have more
consistent run times and are easier to parallelize.

In this paper we present Blink, our first shot at this goal.
Blink is built around around highly efficient scans over de-
normalized tables. Scans can be expensive both in terms of
I/O – more data has to be read into the processor, and in
terms of CPU – more tuples have to be processed. Blink uses
a novel compression technique that compresses tightly while
being efficient to parse, a novel technique for SIMD predicate
evaluation, and cache aware hash grouping algorithms. We
preview these next.

Frequency Partitioning
Compression is one way of overcoming the I/O and memory
bottleneck that scan is prone to. Our previous work on the
compression of relations [12] coded values into variable length
entropy codes, using shorter codes for more frequent values.
Variable length fields force the scan operation to serially
parse each field in the tuple, significant for tables with many
fields. Blink avoids this cost by Frequency Partitioning, a new
compression technique that compresses close to entropy while
partitioning the data into long runs of fixed format tuples.

SIMD predicate evaluation
After parsing comes predicate evaluation. Blink uses order-
preserving codes, so equality and range predicates are applied
by coding the query rather than decoding each value. But
even this is expensive if conjunctive predicates are evaluated
in a typical loop: extract each field – apply predicates on
that field – if tuple passes, go to next predicate, because the
unpredictable branches and data-dependent shift instructions
slow down modern processors. These costs are typically neg-
ligible in traditional warehouses where indexes provide data
reduction, but are very important for a scan.

In Blink, we evaluate conjunctive equality and range pred-

978-1-4244-1837-4/08/$25.00 2008 IEEE ICDE 200860

icates in parallel using a constant number of instructions,
eliminating the loop and branches.

Efficient Hash Grouping
The final part of tuple processing is updating the running
aggregates for the tuples that meet the predicates. This can
become the dominant cost if the hash table does not fit in
L2 cache or if the hash table operations involve unpredicted
branches, as with traditional linear probing. In Blink we
use two kinds of collision-free hash tables: one using the
compression code itself as hash, and the other using a minimal
perfect hash function. We adaptively choose the kind of hash
table within each frequency partition depending on its number
of distinct groups and the expected size of the hash table, so
as to minimize cache misses while grouping and aggregating.

Overview: The rest of this paper is structured as follows:
Section II gives some background on our compression scheme
and an overview of related work. Section III describes fre-
quency partitioning and compression in Blink. Section IV
describes the run time, including predicate evaluation and hash
aggregation. We present performance results in Section V, and
conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Blink is not the first system that relies heavily on scans as
opposed to indexes. The Netezza appliance, as well as many
“column stores” (e.g., Monet DB [17], C-Store [14], and SAP’s
T-Rex engine [8]) mainly do scans. Column stores lay out
tuples in column-major order, and run queries by scanning
through each column to find lists of row-ids that match
predicates on that column, intersecting the lists to evaluate
conjunctions, and finally fetching other columns needed for
aggregation or grouping.

Blink, on the other hand, is a row store. Column stores
and row stores each have their merits: while the former scan
less data on a per-query basis, the latter are simpler to update
and save the cost to fetch columns for aggregation. Studying
these tradeoffs is beyond the scope of this paper: our goal is
to improve the performance of row stores, which are used in
almost all widely deployed DBMSs today.

The use of table scans in a row store introduces particular
challenges, such as SIMD predicate evaluation on non-byte
aligned fields. We describe techniques for applying conjunctive
equality and range predicates in SIMD fashion, going beyond
previous work on SIMD evaluation of equality predicates (e.g.,
as part of Monet DB).

Denormalizing the database schema and answering queries
as table scans has been studied extensively before, particularly
in the context of universal relations [7].

The idea to compress databases to improve query speeds
has been explored previously in the context of both column
stores and row stores. Most of that previous work, however,
relies heavily on fixed length codes; e.g., Sybase IQ [9] and
C-Store [14]. Fixed length codes are easier to implement, and
leverage the homogeneity of the data layout in order to do
fast array-based operations. But, fixed-length codes achieve

lower compression rates than variable-length codes. In order
to provide more flexibility for compression, Monet DB [17]
introduced the idea of using a fixed length code for almost
all values and variable length codes for outliers. This idea
can be seen as a first step towards frequency partitioning,
which generalizes this concept, using multiple partitions for
each column according to the value distribution of each
column. Westmann et al. support variable-length codes in
the granularity of bytes [15]. That work advocates the use
of embedded pointers to length indicators to speed up the
decoding of variable-length encodings. [4] devises a length-
lookup table to find lengths in a single lookup. In both of these
techniques, the cost of parsing and decoding is linear in the
number of variable length fields; in contrast, Blink provides
constant time decoding.

Blink builds on our previous work on lossless compression
of relational databases down to their entropy [12]. We briefly
review this technique because Frequency Partitioning extends
this compression scheme.

The simplest form of relational compression is to replace
repeated values with codes that index into a dictionary map-
ping codes to values. For example, a CHAR(10) field with
10 distinct values can be replaced by 4-bit codes.

Many domains have highly skewed data distributions: even
though many values are possible, only a smaller number
are likely, and a still smaller subset predominate. Dictionary
coding can be extended to handle skewed data by using
variable length codes: shorter codes for frequent values. For
example, Huffman coding [5] produces variable length codes
that are prefix-free: i.e., no code is a prefix of another code. So
we can pack multiple codes together without any delimiters
or length indicators.

The compression scheme of [12] replaces each field in a
tuple with a Huffman code, chosen based on the frequency
distribution for that column. These fieldcodes are then con-
catenated together to form a tuplecode for the entire tuple.

Further compression is possible by stripping out tuple
ordering. Relations are sets, so any information about the order
of tuples in a relation is redundant information. A system
can remove this redundancy by sorting and delta-coding
compressed tuples. Instead of storing the binary representation
of every tuple directly, delta-coding represents each bit string
as a difference, or delta, from the previous tuple’s bit string.
Since these deltas are relatively small numbers, they can be
encoded in fewer bits than the compressed tuples, and can be
further compressed using an entropy code.

[12] employs Huffman codes in conjunction with delta cod-
ing. The concatenated tuplecodes are sorted lexicographically
and then delta-coded. [12] also shows that this compression
is the best possible, in that it compresses relational data to
within a constant bits/tuple of its entropy.

While this compression format is tight, it is tough to parse
because each variable length code has to be parsed sepa-
rately. [4] studies several ways to make this parsing efficient;
nevertheless, the cost is around 2ns per tuple per variable
length code, which is expensive for tables with many columns.

61

Fig. 1. Partitioning a two-column table.

In Blink we use a new Frequency Partitioning scheme that
achieves almost the same compression but produces long runs
of fixed length codes.

Finally, Blink’s query processing algorithms are based on
perfect hashing. There is a rich literature on perfect hashing
(eg [3]), though databases have traditionally used variants of
chained hashing. Recently, several researchers have investi-
gated cuckoo hashing, a dynamic collision-free hash, for query
processing [11], [16], [13]. To the best of our knowledge, our
work is the first to apply different hash functions on different
data partitions, and to use precomputed perfect hash functions
to avoid branches in hash lookups.

III. COMPRESSION BY FREQUENCY PARTITIONING

Recall that a tuplecode is the concatenation of dictionary
codes for each field of a tuple. To access the fieldcode for the
i’th field of a tuplecode, the system must parse fieldcodes 1
through i−1 to determine their code lengths. This creates con-
trol and data dependencies that severely impact performance
on modern processors.

This overhead is a well known problem, pointed out in [15],
[4]. [4] measures the cost of this decoding as about 2 nanosec-
onds per variable length field per tuple. Westmann et al. [15]
present a solution using a lookup table, but this approach
sacrifices compressibility and adds a level of indirection.

The basic idea of Frequency Partitioning is to amortize the
work of computing code lengths by grouping together tuples
that have the same pattern of field code lengths. To achieve
this, we partition tuples coarsely by the occurrence frequency
of their column values, and assign fixed-length codes within
each partition.

Figure 1 illustrates this on a two-column table. We start
by dividing the distinct values in each column into disjoint
column partitions – C1a, C1b for column 1 and C2a, C2b,
C2c for column 2, according to their occurrence frequencies.
Each combination of column partitions (e.g., (C1a,C2b)) forms
a partition of the table that we call a cell. Blink then creates
a separate dictionary of values for each partition of C1 and
likewise C2, and assigns them fixed length codes. These
dictionaries are used to encode the tuples of the table, so every

Fig. 3. The Scan operator takes a work queue of cells of compressed tuples,
and processes it with a pool of worker threads.

tuple in a given cell is guaranteed to have the same pattern of
fieldcode lengths.

In general, say table R has n columns. Let Ri be the domain
of possible values for column i, so the domain of R tuples is
×iRi. Each Ri is partitioned into pi partitions Ri

1 . . . Ri
pi

, with
∪1≤j≤pi

Ri
j = Ri, such that values with similar frequency are

clustered in the same partition.
This partitioning of columns induces a partitioning of an

instance of R into cells. Each cell is labeled with a cell id
∈ ×i [1, pi]. Given a cell with id (θ1, ..., θn), column i
has only |Ri

θi
| values, and is given a fixed length code of

%lg |Ri
θi
|& bits. The tuplecode is

∑
i%lg |R

i
θi
|& bits long. The

codes are assigned to be order-preserving: higher values get
higher codes. We use this to apply predicates directly over
codes.

A. Compression Process in Blink

The first step in compressing a table is to analyse the
column distributions and accordingly determine the best way
to Frequency Partition the table. Next, a separate dictionary
is created of values in each partition. Next, these dictionaries
are used to assign tuples from the input to the appropriate
cells, and to encode and concatenate the fields in each tuple,
forming tuplecodes. Finally, the tuplecodes within each cell
are sorted and delta-coded as in [12]. We next discuss how the
analysis is done, and the compression efficiency of frequency
partitioning.

B. Choosing the Partitions

To achieve peak compression, we want column partitionings
that minimize the average tuplecode length i.e., we want to
assign frequent values to partitions with short code lengths,
and rare values to partitions with long codes.

The main constraint in this optimization is the number of
resulting cells. As noted earlier, the chief purpose of frequency
partitioning is to amortize the work of computing code lengths
across all tuples in a cell. If there are too many cells, each
cell will have only a few tuples, and this amortization fails.
Experimentally we have found it takes about 30,000 tuples/cell

62

Fig. 2. Compression results for TPCH (left) and Census (right) data.

to amortize per-cell overheads; i.e, we can split a billion-tuple
table into ≈ 33,000 cells.
Choosing partitions for One Column
Say that we have decided to allocate pi partitions to the i’th
column. As before, let Ri be the set of distinct values and
Ri

1, . . . R
i
pi

be the partitioning. The size of codes for Ri
j is

%lg |Ri
j |&, so the average code size for column i is

∑pi

j=1 P (Ri
j)(%lg |R

i
j |&) (1)

where P (Ri
j) denotes the occurrence frequency of the values

in Ri
j (as a fraction of the total).

The average size of a tuple is the sum of average code sizes
of each column, minus the savings due to delta coding within
a cell. A cell θ with id (θ1, ..., θn) has N×Πn

i=1P (Ri
θi

) tuples,
where N is the total number of tuples in the table. So, delta
coding saves lg(N ×Πn

i=1P (Ri
θi

)) = lg N +
∑n

i=1 lg P (Ri
θi

)
bits from each tuplecode (by Lemma 1 of [12]). The lg N
factor is a constant, but the second factor can be written as a
contribution of lg P (Ri

θi
) bits from column i.

The average value of this contribution (across all cells) is∑pi

j=1 P (Ri
j) lg P (Ri

j) bits. This must be subtracted from (1)
to find the effective size of column i.

Thus, the average size of column i is:∑

1≤j≤pi

P (Ri
j)(%lg |R

i
j |& − lg P (Ri

j))

We need to choose a partitioning of Ri that minimizes this
objective function.

We start the optimization by forming a frequency histogram
of the distinct values in that column, sorted by decreasing
frequency. We only consider “interval partitionings” that split
these frequency sorted values into contiguous intervals. The
reason is that any non-interval partitioning must be sub-
optimal, because we can improve compression by swapping
two misordered values.

We make two further observations:
• In an optimal partitioning, every interval except the last will
have a size that is a power of two. For, in a fixed length code, if
an interval has a size that is not power of two, we can improve
compression by moving elements into it from the last interval
(one with least frequent values).
• Any optimal interval partitioning of values sorted by de-
creasing frequency will have non-decreasing lengths. For, if

we have a partition P of 2x higher frequency values and a
partition Q of 2y lower frequency values, and x > y, we can
improve compression by moving the least frequent 2x − 2y

values of P into Q.
These two properties allow Blink to find an optimal parti-

tioning by dynamic programming. We start with 1 partition
(the full column). We recursively split the kth partition from
the k − 1 partition at all places in the frequency sorted list
of of values that are compatible with the rules above. We
then call the optimization step recursively to find the optimal
partitioning of the remaining values into k − 1 partitions.
Choosing partitions across Columns
The next step is to decide how to allocate partitions among
the columns, that is, what pi should we pass into the column
partitioning algorithm described above? We do this using
a greedy optimization on top of the column level dynamic
program. At each step we determine which column could
make best use of an extra partition, by computing the optimal
partition of each column using one more partition than we
are currently using. We then estimate the benefit of this extra
partition and the number of additional cells it will cause, using
the frequency histogram.

Finally, to produce the optimal partitioning that fits within
our cell budget, we apply the greedy optimization step re-
peatedly until any additional partitioning would cause the cell
budget to be exceeded.

C. Compression Efficiency

We now turn to the efficiency of this process: how close
the compression comes to entropy. We start with a theoretical
analysis of the effect of partitioning.

Suppose the values in a probability distribution S are
partitioned k-way. We denote by S|S1 . . .S|Sk the resulting
(normalized) probability distributions in each partition.

Given a random variable X (we use bold font for random
variables), we denote by H(X) the entropy of X, and by
{X}m the random variable for a multiset of m values chosen
i.i.d according to X.

We first give a simple result that partitioning a sequence of
values is entropy-neutral (proof by Bayes’ rule).

Theorem 1: Given a distribution S and a partitioning of it
into distributions S|S1 through S|Sk,

63

H(S) =
∑

1≤i≤k P (Si)(H(S|Si)− lg P (Si)))

But the analogous result for multisets is more involved:
Theorem 2: Suppose a a multiset of m values is chosen i.i.d
per S, and partitioned k-way by a partitioning of the domain
S into S1, . . . Sk. Suppose the partitions of the multiset have
sizes

−→
N = (N1 . . .Nk). We have, H({S}m) =

H(
−→
N) +

∑
−→n |

P

ni=m Pr(
−→
N = −→n)

∑k
i=1(H({S|Si}ni

))

Proof: In the appendix.

This theorem implies that if each cell resulting from a
partitioning is compressed to entropy, then the process of
partitioning and then compressing cells compresses the overall
multiset close to entropy.

Blink does not compress each cell to entropy because it uses
fixed-length codes within a cell. If we partition at a fine enough
granularity (i.e. used enough cells), we can make skew within
a cell negligible, and fixed-length coding would be sufficient.
But the number of cells we can use is restricted, as discussed
above. We next study the impact of this tradeoff on two data
sets.

The first is an uncorrelated but skewed version of the TPCH
dataset. Similar to the data generator we used in our previous
work [12], we modified the generator to skew certain columns.
We chose 99% of dates to be in 1995-2005, with 99% of that
on weekdays, 40% of that on two weeks each around Christ-
mas and Mothers Day. We chose nation distributions from
WTO statistics on international trade. We also denormalized
the data by joining lineitem, order, customer, and nation.

The second is a vertical partition containing the first 38
columns extracted from the 1.6 million tuple 2000 U.S. census
dataset for California from census.gov.

Figure 2 plots the number of bits per tuple as we increase
the number of cells used. For each dataset we show: (i)
The empirical entropy of the data treated as a set. (ii) The
result of Huffman coding each column, concatenating the
codes to form a tuplecode, and then sorting and delta coding
tuplecodes as in [12]. (iii) Average number of bits per tuple
after frequency partitioning, as estimated during optimization.
Note that when only one cell is used, this is equivalent to the
fixed length coding followed by delta coding. As the number of
cells increase, better compression is achieved. (iv) The actual
compression ratio determined by looking at the size of our
compressed files, including headers and cell level overhead.

Observe that in both cases, partitioning into a few 1000s
of cells gets nearly the same compression as Huffman codes1.
Also, notice that using more cells generally improves compres-
sion, though at the very end of the census data set, compression
stops increasing due to the overhead caused by too many cells
in use.

IV. QUERY RUNTIME

The core of Blink’s query runtime is the Generalized Scan,
a module that combines the functionality of scan, selec-

1Huffman still loses up to 1 bit/field against entropy because we have to
round up fractional bits on each field. This is more noticeable for the wide
census table.

tion, grouping and aggregation. Figure 3 gives a high-level
overview. The scan maintains a work queue, where each entry
is a block of compressed tuples from a single cell of the input.
A pool of worker threads consumes these units of work and
produces partial query results, which are merged at the end to
produce a complete query result.

Each thread starts by finding the code lengths of each
field, and the dictionary used for coding each field – this is
done once per cell. Then, it loops through the tuples in the
cell, doing 3 steps: Undo Delta Coding, Selection, Grouped
Aggregation.

Undoing the delta coding is easy. The first tuplecode in a
cell is stored as-is, and subsequent tuplecodes are formed by
adding deltas to the previous tuplecode, as in [12]. The next
two steps are more involved.

A. Selection by Operation Folding

The standard way to apply a conjunction of predicates on
a tuple is as follows:
for each field f referenced in the where
clause do

extract tuple.f
apply the predicate over tuple.f
if it fails return false
else continue

This is clearly not a constant-time operation: the cost varies
with the selectivity and the number of conjuncts. Further, the
conditional evaluation is expensive because each mis-predicted
branch breaks the instruction pipeline, and costs about 30-
40 cycles in our measurement. As the number of conjuncts
increases, predicate evaluation becomes the dominant cost of
the scan.

Blink avoids this variability and the conditional by leverag-
ing frequency partitioning. Recall that within a cell, each field
has a single code length, and hence occurs at a fixed bit-offset
within the tuplecode. We use this to evaluate all equality and
range predicates in parallel, in constant number of operations
(independent of the number of predicates), as we see next.

Parallel Equality and Range Predicates
Most modern processors have a bank of 128 bit registers,
on which one can do bitwise operations (AND, OR) as well
as “Single-Instruction Multiple-Data,” (SIMD) versions of
arithmetic operations. After compression, tuplecodes generally
fit in a small number of these registers, mostly 1 and never
more than 2 in the cases we have seen. Hereafter, for ease of
presentation, we will assume that the tuplecode is in a single
register. For wider tables, the operations we apply have to be
simulated by separate operations on individual registers of the
tuplecode.

Evaluating a conjunction of equality predicates on a register-
resident tuplecode is easy. First, extract the needed fields by
applying a suitable mask (a bitwise AND). Then, compare
the result against a second mask containing the expected
fieldcodes at the appropriate field offsets. Note that these
masks are computed exactly once per cell.

64

Range predicates are more difficult to evaluate in parallel,
since they cannot be converted to a single comparison.

Consider a conjunction of col > literal predicates. We
could extract the needed fields via an AND and then subtract
a mask containing the literals at the right offsets. If the result
is individually positive on every field (checked via a mask
on the high order bits), the tuple passed all the predicates.
Unfortunately, this naive approach does not work. When the
subtraction causes a field to go negative, the processor borrows
from the higher-order bits of the register, thereby changing the
values of other fields.

Trapping the borrows
Our solution is place a borrow-stopper 1-bit to the left of
each field involved in the predicate. To make space for
these borrow-stoppers, we process the odd-numbered fields
separately from the even-numbered fields. When processing
the even fields, we use the space of the odd fields to trap the
borrows, and vice-versa. We leave the leftmost bit vacant to
trap borrows on the leftmost field.

Take a predicate c1 ≤ l1 and c2 ≤ l2 · · · cn ≤ ln where ci

are odd-numbered columns and and li are literals. At the start
of a cell of tuples, we convert the literals li into codes Li using
the dictionary. Now, suppose that the start and end offsets of
the fieldcodes for ci are [b1, e1) . . . [bn, en). We compute 4
masks (once per cell):

// Mask to extract needed fields
M1 ← 0b1 1e1−b1 0b2−e1 1e2−b2 . . .
// Mask with literals (Li’s) and borrow-stoppers (1s)
M2 ← 0b1−1 1L1 0b2−e1−1 1 L2 . . .
// Mask to extract borrow-stopper bits
M3 ← 0b1−1 10e1−b1 0b2−e1−1 1 0e2−b2 . . .
// Mask with expected results if all predicates pass
M4 ← 0b1−1 10e1−b1 0b2−e1−1 1 0e2−b2 . . .

Then, on each tuple t, we do this test:
((M2− (t&M1))&M3) == M4

We do a similar test (with different masks) for predicates on
even-numbered fields. 2

To see why this works, notice that the bit immediately to
the left of each field is 1 in M2 and 0 in (t&M1). So, M2−
(t&M1) has (1 < Li > − 0 < ci >) in the offsets [bi−1, ei).
If Li ≥ ci, this has a 1 at bit bi − 1, and 0 otherwise. This is
tested by comparison with M4.

To evaluate a mix of > and ≤ predicates, we invert the cor-
responding borrow-stopper bits in M4: e.g., for c1 ≤ L1 and
c2 > L2, we set M4 to 0b1−110e1−b1 0b2−e1−1 0 0e2−b2 . . .

Evaluation of Other Predicates
For predicates other than equality and range, the standard
solution has been to decode and then apply the predicate. Blink
uses an alternative implementation that involves no decoding.
Consider for example a LIKE predicate on column C. The idea
is to consider the dictionary on C as an implicit dimension

2One optimization that avoids this second test is to place a vacant “sac-
rificial” bit before every field: this loses 1 bit per field in compression but
doubles the predicate evaluation speed.

table. At the beginning of the query. we evaluate the predicate
over the dictionary, identify the matching codes and place
them in a hash table. During the scan, the LIKE predicate
is evaluated by hashing on the tuplecode after masking out all
columns except C.

B. Grouping and Aggregation Stage

The last step is to apply group-by, by updating a suitable
running aggregate for each tuple that passes all predicates.
The aggregate value(s) in the current tuple are formed by
extracting and decoding the fieldcode(s) on aggregation fields.
The fieldcodes for all group-by columns are extracted and
concatenated (by ANDs and shifts) into a packed groupcode.

Informally, the running aggregates are maintained in a hash
table, so the update involves:
aggTable[hash(group)]+ = aggregate value(s) (1)
for a suitably defined + = operator.

There are two challenges in doing this efficiently:

• We want to keep the hash table concise so that it fits in
the L2 cache

• To do a fast hash table lookup, we want to avoid the
random access and conditional branching involved in the
usual open-chaining based hash tables.

In Blink we use three hashing techniques, which are ap-
plicable in different situations depending on the number of
distinct groups. Before discussing these, we need to decide at
what granularity to group.

Drawers as Granularity of Grouping
Suppose that a query groups on columns G, H, which have
column partitions G1, G2, H1, H2. The table might have
numerous cells, from the cross-product of partitions on every
column (not just G, H). There are then three granularities at
which we can do grouping.

First, we can maintain a separate aggTable per cell. This
results in a small aggTable because there will be few distinct
groups per cell. But the per cell hash tables need to be
combined at the end to get the final result. Second, we can
maintain a single aggTable for the whole query. However, this
results in a very large hash table (as many distinct groups as
there are in the whole table), which may not fit in L2 cache.
This approach is also hard to parallelize because all threads
would have to synchronize on the hash table.

We choose a third option that lies between these extremes,
called a drawer, which is defined by the partitioning along the
group-by columns:

A drawer is a collection of cells that come from a single
partition of the group-by columns.

Figure 4 shows a table that has been frequency partitioned on
columns A, B, and C. The dashed cuboid shows a drawer for
a query that groups on A, B. Note that unlike cells, drawers
are defined for a particular query.

Drawers have two important properties which make them
the right granularity to compute aggTable’s on:

65

Fig. 4. Relationship between drawers and cells.

1. For all cells within a drawer, the fieldcodes for
each grouping column are drawn from a single
dictionary. Since dictionaries are 1-to-1 maps of values
to fieldcodes, this means we can replace Equation (1) with:

aggTable[hash(groupcode)]+ = aggregate (2)
so we need not decode the groupcode at this point.

2. Each group can occur only in a single drawer. So the
aggTable can be drawer specific, and only needs to hold
as many entries as there are groups in a single drawer –
this is often much smaller than the total number of distinct
groups in the table.

We independently compute aggTable’s for each drawer. At
the end, we union the lists of (groupcode, aggregate) from
each drawer – since each group occurs in only one drawer,
this is a trivial operation. We then apply any HAVING clause,
and only then decode the groupcodes.

Different drawers can have widely different numbers of
groups because we partition columns by frequency, as dis-
cussed in Section III. Since we use a separate aggTable for
each drawer, we independently choose the hashing technique
used for each drawer, according to its number of distinct
groups, as estimated from the dictionary.

Implementing Grouping
Blink uses one of three kinds of hash tables to maintain
running aggregates, based on the estimated number of distinct
groups in the drawer:

GroupCode as Hash (IDX):
The first one is to use the groupcode itself as a hash function to
index into a hash table, referred to as IDX. This hash function
is trivial to compute. Further, since groupcodes are unique for
each group, this hash function is guaranteed to be a perfect
hash – i.e., have no collisions. So the running aggregate can be
accessed in a single lookup. For grouping on a single column,
compression implies that the groupcode is very close to a
minimal perfect hash – the smallest possible hash table that
will handle all the distinct groups. So Blink uses IDX for all
single-column group-bys.

Explicit Minimal Perfect Hash (MPH):
Unfortunately, the groupcode need not be dense for multi-

column group-bys, because of correlation. For example, a

sales table with 1000 customers and 1000 stores could encode
CustId and StoreId in 10 bits each. But the number of distinct
(CustId,StoreId) pairs can be , 106, and it is cache-wasteful
to use a 106 size hash table. Blink handles such correlated
group-bys using a pre-computed minimal perfect hash function
(MPH). This MPH is constructed during ETL, when all the
groupcodes are seen (if new groupcodes arise in incremental
updates between loads, they are placed in a separate drawer
that is handled by linear probing which is described below).

We do not know the group-by columns in advance, so we
automatically construct MPHs on all column-pairs that have
sufficient correlation (this is currently specified by hand). We
generate one perfect hash function for each drawer for each
chosen pair of group-by columns.

Our perfect hash function is based on Jenkins’s perfect
hash [2]. This hash function has exactly as many buckets as
the number of groups. But, the hash function needs an extra
auxiliary table, which usually has half the buckets of the hash
table. Thus, for correlated columns, an MPH has many fewer
buckets than does IDX, but each bucket is about twice as large.
A second limitation of an MPH is that it needs two random
lookups: one into the auxiliary table and another into the actual
aggregate table.

Linear Probing (LPB):
The last hash function that Blink uses is open addressing
with linear probing (LPB). We choose open addressing over a
chained hash table, as the linked list used in chained hash table
has poor cache performance. We use multiplicative hashing as
the hash function. Although the hash function can be computed
efficiently, LPB has collisions, which results in branches and
associated branch mis-prediction penalty. Space-wise, LPB is
quite expensive because it needs to store both groupcodes and
aggregates. Moreover, the hash table can only be filled up to
a load factor which must be around 60%, otherwise we will
have too many collisions [6].

We conducted a micro-benchmark to study the applicability
of these three hash methods. Figure 5 plots the aggregation
time for a simple SUM with GROUP BY query using each
method, as a function of the number of groups in the drawer.
Groupcodes are assigned to tuples at random, with each group-
code being equally likely. For IDX hash function, we examine
two cases. The first (IDX dense) is when the groupcode
happens to be dense, which we define as a groupcode domain
that is only twice as large as the actual number of groups. The
second (IDX sparse) is when the groups are sparse, where we
set the groupcode domain to be 1024 times of the number of
groups. For LPB hash table, we study two load factors: 0.7
(LPB 0.7) and 0.5 (LPB 0.5).

As expected, when the groupcode is dense, IDX is the
best solution, because it has the smallest aggregation hash
table, and requires only one lookup into it. In the sparse
case, the aggregation time of MPH grows slower than of
IDX sparse because it has a smaller hash table. MPH outper-
forms IDX sparse when there are more than 32,000 groups.
Beyond about 256,000 groups the run time of IDX sparse

66

0

5

10

15

20

25

4K 8K 16K 32K 64K 128K 256K 512K 1M

number of groups

A
gg

re
ga

ti
on

 t
im

e
(N

S
/t

up
le

)
IDX_dense IDX_sparse MPH
LPB_0.7 LPB_0.5

Fig. 5. Hash Method Comparison

explodes because it starts to thrash wildly, as its hash table
(whose size is 1024 times the number of groups) starts to
page out of memory.

These numbers suggest that one of IDX and MPH always
dominates LPB: IDX for small numbers of groups and MPH
for large numbers of groups. So we use LPB in Blink only
as a fall-back, for correlated multi-column group-bys where
we have not constructed an MPH. In such cases, an IDX hash
table would spill out of cache, whereas an LPB hash table
can fit in cache because it is sized by the number of distinct
groups.

V. EXPERIMENTS

We have built a complete prototype of Blink, implementing
all the features described in this paper. Blink compresses
data by frequency partitioning and delta-coding within cells.
Blink keeps this data in memory for running queries. Blink
supports single-block SQL queries with equality, range, and
in-list predicates, SUM and COUNT aggregates, and grouping.

We now present an experimental evaluation of Blink. Our
goal is two fold: (a) how close is Blink to a constant-time
query processor? (b) how far do each of our techniques go to
making the scan efficient?

Our dataset is a universal relation formed by denormalizing
a variant of the TPC-H schema, as proposed by O’Neil et
al.[10]. We chose a vertical partition with part key, revenue,
order quantity, lineitem price, week of year, month, supplier
nation, customer nation, supplier and customer region, dis-
count, category, brand, year, and day of week for our exper-
iments. We populated this table with 200M rows using the
same skewed distribution as in Section 3 (the denormalization
preserves the cardinality of the fact table). All experiments
were conducted on a server with 8 GB of main memory and
two 4-core Xeon processors running at 2.66 GHz.

A. Variability in Query Response Time

Our first experiment studies the extent of variation in query
response times. We divide response times by table size and

report all times in ns/tuple; low variation here translates
to constant time by scaling the number of nodes with the
data size. We ran a suite of 150 queries with the following
template:

select sum(revenue) from denormalized table
where <conjunction of predicates>
group by <column list>

The queries differ in the predicates used and the columns
grouped by. The predicates are generated as conjunctions with
a randomly chosen number of conjuncts, between 0 and 7.
Each conjunct is of the form (c < Dh) or (c ≤ Dh) or (c >
Dl) or (c ≥ Dl) where column c and the comparator are
chosen at random, and [Dl, Dh] is the domain of values for
column c – e.g., year ≥ 1994, or partkey > 1. The idea is that
these queries all have nearly 100% selectivity, and thus force
every tuple to be scanned. Otherwise, frequency partitioning
has an implicit data reduction effect where entire cells can be
eliminated from the scan because no value in its dictionary
matched the predicate – we evaluate this effect later in this
section.

The group-by columns were chosen at random from among
the non-measure columns, with queries grouping by one or
two columns.

The first two graphs of Figure 6 plot the query speeds of
every query whose group-by produced up to 20000 groups.
We use 8 threads, to match the number of cores on our server.
Notice that there is little variability in the query response time,
when plotted against either number of groups in the result
or against number of predicates in the where clause. All the
queries run at between 3.1 and 4.5 ns per tuple. This tight
spread (< 50%) shows the predictable nature of scans and the
ability of our parallel predicate evaluation and hash grouping
to mask variations across queries.

The last plot of Figure 6 shows speeds for queries that pro-
duce > 20000 groups. The timing degrades rapidly, touching
18 ns/tuple at 51000 groups. This degradation arises because
the hash table for storing running aggregates starts to spill
outside of the L2-cache. We believe such queries are rare.
Further, our dataset had limited skew and so every group was
updated almost equally often. We expect in realistic datasets
that some groups will be occur much more often than others,
and hence benefit from cache-locality. Still, performance of
queries that produce more groups than can fit on the cache of
a single core is an important challenge for future research.

1) Variability with Query Selectivity: Our next experiment
concerns the performance of queries that have selective predi-
cates. These queries follow the same template as before, except
that the literals in the predicates are now set so that selectivity
varies. As mentioned, this can have a filtering effect at cell
level, especially with equality predicates: if a complete cell
has no value matching a literal, the dictionary is unable to
convert the literal into a code, and so the cell is skipped during
the scan.

Figure 7 plots the running times of selective queries. The
x-axis is the cell-selectivity: the number of cells that need to

67

0 2 4 6 8
Number of conjuncts

0

1

2

3

4

n
s

/

t
u
p
l
e

1 10 100 1000 10000
Number of groups

0

1

2

3

4

10000 100000
Number of groups

0

5

10

15

Fig. 6. Scan speed for arbitrary single-block queries. Predicates are crafted to have ≈ 100% selectivity.

0.0 0.2 0.4 0.6 0.8 1.0
Cell Selectivity

0

1

2

3

n
s

/

t
u
p
l
e

Fig. 7. Scan speed for selective queries

be scanned. Observe that while all queries still run under 4.5
ns/tuple, there is a definite pattern where the speed improves
as selectivity decreases.

We believe this behavior is the right behavior for a constant
time system. A designer should size the system so that the
poorly selective queries will still finish in the required response
time, and the faster running of the selective queries only
contributes to improved system throughput.

We point out that this cell-filtering is an incidental benefit
of frequency partitioning. In contrast to multi-dimensional
clustered indexes (eg, [1]), frequency partitions are chosen to
optimize for compression, not for filtering. In particular, the
choice of partitions is made without care for the workload.

B. Savings from SIMD predicates

Having seen the overall performance of Blink, we turn to its
individual components. In Section IV-B we saw an experiment
that highlighted the value of IDX and perfect-hash based
hash tables, and of picking different hash tables for different
drawers. Now we study how much benefit we derive from
parallel predicate evaluation.

We run seven versions of a single query, gradually removing
its conjuncts one-by-one:

select sum(revenue) from denormalized table
where QTY < 50 and month ≤
11 and l price > 1 and year ≥1995 and l partkey ≥
1 and revenue ≥1.0 and week ≥1
group by month

0 2 4 6 8
Number of conjuncts

0

2

4

6

8

10

n
s

/

t
u
p
l
e
s

SERIAL

SIMD

Fig. 8. Value of parallel predicate evaluation

1 10 100 1000 10000 100000
Number of groups

0

2

4

6

8

n
s

/

t
u
p
l
e

Thds 2

Thds 4

Thds 8

Fig. 9. Multicore speedup

Figure 8 plots the query response time vs the number of
conjuncts, for two implementations. The first (SIMD) is the
standard Blink implementation which evaluates all equality
and range predicates in parallel. The second (SERIAL) is a
typical implementation which evaluates the predicates in a
for-loop. Notice that the response time for the parallel im-
plementation is almost constant, while the serial performance
is linear in the number of conjuncts.

C. Scalability of Our System

Our last experiment studies the multi-core scalability of
Blink, using our original suite of 150 queries. Figure 9 plots
the speedup obtained in going from 1 to 2, 4, and 8 threads.
Observe that speedups for 2 and 4 threads are close to ideal,

68

and most queries get 7x speedup with 8 threads. As the number
of groups increases beyond around 20000 this scaling drops,
because the hash-table spills out of cache. All cores share
the memory bus and the cost of random memory accesses
to update running aggregates starts to dominate. This suggests
that scans can scale with cores, provided the number of groups
is moderate.

VI. CONCLUSION

We have made a case for constant-time query processing,
and argued that table scans are a promising way to achieve
this. We have described Blink, a system that partitions data
by frequency so as to achieve good compression while main-
taining long runs of fixed length codes. Blink also has new
techniques for SIMD evaluation of conjunctive equality and
range predicates, and for hash-based aggregation. Experimen-
tal results suggest that Blink is both efficient and delivers
consistent response times. Blink also gets near-linear speedup
on multicore architectures.

Many challenges remain as future work. The most important
is to make Blink a full-fledged database system; in particular,
to efficiently handle updates against this compressed data
format. Many aspects of query functionality are also open,
such as joins that cannot be addressed via denormalization,
sub-queries, and disjunctions. We also plan to compare Blink
and its row-wise SIMD processing against column stores.
Acknowledgements: We wish to thank Ryan Johnson for
many contributions to the design and implementation of Blink.

REFERENCES

[1] B.Bhattacharjee, S. Padmanabhan, T. Malkemus, T. Lai, L. Cranston, and
M. Huras. Efficient Query Processing for Multi-Dimensionally Clustered
Tables in DB2. In VLDB, 2003.

[2] Minimal Perfect Hashing
. http://www.burtleburtle.net/bob/hash/perfect.html.

[3] Z. Czech, G. Havas, and B. Majewski. An Optimal Algorithm for
Generating Minimal Perfect Hash Functions. IPL, 43(5), 1992.

[4] A. Holloway, V. Raman, G. Swart, and D. DeWitt. How to Barter Bits for
Chronons: Compression and Bandwidth Tradeoffs for Database Scans.
In SIGMOD, 2007.

[5] D. Huffman. A method for construction of minimum-redundancy codes.
In Proceedings of I.R.E., 1952.

[6] D. Knuth. In The Art of Computer Programming, v3, 1973.
[7] H. F. Korth, G. M. Kuper, J. Feigenbaum, A. van Gelder, and J. D.

Ullman. SYSTEM/U: a database system based on the universal relation
assumption. TODS, 9(3), 1984.

[8] T. Legler, W. Lehner, and A. Ross. Data Mining with the SAP Netweaver
BI Accelerator. In VLDB, 2006.

[9] R. MacNicol and B. French. Sybase IQ Multiplex - Designed for
analytics. In VLDB, 2004.

[10] P. O’Neil, B. O’Neil, and X. Chen. The Star
Schema Benchmark (SSB) (Preprint), January 2007.
http://www.cs.umb.edu/p̃oneil/StarSchemaB.PDF.

[11] R. Pagh and F. Rodler. Cuckoo hashing. J. Algorithms, 51(2), 2004.
[12] V. Raman and G. Swart. Entropy Compression of Relations and

Querying of Compressed Relations. In VLDB, 2006.
[13] K. Ross. Efficient Hash Probes on Modern Processors. In ICDE, 2007.
[14] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-

reira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran,
and S. Zdonik. C-Store: a column-oriented DBMS. In VLDB, 2005.

[15] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The
Implementation and Performance of Compressed Databases. SIGMOD
Record, 29(3), 2000.

[16] M. Zukowski, S. Heman, and P. Boncz. Architecture-conscious hashing.
In DaMoN, page 6, 2006.

[17] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-Scalar RAM-CPU
Cache Compression. In ICDE, 2006.

APPENDIX

We now show that partitioning is entropy-neutral if we do
not consider the order of the tuples to be important. Intuitively,
splitting an unordered set of tuples into any number of smaller
sets does not change the space needed to represent the tuples.

More formally, a partitioning of a probability distribution
S (we use bold font for random variables and probability dis-
tributions) with probability function p is a set of distributions
induced by a partitioning of the domain of S into sets S1

through Sk, where the probability function of each Si is given
by pi(s) = p(s)/P (Si) ∀s ∈ Si, where P (Si) =

∑
u∈Si

p(u).
We denote these induced distributions as

S|S1,S|S2, . . .S|Sk, because S|Si is the probability
distribution of S values conditioned on them being in the
partition Si.

As in [12], we model a table with m tuples as a multiset
of m values chosen i.i.d per a probability distribution S.
We use the notation {S}m to denote the random variable
corresponding to this multiset. We now use the partitioning
on S to induce a partitioning of the multiset {S}m into k

separate multisets of sizes
−→
N = (N1 . . .Nk), one for each

partition. We want to show that the entropy of the original
multiset H({S}m) is the same as the sum of entropies of the
k multisets: H({S|Si}Ni

). A tricky part of this statement is
that the multisets are parameterized by the sizes Ni, which
are themselves random variables. So we make this a theorem
about expectation.
Theorem 2: If a multiset of m values chosen i.i.d from
probability distribution S is partitioned into k multisets of
sizes

−→
N = (N1 . . . Nk) by a partitioning of the domain S into

S1 . . . Sk, then H({S}m) =

H(
−→
N) +

∑
−→n |

P

ni=m Pr(
−→
N = −→n)

∑k
i=1(H({S|Si}ni

))

Proof: In the LHS, observe that each {S|Si}ni
refers

to the random variable for a multiset of values chosen
from the set Si. But this multiset was formed by
choosing values i.i.d from the set S. So, the random
variables: {S|S1}n1

, {S|S2}n2
. . . {S|Sk}nk

, are all mutually
independent. So,∑k

i=1(H({S|Si}ni
)) = H({S|S1}n1

, {S|S2}n2
. . . {S|Sk}nk

}).
This is the joint entropy of k multisets: one of size n1 chosen
from S1, one of size n2 chosen from S2, and so on. The sum in
the L.H.S. of the theorem is over all vectors −→n = (n1, . . . nk)
such that

∑k
i=1 ni = m. Since the sets Si form a partition

of S, there is a one-to-one map from these k multisets to a
multiset of size m from S: i.e., there is a one-to-one map
from each value of ({S|S1}n1

, {S|S2}n2
{S|Sk}nk

) to a
value of {S}m. The theorem now follows by applying Bayes’
rule. !.

69

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Vijayshankar Raman
	Also by Lin Qiao
	Also by Frederick Reiss
	Also by Donald Kossmann
	Also by Inderpal Narang
