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Abstract

The last couple of decades have witnessed a phenomenal growth in the World Wide

Web. The Web has now become a ubiquitous channel for information sharing and

dissemination. This has created a whole new set of research challenges. This thesis

describes several research contributions in an endeavor towards a better understanding

of the Web. We focus on two major topics: (1) measuring the size of the Web and

indexable web; (2) modeling the Web and social networks using webgraph models.

In the first part of this thesis, we address the problem of estimating the sizes of

the Web and indexable web. This problem has drawn keen research interests in recent

years. The term “Web size” refers to the number of webpages on the Web. However,

part of the Web is rarely accessed or has very low quality, so often researchers are

more interested in a quantity called “indexable web” size. Indexable web refers to

the subset of webpages that are indexed by major search engines, which defines an

important subset of the Web that is most easily accessible to human users. The index

size of a search engine is also an important indicator of search engine performance. In

recent years there has been much speculation about the sizes of the indexes of major

search engines with Google, Yahoo and MSN Search vying for top spot. The question

of which search engine provides the most coverage is thus of public interest and there

is a need for objective evaluation methods.

We propose methods for estimating the Web and indexable web sizes. We develop

the first methods for estimating absolute index sizes of search engines, assuming only

access to their public query interface. We validate our methods with synthetic data

sets, and then apply them to estimate index sizes for major search engines. After

presenting the empirical results, we then study the problem from a different angle:

v



we map it to a classic theoretical problem of sum estimation, and propose near optimal

algorithms by proving almost matching lower and upper bounds for this problem.

After measuring the size of the Web, we are further interested in understanding

its structure. The Web can be viewed as a graph where webpages are vertices and

hyperlinks between pages are edges; we call it Webgraph. The Webgraph is so large

that even estimating its size is a hard problem, not to mention more complicated mea-

surement and analysis. To better understand the Webgraph, researchers leverage a

powerful theoretical tool called webgraph models, which are stochastic processes that

generate random graphs that, with high probability, behave similar to the Webgraph.

In the second half of the thesis, we present several results in analyzing webgraph

models and applying the models to real world applications.

First, we study searchability in random graphs (the property that a decentralized

routing algorithm can find short paths in the graph): we give a characterization of ran-

dom graphs that are searchable with deterministic memoryless searching algorithms,

and based on this characterization we prove a monotonicity result.

Next, we study a recently proposed webgraph model called Stochastic Kronecker

Graph model. We analyze graph properties of this model: we give necessary and suf-

ficient conditions for Kronecker graphs to be connected or to have giant components;

we prove that under the parameters that the graph is connected with high probability,

it also has a constant diameter with high probability; we also show that Kronecker

graphs are not “searchable” even with randomized routing algorithms.

Finally we study link privacy in social networks using webgraph models. Social

networks constantly face the dilemma of providing utility and protecting privacy. we

formalize a particular attack on link privacy where the adversary breaks in multiple

user accounts and stitches together local network information of different users in

order to gain global information about the social graph. We quantify how social

networks’ access control policy affects the complexity of attack under Power Law

Random Graph model, and confirm the analytical results with simulation on real

social networks.
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Chapter 1

Introduction

The last couple of decades have witnessed a phenomenal growth in the World Wide

Web. The Web has now become a ubiquitous channel for information sharing and

dissemination. This has created a whole new set of research challenges. This thesis

describes several research contributions in an endeavor towards a better understanding

of the Web.

One of the first questions scientists would like to measure about the Web is its size,

i.e. how many webpages there are on the World Wide Web. A closely related problem

is the sizes of search engine indexes, as search engine index defines an important subset

of the Web that is most easily accessible to human users. Those two problems are

also very similar technically. In the last ten years both the scientific literature and

the popular press dealt at length with methodologies and estimates for the size of the

various public web search engines and the size of the Web. In the first part of the

thesis, we propose methods for estimating the Web size; we present both empirical

and theoretical results.

After measuring the size of the Web, we are further interested in understanding

its structure. The Web can be viewed as a massive graph where webpages are ver-

tices and hyperlinks between pages are edges; we call this graph “Webgraph”. The

Webgraph is so large that even estimating its size is a hard problem, not to mention

more complicated measurement and analysis. To better understand the Webgraph,

researchers study random webgraph models, hoping to capture the essence of the

1



2 CHAPTER 1. INTRODUCTION

massive Web graph. A random graph model is a stochastic process that generates

random graphs, i.e., it defines a probability distribution on graphs. Webgraph models

are those random graph models that, with high probability, generate graphs similar

to the Webgraph. Webgraph models are extremely useful tools to develop a deep

understanding of the evolutionary scheme and important characteristic of the Web,

to predict future development and behaviors, and to generate synthetic data sets for

testing and simulation. In the second half of the thesis, we present several results in

analyzing webgraph models and applying the models to real world applications.

1.1 Estimating the Web Size

The problem of estimating the sizes of the Web and search engine indexes has drawn

keen research interests in the recent ten years (see for example [LG98, LG00, GS05,

BFJ+06, BYG07]).

We use the term “Web size” to refer to the number of webpages on the Web. But

part of the Web is rarely accessed or has very low quality, so sometimes researchers

are more interested in a quantity called “indexable web” size. Indexable web refers

to the subset of webpages that are indexed by major search engines [Sel99, GS05] 1.

If the Web has changed the way of publishing and sharing information, then search

engines have changed the way of accessing information. Today the Web is so large

that if a webpage is not indexed by search engines, then it has little chance of ever

being visited by users. So indexable web defines an important subset of the Web that

is most easily accessible to human users.

The index size of a search engine is not only of scientific interests to understand

the Web, but also is an important indicator of search engine performance. While the

overall quality of a search engine depends on many factors such as the prowess of

the ranking algorithm, the reliability of its infrastructure etc, the calibre of its index

is certainly one important factor. In recent years there has been much speculation

1I personally feel the term of “indexable web” misleading: nowadays many webpages are not
included in the search engine indexes not because those webpages cannot be indexed, but because
search engines can only index a limited number of webpages due to the infrastructure constraints. I
think a more appropriate name is “indexed web”.
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about the sizes of the indexes of major search engines with Google, Yahoo and MSN

Search vying for top spot. In November 2004, MSN Search claimed to have the largest

index with 5 billion pages; immediately after, Google updated its homepage to show

8 billion indexed pages, nearly doubling its earlier figure. Then in August 2005, when

Yahoo claimed to be indexing 19.2 billion pages, Google dropped its count from its

homepage declaring, however, that its index size was more than three times the size

of any other search engine. The question of which search engine provides the most

coverage is thus of public interest and there is a need for objective evaluation methods.

1.1.1 Estimating Index Sizes via Queries

In the last ten years both the scientific literature and the popular press dealt at length

with methodologies and estimates for the size of the various public web search engines

and indirectly, the size of the web.

An approach initiated by Bharat and Broder [BB98] is to produce only relative

sizes, that is, to estimate the ratio between the sizes of several engines. Their approach

is based on pseudo-uniform sampling from each engine index, first by sampling a query

pool of English words, and then by sampling the results of the chosen query, followed

by a capture-recapture estimate (that is, sample one engine, test containment in the

other); however their method is heavily biased in favor of “content rich” documents

and thus the ultimate results are problematic. This has been recently corrected by

Bar-Yossef and Gurevich [BYG06], who present a truly uniform sampling method

that at least in principle should yield accurate ratios, but their method still needs to

test containment, a non-trivial procedure that introduces biases of its own. Note also

that both the Broder and Bharat algorithm, as well as the Bar-Yossef and Gurevich

algorithm yield only documents that match at least one query from their query pool,

so in fact they only estimate the relative sizes of a certain subset of the index.

Estimating absolute index sizes appears to be a more difficult task. Previous work

[LG98, BB98] has had to fall back on sources other than public query interfaces, such

as http://searchenginewatch.com/reports/article.php/2156481 and http://

searchengineshowdown.com/stats, or has had to trust the index size reported by
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search engines themselves.

We propose the first methods for estimating absolute index sizes without such

additional sources. We assume only access to the public query interface. First, we

give a technique to count the size of specific subsets of the index. Second, we show

how to use this technique to generate an estimate of the size of the entire index. To

verify the effectiveness of our methods, we build a small search engine as a testbed

upon a large TREC collection consisting of over 1.2 million documents. We apply our

estimation methods on this search engine and find that they can obtain fairly high

accuracies. We then apply our methods to estimate the index sizes of three major

search engines.

We present the estimation algorithms and the experimental results in Chapter

2. This is joint work with Andrei Broder, Marcus Fontura, Vanja Josifovski, Ravi

Kumar, Rajeev Motwani, Shubha Nabar, Rina Panigrahy and Andrew Tomkins, orig-

inally published in [BFJ+06].

1.1.2 Estimating Sum by Weighted Sampling

Having seen some empiric results about search engine index sizes, now we switch gear

to a theoretical problem arising from the problem of estimating Web size.

Estimating Web size or search engine index sizes can be mapped to the classic

problem of estimating the sum of n non-negative variables, which has numerous im-

portant applications in various areas of computer science, statistics and engineering.

Measuring the exact value of each variable incurs some cost, so we want to get a

reasonable estimator of the sum while measure as few variables as possible.

In most traditional applications, only uniform sampling is allowed, i.e. each time

we can sample one variable uniformly at random and ask its value. It is simple

to estimate the sum from such samples because the average of the samples is an

unbiased estimator of the actual average. We can show that any reasonable estimator

with uniform sampling requires a linear sample size if the underlying distribution is

arbitrary.

We can map the problem of estimating index sizes or Web size to this problem
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by partitioning the search index (or the web) into domains (or web servers), with

each variable representing the size of a domain (or a web server), and estimating the

size is simply estimating the sum of those variables. It is relatively easy to get the

total domain (web server) number n (either by uniformly sampling IP space or this

number is published periodically). For example in 1999 Lawrence and Giles estimated

the number of web servers to be 2.8 million by randomly testing IP addresses; then

they exhaustively crawled 2500 web servers and found that the mean number of pages

per server was 289, leading to an estimate of the web size of 800 million [LG00].

Lawrence and Giles essentially used uniform sampling to estimate the sum, however,

the domain size distribution is known to be highly skewed and uniform sampling has

high variance for such inputs.

Now for our problem of estimating the Web size, a new sampling primitive becomes

available: we can sample a variable with probability proportional to its value, which

we refer to as linear weighted sampling. We can implement linear weighted sampling

on domains as follows: uniformly sample a page from the web or a search engine index

(the technique of uniform sampling a page from the web or an index is an independent

research problem and has been studied in for example [HHMN00, BYG06]) and take

the domain of the page; it is easy to see that the probability of sampling a domain is

proportional to its size.

This new sampling primitive proposes an interesting theoretical question: how

can we derive an estimation of the sum from such weighted samples? Does it improve

sample complexity over uniform sampling?

We design an algorithm for sum estimation with Õ(
√

n) samples using only linear

weighted sampling. Furthermore, if we use both uniform sampling and linear weighted

sampling, we can further reduce the number of samples to Õ( 3
√

n) samples. Our

algorithm assumes no prior knowledge about the input distribution. We also show the

two estimators are almost optimal by proving lower bounds on the sample complexity

of Ω(
√

n) and Ω( 3
√

n) respectively.

Finally, we show a negative result that more general weighted sampling methods,

where the probability of sampling a variable can be proportional to any function of its

value, do not yield better estimators: we prove a lower bound of Ω( 3
√

n) samples for
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any reasonable sum estimator, using any combination of general weighted sampling

methods. This implies that our sum estimator combining uniform and linear weighted

sampling is almost optimal (up to a poly-log factor), hence there is no need to pursue

fancier sampling methods for the purpose of estimating sum.

We present the sum estimators and hardness results in Chapter 3. This is joint

work with Rajeev Motwani and Rina Panigrahy, originally published in [MPX07].

1.2 Webgraph Models

As we see from Part I, the Web is so large that even estimating its size is a hard

problem, not to mention more complicated measurement and computation. Webgraph

models are succinct ways of representing the Web graph while capturing its essential

characteristics. A random graph model is a stochastic process that generates random

graphs; in other words, it defines a probability distribution on graphs. And webgraph

models are random graph models that generate graphs that with high probability

preserve the most important characteristic of the Web graph, such as the power law

degree distribution, the transitivity effect, the small world phenomenon.

We want to point out that social networks, a family of fast expanding networks

on the Web, are observed to behave very similar characteristics as the Webgraph, so

scientists use the same random graph models also for social networks. In this thesis

we will use the term “webgraph models” to refer to models for both the Web graph

and social networks.

Webgraph models are extremely useful theoretical tools both for researchers and

for practitioners. They help scientists to develop a deep understanding of the un-

derlying evolutionary process that shapes the Web and social networks, and to pre-

dict future development and behaviors. The models are also useful for practitioners.

Due to the massive size of the Web and social networks, it is prohibitively slow and

resource-consuming to run any computation or analysis of the entire Web. With we-

bgraph models we can carry out analysis on the models; we can also use the models

to generate synthetic data sets with reasonable sizes for testing and simulation.

We very briefly review the history of research on webgraph models.
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The first random graph model dates back to 1959 due to Erdős and Rényi [ER59].

The Erdős-Rényi model defines a graph with n vertices, each potential edge existing

independently with probability p. The Erdős-Rényi model is mainly of pure mathe-

matical interests. It is far away from the Webgraph (as it is published long before the

Web emerges); for example, its degree sequence follows a Poisson distribution rather

than the power law distribution as in the Web graph.

The preferential attachment model by Barabási and Albert [BA99] is generally

considered as the first model for Webgraph. This is an evolutionary model where

vertices and edges are added to the graph one at a time, and the probability that a

new edge is attached to an existing vertex depends on the current degree of the vertex.

The model is very well received because it defines a dynamic process which gives rise

to the power law degree distribution. In the next year, Kumar et al. independently

proposed the copying model with similar spirit and presented a rigorous analysis of

the degree distribution [KRR+00].

The last decade witnessed a prosperity of research on webgraph models. I feel the

research effort in this area can be divided into three main directions:

1. After observing a property of the real world Webgraph or social network graphs,

use graph models to explain the underlying process that gives rise to this phe-

nomenon, or characterize graphs that share such property. For example, the

preferential attachment model explains the formation of power law degree dis-

tribution; Leskovec et al. discover that many real world graphs get denser over

time with shrinking diameters, and explain this phenomenon with hierarchical

graph models [LKF05]; after Kleinberg asserts that the social networks have

a “searchable” property that a decentralized search algorithm can find short

routing paths without global knowledge of the graph [Kle00, Kle01], Duchon et

al. identify a wide class of graphs with such searchability [DHLS06].

2. Propose new webgraph models or extend existing models, and analyze its prop-

erties. After the seminal work of preferential attachment model and copying

model, a lot variations and extensions have been proposed to enhance the ba-

sic model, such as allowing deletion of edges and nodes, associating quality or
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fitness to nodes, changing the function of how the linking probability depends

on the degree (see for example [GB01, DEM01, PRU02, CF03]). There are also

static models where the vertex set is fixed and edges are generated according

to certain distribution, such as configuration model [ACL00], Kronecker graphs

[LCKF05, MX07], random dot product graphs [YS07].

3. Apply webgraph models to study real world applications. For example, Berger

et al. uses the preferential attachment model to study the spread of viruses

in networks [BBCS05]; Motwani and Xu use the preferential attachment with

fitness model to study the impact of ranking algorithms on the evolution of

webpage popularity [MX06].

My research expands all those three directions. The second part of the thesis

includes three projects on webgraph models: in the first direction, we give a simple

characterization of graphs that are searchable, and use this characterization to show a

monotonicity property (Chapter 4); next, we analyze the properties of a graph model

called stochastic Kronecker models (Chapter 5); finally, we use random graph models

to study link privacy in social networks (Chapter 6).

1.2.1 Deterministic Decentralized Search in Random Graphs

Since Milgram’s famous “small world” experiment [Mil67], it has generally been un-

derstood that social networks have the property that a typical node can reach any

other node through a short path (the so-called “six degrees of separation”). An impli-

cation of this fact is that social networks have small diameter. Many random graph

models have been proposed to explain this phenomenon, often by showing that adding

a small number of random edges causes a highly structured graph to have a small

diameter (e.g., [WS98, BC88]). A stronger implication of Milgram’s experiment, as

Kleinberg observed [Kle00], is that for most social networks there are decentralized

search algorithms that can find a short path from a source to a destination without

a global knowledge of the graph. As Kleinberg proved, many of the random graph

models with small diameter do not have this property (i.e., any decentralized search al-

gorithm in such graphs can take many steps to reach the destination), while in certain
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graph models with a delicate balance of parameters, decentralized search is possible.

Since Kleinberg’s work, there have been many other models that provably exhibit the

searchability property [KLNT06, Fra05, Sli05, LNNK+05, Kle01, DHLS06]; however,

researchers still lack a good understanding of what contributes to this property in

graphs.

We look at a general framework for searchability in random graphs. We consider

a general random graph model in which the set of edges leaving a node u is inde-

pendent of that of any other node v 6= u. This framework includes models such as

the directed variant of the classical Erdős–Rényi graphs [ER59], random graphs with

a given expected degree sequence (e.g., [CL03]), ACL graphs [ACL00], long-range

percolation graphs [Kle00], hierarchical network models [Kle01], and graphs based on

Kronecker products [LCKF05, ACK+07], but not models such as preferential attach-

ment [BA99] in which the distribution of edges leaving a node is dependent on the

other edges of the graph. It is worth noting that, in a random graph model where

edges can have arbitrary dependencies, the search problem includes arbitrarily dif-

ficult learning problems as special cases, and therefore one cannot expect to have a

complete characterization of searchable graphs in such a model.

We restrict the class of decentralized search algorithms that we consider to de-

terministic memoryless algorithms that succeed in finding a path to the destination

with probability 1. This is an important class of search algorithms, and includes the

decentralized search algorithms used in Kleinberg’s work on long-range percolation

graphs and hierarchical network models. For this class, we give a simple characteriza-

tion of graphs that are searchable in terms of a node ordering property. We will use

this characterization to show a monotonicity property for searchability: if a graph is

searchable in our model, it stays searchable if the probabilities of edges are increased.

We present the results in detail in Chapter 4. This is joint work with Esteban

Arcaute, Ning Chen, Ravi Kumar, David Liben-Nowell, Mohammad Mahdian and

Hamid Nazerzadeh, originally published in [ACK+07].
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1.2.2 Stochastic Kronecker Graphs

A generative model based on Kronecker matrix multiplication was recently proposed

by Leskovec et al. [LCKF05] as a model that captures many properties of real-world

networks. In the model, each vertex in the graph is labelled by a vector, and edges

between vertices exist with certain probabilities decided by the labels of the two end-

points and an initiator matrix. Leskovec et al. observe that this model exhibits a

heavy-tailed degree distribution, and has an average degree that grows as a power

law with the size of the graph, leading to a diameter that stays bounded by a con-

stant (the so-called densification power law [LKF05]). Furthermore, Leskovec and

Faloutsos [LF07] fit the stochastic model to some real world graphs, such as Inter-

net Autonomous Systems graph and Epinion trust graphs, and find that Kronecker

graphs with appropriate 2× 2 initiator matrices mimic very well many properties of

the target graphs.

Most properties of the Kronecker model (such as connectivity and diameter) are

only rigorously analyzed in the deterministic case (i.e., when the initiator matrix is a

binary matrix, generating a single graph, as opposed to a distribution over graphs),

and empirically shown in the general stochastic case [LCKF05].

We analyze some basic graph properties of stochastic Kronecker graphs with an

initiator matrix of size 2. This is the case that is shown by Leskovec and Falout-

sos [LF07] to provide the best fit to many real-world networks. We give necessary

and sufficient conditions for Kronecker graphs to be connected or to have giant com-

ponents of size Θ(n) with high probability2. Our analysis of the connectivity of

Kronecker graphs is based on a general lemma about connectivity in general random

graphs that might be of independent interest. We prove that under the parameters

that the graph is connected with high probability, it also has a constant diameter with

high probability. This unusual property is consistent with the observation of Leskovec

et al. [LKF05] that in many real-world graphs the effective diameters do not increase,

or even shrink, as the sizes of the graphs increase, which is violated by many other

random graph models with increasing diameters. We also show that Kronecker graphs

2Throughout the thesis by “with high probability” we mean with probability 1− o(1).
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are not “searchable” even with randomized routing algorithms – they do not admit

short (poly-logarithmic) routing paths by decentralized routing algorithms based on

only local information. Finally, we extend the results to an alternative model where

the labels of vertices are chosen randomly.

We present the results in detail in Chapter 5. This is joint work with Mohammad

Mahdian, originally published in [MX07].

1.2.3 Link Privacy in Social Networks

Participation in online social networks is becoming ubiquitous in the last couple of

years. A major part of the value for a user of participating in an online social network

such as LinkedIn, or a web-service with an online community such as LiveJournal, lies

in the ability to leverage the structure of the social network graph. For example, one

can find potential friends in the local neighborhood – this has become a new feature

recently pushed out by Facebook.

However, knowledge of this social graph by parties other than the service provider

opens the door for powerful data mining, some of which may not be desirable to the

users. The more information a social network reveals to its users, the more vulnerable

it is to privacy attacks. Hence, social networks are inevitably facing the dilemma of

providing utility and protecting privacy.

There are many ways the privacy of social networks may be tampered. In our work,

we focus on a particular type of privacy we call “link privacy”, where relationship

between users is sensitive to privacy concerns, and the link information is a valuable

asset to the user and to the network owner. In such networks, a user is typically

permitted only limited access to the link structure. For example, a LinkedIn user can

only see the profiles and friends lists of his friends and the profiles of friends of friends.

As people are becoming more and more aware of personal privacy, more and more

social networks choose to opt in this kind of privacy setting. However, even though

each user is given access only to a small part of the social network graph, a resourceful

adversarial entity could try to stitch together local network information of different

users in order to gain global information about the social graph. We focus on the
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case in which an attacker, whose goal is to ascertain a significant fraction of the links

in a network, obtains access to parts of the network by gaining access to the accounts

of some select users. This is done either maliciously by breaking into user accounts

or by offering each user a payment or service in exchange for their permission to view

their neighborhood of the social network.

We study that how social networks’ access control policy affects the complexity

of this attack, i.e., depending on the amount of information visible to each individ-

ual user, how many users an adversary needs to subvert to reconstruct a significant

fraction of the entire network structure. We use the Power Law Random Graph

model [ACL00] to theoretically analyze the dependency. The analysis is confirmed

by experiments on both synthetic graphs and real world social networks.

We describe both experimental and theoretical results in Chapter 6. This is joint

work with Aleksandra Korolova, Rajeev Motwani and Shubha Nabar, originally pub-

lished in [KMN08].
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Measuring the Web Size
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Chapter 2

Estimating Index Sizes via Queries

The subset of the Web that is indexed by major search engines (so called “indexable

web” [Sel99, GS05]) is an important subset of the Web that is most easily accessible to

human users, therefore estimating index sizes of search engines is of scientific interests

to understand the Web size. Index size is also an important indicator of search engine

performance. In recent years there has been much speculation about the sizes of the

indexes of major search engines with Google, Yahoo and MSN Search vying for top

spot. The question of which search engine provides the most coverage is thus of public

interest and there is a need for objective evaluation methods.

The overall quality of a web search engine is determined not only by the prowess

of its ranking algorithm, but also by the caliber of its corpus, both in terms of com-

prehensiveness (e.g. coverage of topics, language, etc) and refinement (e.g. freshness,

avoidance of spam, etc). Obviously, comprehensiveness is not the same as size —

for instance as suggested in [Bro00] one can easily build a public server for 100 bil-

lion pages each representing a random combination of Nostradamus prophecies and

a dedicated search engine can as easily index them, in a feat of utter insignificance.

See also http://searchenginewatch.com/searchday/article.php/3527636 for a

more serious discussion of comprehensiveness versus size.

Nevertheless, the ability to produce accurate measurements of the size of a web

search engine’s corpus, and of the size of slices of the corpus such as “all pages

in Chinese indexed in Yahoo! from US-registered servers,” is an important part of

15
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understanding the overall quality of a corpus. In the last ten years both the scientific

literature and the popular press dealt at length with methodologies and estimates for

the size of the various public web search engines and indirectly, the “size of the web”.

(See Section 2.2.)

Perhaps surprisingly, the problem of estimating the size of a corpus slice is also

important for the owners of search engines themselves. For example, even the simple

problem of efficiently counting the size of a result set raises non-trivial problems. In

fact, Anagnostopoulos, Broder, and Carmel [ABC05] show a Google example using

the queries george and washington where the identity |A ∪B| = |A|+ |B|− |A ∩B|
is off by 25%. (They present an algorithm that enables efficient sampling of search

results, but to our knowledge, the required data structures have not been implemented

in any web search engine.)

Further, the problems worsen when the goal is to estimate the effective size of a

corpus slice; that is, the size of the slice discounted for pages that no longer exist,

have been redirected, do not actually match the query, etc. In this case, even for a

one term query, counting the number of documents in the term posting list gives only

an upper bound of the effective size of the matching set.

An approach initiated by Bharat and Broder [BB98] is to produce only relative

sizes, that is, to estimate the ratio between the sizes of several engines. Their approach

is based on pseudo-uniform sampling from each engine index, first by sampling a query

pool of English words, and then by sampling the results of the chosen query, followed

by a capture-recapture estimate (that is, sample one engine, test containment in the

other); however their method is heavily biased in favor of “content rich” documents

and thus the ultimate results are problematic. This has been recently corrected by

Bar-Yossef and Gurevich [BYG06], who present a truly uniform sampling method

that at least in principle should yield accurate ratios, but their method still needs to

test containment, a non trivial procedure that introduces biases of its own. Note also

that both the Broder and Bharat algorithm, as well as the Bar-Yossef and Gurevich

algorithm yield only documents that match at least one query from their query pool,

so in fact they only estimate the relative sizes of a certain subset of the corpus.

Estimating absolute corpus sizes appears to be a more difficult task. Previous work
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[LG98, BB98] has had to fall back on sources other than public query interfaces, such

as http://searchenginewatch.com/reports/article.php/2156481 and http://

searchengineshowdown.com/stats, or has had to trust the corpus size reported

by search engines themselves. In this chapter we propose techniques for estimating

absolute corpus sizes without such additional sources.

To sum up, the ability to estimate the size of the corpus and of its various slices

is important in understanding different characteristics and the overall quality of the

corpus. A method for estimating absolute corpus size using a standard query inter-

face can lead to methods for estimating the corpus freshness (i.e., fraction of up-to-

date pages in the corpus), identifying over/under-represented topics in the corpus,

measuring the prevalence of spam/trojans/viruses in the corpus, studying the com-

prehensiveness of the crawler that generated the corpus, and measuring the ability of

the corpus to ably answer narrow-topic and rare queries [BYG06]. Finally, relative

corpus size estimates offers competitive marketing advantage and bragging rights in

the context of the web search engines.

This chapter is organized as follows. We give an overview of our methods and

results in Section 2.1. Section 2.2 discusses the related work on corpus size estima-

tion and sampling random documents from a corpus. Section 2.3 presents the basic

estimator and a variance reduction method. Section 2.4 presents our two approaches

for corpus size estimation using the basic estimator. Section 2.5 contains the experi-

mental results for a large TREC collection and Section 2.6 contains the experimental

results for three major search engines. Section 2.7 summaries the chapter.

2.1 Methods and Results

Our method has two parts. First, we give a technique to count the size of specific

broad subsets of the entire document corpus. Second, we show how to use this

technique to generate an estimate of the size of the entire corpus.
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2.1.1 Counting Specific Subsets

We begin our discussion of the method with an example. Assume that we wish to

count the number of pages that contain an eight-digit number. A natural approach

would be to produce a random sample of, say, 1 out of every 100,000 such numbers.

One could then submit a query to a search engine for each number in the sample, count

up the number of resulting documents, and multiply by 100,000. Unfortunately, some

documents could contain many eight-digit numbers, and might therefore be counted

multiple times by this procedure.

Let us modify the scheme as follows. Any document containing at least one eight-

digit number should contribute 1 to the total count of documents in the set. But if a

certain document d contains k different eight-digit numbers, we will allocate its total

count of 1 by distributing 1/k to each of the eight-digit numbers it contains. In the

previous scheme, when d is returned in response to a certain query, it contributes 1

to the overall count; in the new scheme it will contribute 1/k, which is the reciprocal

of the number of eight-digit numbers on the page.

Under the new scheme, we again take a sample of eight-digit numbers and submit

each as a query. We then add up for each result document the reciprocal of the

number of eight-digit numbers in that result document, and again multiply the final

sum by 100,000. This new value is easily seen to be an unbiased estimator of the

total number of documents; we provide a formal proof in Section 2.3.

More generally, our basic estimator allows us to count many different subsets DA

of the entire corpus D. The scheme will apply whenever DA has two properties: first,

a query pool A can be defined such that DA is the union of the results of all queries in

the pool A. And second, for any document, it is possible to determine efficiently how

many queries from the query pool would have produced the document as a result.

We have seen eight-digit numbers as an example query pool. One could also

employ queries chosen carefully from a query log. We will also consider approaches to

modifying the query pool on the fly in order to reduce the variance of the estimator.

Finally, the techniques also allow us to filter the results of each query on the fly, for

example, by entirely removing documents that contain more than maximum threshold

number of query terms from the pool, or that do not conform to a certain target
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length, specified as a range of bytes. The flexibility of the estimator is key to its

power, as many issues that arise in the real world may be addressed by modifying the

definition of DA.

2.1.2 Employing the Basic Estimator

We have now defined a basic estimator to count the size of a subset DA of the total

corpus. This estimator may be used in many ways to perform counts of corpus sizes.

The first method involves a random sample of the documents in a corpus, and an

efficient function to determine whether a particular document belongs to DA. Given

this, we may simply estimate from the random sample the probability pA that a

document from the corpus belongs to DA, and estimate the overall corpus size as

|DA|/pA. We show in our experiments that this approach can provide very accurate

measurements with quite reasonable sample sizes.

Nonetheless, it is quite difficult to generate a random sample of pages on the

web, despite the efforts of many authors. Worse yet, when a technique is chosen

and applied, there are no clean approaches to estimating the quality of the resulting

sample, and so the sample bias cannot be understood. Even worse, because the

problem of evaluating the quality of a random sample is so difficult, there has been

very little academic work even to understand the extent to which techniques for

generating random samples deviate from uniform.

Our basic estimator may also be applied in a second way to estimate the size

of a corpus, without the presence of a random sample. We must resort to another

assumption about the corpus, but one that is quite different from the assumption

that a particular technique generates a uniform random sample. We assume that

there are two query pools A and B that produce independent subsets DA and DB of

the corpus. Note that independence here is different from disjointness. DA and DB

may share documents, but the fraction of documents that belong to DA should be

the same whether we consider the entire corpus, or just DB. If this is true, we may

estimate the size of the corpus as |DA| · |DB|/|DA ∩DB|.
The accuracy of this method depends heavily on the independence assumption, a
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crucial question in all probabilistic IR models. If the terms are correlated then we can

only produce bounds based on their correlation. The following example might help

build the reader’s intuition for this issue. Assume that we apply our method using

two sets of perfectly independent English terms and get a very accurate estimate

of corpus size. Now the engine owners double its size by adding a large number of

Chinese pages. If we repeat our experiments we will report the same number as before

(since we will never or seldom see a Chinese page), even though the engine size has

doubled. What happened? Well, our term sets used to be independent in the old

corpus but now they are correlated: if we choose a page from DA, it is now more

likely to belong also to DB just by dint of being in English.

This might seem as a limitation of our method, but in fact all query based es-

timation methods proposed so far suffer from this query vocabulary bias, and the

contribution of our paper is to give a methodology where this bias can be correctly

quantified by relating it to a fundamental concept in probabilistic information re-

trieval [vR79].

In some ways, the meaning of uncorrelated sets is a philosophical one. The esti-

mator may be viewed as returning an estimate of that part of the corpus in which

A and B are uncorrelated. While we do not advocate this perspective, we observe

that if the sets are chosen appropriately, this may be the part of the engine of most

interest from a measurement standpoint or it can be used to infer the relative sizes

of search engines.

2.1.3 Experimental Results

We first apply our methods to a large TREC collection consisting of over 1.2 million

documents. Since we know the exact corpus size, these experiments are designed

to demonstrate the effectiveness of our methods. We choose the query pool to be

the set of all five-digit numbers. For the approach using random document samples,

we obtain fairly high accuracies even with small number of samples. The error is

significantly reduced when we modify the query pool to discard the most frequent

terms in the query pool. We also estimate the corpus size using two uncorrelated
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query pools: set of five-digit numbers and a set of medium frequency words.

We then apply our methods to the Web by estimating what we call the “visible”

corpus size of three major search engines. We choose the query pool to be the set of

all eight-digit numbers and use this to estimate the visible corpus size. We also apply

the two uncorrelated query pools approach: set of eight-digit numbers and a set of

medium frequency words.

2.2 Related Work

Bharat and Broder [BB98] estimated the relative sizes of search engine indexes by

testing the containment of pseudo-uniform samples from engine indexes. They sam-

pled the content of search engines using conjunctive and disjunctive queries composed

of terms extracted from pages of the Yahoo! Directory. From a lexicon of 400K words,

terms were combined to form around 35K queries. The sample consisted of one ran-

dom URL chosen from the first 100 results returned by each queries. The fraction of

the sampled pages from one search engine that are also present in the index of an-

other search engine gives an estimate of the overlap between the two. The paper also

estimates a search engine’s coverage of the whole web from overlaps of pairs of search

engines. A known problem with this technique is that it is biased toward content-rich

pages with high rank.

The same year, Lawrence and Giles [LG98] reported size estimates by comparing

query results based on a log of queries submitted to a search engine. They retrieve

the entire list of matching documents from all engines and then retrieve all of the

individual documents for analysis. To avoid bias toward highly ranked pages, they

use only 575 queries for which all search engines retrieve all the results. However

such query sampling does not provide a uniform random sample of the pages in the

corpus. Later in [LG00], the authors extend the results and provide some other

interesting statistics about search engine corpora and the accessible web. A big

problem associated with directly comparing query results is that the approach is

highly dependent on the underlying IR techniques used by the search engine to answer

queries.
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Guli and Signorini [GS05] repeated Bharat and Broder’s experiments using Open

Directory (www.dmoz.org) as source of keywords. They also used a modified technique

to combine more than 2M terms into queries.

A core primitive in search engine size estimation is a way to obtain a uniform

sample from its corpus using the query interface. Several papers report techniques

to uniformly sample a search engine corpus using only the public query interface

[BYBC+00, HHMN00, LG98, RPLG01, BYG06]. Many of them are based on random

walks. A good survey of the methodologies and techniques used for the Web size and

search engine size estimation is in [BI06].

Recently, Bar-Yossef and Gurevich [BYG06] propose two new methods to obtain

an unbiased sample of a search engine corpus. The first method is based on sampling,

where queries are generated as word phrases from a corpus of documents and queries

that return too many results are rejected. At a very high level, the analytic ideas in

this method are similar to ours. The second method is based on random walks on

documents and terms, but suitably unbiased using statistical techniques in order to

produce a provably uniform document sample.

An interesting related issue is the study of mirrored hosts or duplicate pages and

there has been much work done in this area; see, for instance, [BB99, BBDH00].

Duplication is an important issue affecting the search quality of search engines, but

the focus of this paper will be on size estimates.

Liu, Yu, and Meng [LYM02] propose a method for estimating the corpus size based

on the idea of two independent sets. Let D1 and D2 be two independent random

sample of documents and let D3 = D1 ∩D2. The search engine size is then estimated

to be |D1||D2|/|D3|. This idea is somewhat related to our method of uncorrelated

query pools.

Callan and Connell [CC01] proposed query-based sampling in the context of dis-

tributed information retrieval for acquiring “resource descriptions” that accurately

represent the contents of each database without relying on their internals. This work

is related to ours since we try to estimate corpus size based only on the search engine’s

public API. Wu, Gibb, and Crestani [WGC03] propose methods for estimating and

maintaining archive size information.
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2.3 Basic Methods

In this section we discuss the basic estimator that will be the backbone of all our

approaches. The mean of this unbiased estimator can be related to the corpus size.

We assume that the index supports the basic query interface: given a query, return

all the documents that match the query.

The first naive idea would be to use random queries and construct an estimator

based on the number of documents returned for such queries. Unfortunately, this

does not work, the difficulty being that there is no way of knowing the universe of

all queries. Without this knowledge, it may not be possible to obtain an unbiased

estimator.

We circumvent this difficulty by working with a known and fixed set of queries,

called a query pool. For simplicity of exposition, we assume that each query is just

one term. However, our methods will apply to any query pool that satisfies two

conditions: first, the size of the pool should be known, and second, it should be

possible to determine for any document how many queries in the pool match this

document. We show (Lemma 1) how to construct an estimator whose mean is the

number of documents in the corpus that match at least one query from this query

pool.

Notation. Let D be the set of documents. We treat documents as a set of terms and

use the notation “a ∈ d” to indicate that a term of query a occurs in the document

d.

A query pool is a set of terms. For a query pool A, let DA ⊆ D be the set of

documents such that every document in DA contains at least one term in A. Define

the weight of a document d ∈ DA with respect to A to be the inverse of the number

of terms in A that occur in the document, i.e.,

wA
d =

1

|d ∩ A| . (2.1)

The definition of DA guarantees that all weights are finite. The weight of a query a

with respect to A is simply the weight of all documents containing the query, defined
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as follows:

wA
a =

∑
d∈DA:

d3a

wA
d . (2.2)

2.3.1 Basic Estimator

Intuitively, if we encounter a document d which contains many query terms, each

term should be given only partial credit for the document. Thus, we define our basic

estimator as follows:

WA,D = Ea∼A[wA
a ], (2.3)

i.e., the average weight of a query with respect to A.

We now show that this quantity times |A| is an unbiased estimator of the number

of documents containing at least one term in A.

Lemma 1.

WA,D =
|DA|
|A| .

Proof.

|A| ·WA,D
(2.3)
= |A| · Ea∈A




∑
d∈DA:

d3a

wA
d




=
∑
a∈A

∑

d∈DA,d3a

wA
d

swap
=

∑

d∈DA

∑

a∈A,a∈d

wA
d

=
∑

d∈DA

wA
d

( ∑

a∈A,a∈d

1

)

(2.2)
=

∑

d∈DA

1

= |DA|.
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Thus, Lemma 1 guarantees an unbiased estimator whose mean is |DA|/|A|. By

sampling the query pool uniformly at random, |DA| can be estimated. We now discuss

the issues in sampling.

2.3.2 Sampling

All the estimators such as WA,D can be estimated by the usual sampling techniques.

We will illustrate the method to estimate WA,D. Let X be the random variable

given by
∑

d∈DA,d3a wA
d , where the query a is chosen uniformly at random from the

query pool A. Clearly E[X] = WA,D. We pick k terms a1, . . . , ak independently and

uniformly at random from A and estimate the quantity Xi =
∑

d∈DA,d3ai
wA

d for each

of the ai’s. We then compute an averaged estimator X by averaging X1, . . . , Xk. It is

easy to see that E[X] = E[X] = WA,D. Using Chebyshev’s inequality, it follows that

Pr[|X − E[X]| ≥ εE[X]] ≤ 1

k

(
var[X]

ε2E2[X]

)
.

Using this expression, if k ≥ (10/ε2)var[X]/E2[X] for instance, then with probability

at least 0.1, the averaged estimator X approximates WA,D to within factor (1±ε). To

boost the probability of success from 0.1 to 1− δ for an arbitrary δ, we can compute

O(log 1/δ) such averaged estimators and take their median value.

Ideally, we wish to make k as small as possible. To be able to do this, we need

to make sure that E[X] is not too small. For instance, this means that we cannot

pick the query pool A to be terms that occur very rarely, since this will make the

estimation of pA harder. The second point to note is that if the variance var[X] is

large, then it implies that k has to be large. We address the second issue in greater

detail in the next section.

2.3.3 Variance Reduction

The variance of the random variable X can be very large. As an example, consider

the following extreme scenario. The query pool A decomposes into A1 and A2 so that

|A1| ¿ |A2| but each a1 ∈ A1 occurs in a large number of documents in DA and each
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such document contains only terms in A1. Consequently, the contribution to WA,D by

a1 ∈ A1 is large. However, few random samples from A will hit A1, owing to its small

cardinality. Therefore, the number of samples need to be high. In other words, the

distribution corresponding to X can have a heavy tail and we need a lot of samples

to hit the tail (we give some evidence of this in Figure 2.1).

We now illustrate a generic method to ameliorate the problem: identify the tail

and truncate it. Let A′ ⊂ A be those queries whose weights contribute to the tail of

X of mass β; random sampling of documents in D, once again, can be used to identify

candidate queries in A′. We then redefine a new query pool Ã such that Ã = A \A′.

The hope is that the random variable WÃ,D has lower variance than WA,D. We now

proceed to formalize this and analyze conditions under which truncation of a random

variable causes its variance to reduce.

Notation. Let f be a probability distribution on an ordered domain U and let the

random variable X ∼ f . Consider the conditional random variable Y = X | X < τ ,

i.e., its distribution f |<τ is given by truncating f at τ and rescaling by the conditional

mass PrX∼f [X < τ ]. We would like to study var[Y ] vs. var[X].

If f can be arbitrary, then there can be no relationship between var[X] and var[Y ].

It is straightforward to construct an f such that var[Y ] < var[X]. With little effort,

we can also construct an f such that var[Y ] > var[X]. Let f be a distribution with

support of size three given by f(−ε) = f(ε) = δ/2 and f(1) = 1 − δ, for parameters

0 < ε, δ < 1 to be specified later. Let τ = 1 be the threshold. Let X ∼ f and let

Y = X | X < τ . Now, it is easy to see that E[X] = 1− δ and E[X2] = (1− δ) + δε2

and so

var[X] = (1− δ) + δε2 − (1− δ)2 = δ(1− δ + ε2).

On the other hand, E[Y ] = 0 and var[Y ] = E[Y 2] = ε2. Hence, if ε >
√

δ, we can

achieve var[Y ] > var[X].

However, if f is monotonically non-increasing, then we show that var[Y ] ≤ var[X],

i.e., truncation helps to reduce variance. In fact, in the extreme case, truncation can

turn infinite variance into finite variance. When the distribution is a power law, we

show a quantitative bound of the reduction in variance.
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Monotone distributions

For simplicity, let us assume f is a discrete monotonically non-increasing distribution.

Without loss of generality, let the support of f be [n] with f(1) ≥ · · · ≥ f(n) and

without loss of generality, let τ = n. Let g = f |<τ , and X ∼ f, Y ∼ g. Notice that

for i = 1, . . . , n− 1, g(i) = f(i)/(1− f(n)). Let µ = E[f ].

Lemma 2. f(n)(n− µ)2 ≥ ∑n−1
i=1 (g(i)− f(i))(i− µ)2.

Proof. First, we show that for 1 ≤ i ≤ n,

(n− µ)2 ≥ (i− µ)2, (2.4)

or equivalently, µ ≤ (1 + n)/2. Without loss of generality, assume n is odd and let

n′ = n/2. Let a1 = mini<n′ f(i) = f(bn′c) and let a2 = maxi>n′ f(i) = f(dn′e). Thus,

a1 ≥ a2. Observe that µ = n′ −∑
i(n

′ − i)f(i) and

∑
i

(n′ − i)f(i) =
∑

i>n′
(n′ − i)f(i)−

∑

i<n′
(i− n′)f(i)

≥
∑

i>n′
(n′ − i)a2 −

∑

i≤n′
(i− n′)a1

= (a2 − a1)
∑

i<n′
(n′ − i)

≥ 0,

and thus, µ ≤ n′ = n/2, establishing (2.4). Finally,

n−1∑
i=1

(g(i)− f(i))(i− µ)2

(2.4)

≤
n−1∑
i=1

(g(i)− f(i))(n− µ)2

= (n− µ)2

n−1∑
i=1

(g(i)− f(i))

= (n− µ)2f(n).
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Lemma 3. var[Y ] ≤ var[X].

Proof.

var[X] =
n∑

i=1

f(i)(i− µ)2

=

(
n−1∑
i=1

f(i)(i− µ)2

)
+ f(n)(n− µ)2

Lemma 2≥
n−1∑
i=1

f(i)(i− µ)2 +
n−1∑
i=1

(g(i)− f(i))(i− µ)2

=
n−1∑
i=1

g(i)(i− µ)2

(∗)
≥

n−1∑
i=1

g(i)(i− E[g])2

= var[Y ],

where (*) follows since the convex function
∑

i g(i)(i − y)2 is minimized at y =

E[g].

Power law distributions

We consider the important case when f is given by a power law. In this case we obtain

a quantitative bound on the reduction of the variance. For simplicity, we assume that

f is a continuous distribution defined on [1,∞). Let f(x) = Pr[X = x] = αx−α−1 for

some α > 1; the cumulative distribution function of X is then Pr[X ≤ x] = 1− x−α.

Suppose we discard the β fraction of the mass in the tail of of X, i.e., let x0 be

such that ∫ ∞

x0

αx−αdx = β.

Since β = Pr[X > x0] = x−α
0 by definition, we get

x0 = β−1/α. (2.5)
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Let Y be the random variable truncated at x0 and rescaled by 1/(1−β). We first

show the following useful inequality.

Lemma 4. (1− β)(1− β1−2/α) ≤ (1− β1−1/α)2.

Proof.

(1− β)(1− β1−2/α) = 1− β − β1−2/α + β2−2/α

am−gm

≤ 1− 2
√

β · β1−2/α + β2−2/α

= 1− 2β1−1/α + β2−2/α

= (1− β1−1/α)2.

Lemma 5. If α ≤ 3, then var[X] = ∞ � var[Y ]. If α > 3, then var[Y ] ≤ ((1 −
β1−1/α)/(1− β))2var[X] ≤ var[X].

Proof. The easy case is when α ∈ (2, 3], in which case var[X] = ∞ � var[Y ]. For the

rest, we will assume α > 3.

E[X] = α/(α− 1) and E[X2] = α/(α− 2) and so,

var[X] =
α

(α− 2)(α− 1)2
. (2.6)

By integrating the pdf of Y from 0 to x0 and using the value of x0 from (2.5), we

obtain

E[Y ] =
α

(1− β)(α− 1)
(β1−1/α − 1),

and

E[Y 2] =
α

(1− β)(α− 2)
(β1−2/α − 1),

from which,

var[Y ] =
α

(1− β)(α− 2)
(β1−2/α − 1)

− α2

(1− β)2(α− 1)2
(β1−1/α − 1)2. (2.7)
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Finally, using (2.6) and (2.7),

var[Y ]
var[X]

=
(α− 2)(α− 1)2

(1− β)

(
1− β1−2/α

α− 2
− α(1− β1−1/α)2

(1− β)(α− 1)2

)

=
(α− 1)2(1− β)(1− β1−2/α)− α(α− 2)(1− β1−1/α)2

(1− β)2

Lemma 4≤ (1− β1−1/α)2

(1− β)2
· ((α− 1)2 − α(α− 2))

=

(
1− β1−1/α

1− β

)2

.

Notice that since 0 < β < 1 and α > 0, we have 0 < β ≤ β1−1/α < 1.

2.4 Applications of the Basic Estimator

Recall that our goal is to devise a method to estimate the corpus size, i.e., the number

of documents in a search engine corpus. In this section we present two algorithms that

achieve this goal. The two algorithms are based on different assumptions about the

capabilities of the index. In the first algorithm, we assume that a uniform random

document can be obtained from the corpus. In the second algorithm, we do away

with the uniform document sampleability assumption, but instead use a different

assumption, which will be evident from the description below.

2.4.1 Corpus Size via Random Documents

Suppose we can obtain a uniform random sample of documents in D. Then, using

such a sample, we can estimate the fraction of documents in D that are also in DA.

Then, using DA and Lemma 1, we can estimate the corpus size.
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Corollary 6. If pA = |DA|/|D|, then

|D| = |A|
pA

·WA,D.

Thus, by estimating pA via the random sample of documents, we can estimate the

corpus size.

2.4.2 Corpus Size via Uncorrelated Query Pools

Second, suppose uniform random sampling of documents in the corpus is not possible.

We show that even under this constraint, the corpus size can be estimated provided

we make assumptions about the query pool. The core idea is to use an additional

query pool B with the property that B is reasonably uncorrelated with respect to

A in terms of occurrence in the corpus (Corollary 8). In other words, we use the

independence of the query pools A and B.

Let A, B be two query pools. Let DAB ⊆ D be the set of documents that contain

at least one term in A and one term in B. Then, from Lemma 1, we have

Corollary 7.

|DAB|
|A| = WAB,D = Ea∈A




∑
d∈DAB

d3a

wA
d




Here, notice that the summation is over all documents d that contain a and at

least one term in B, i.e., the documents are “filtered” by the query pool B. Thus,

Corollary 7 can be used to estimate |DAB|.
The significance of Corollary 7 is that it lets us estimate |D| without using any

random access to documents in D, modulo appropriate assumptions on A and B.

Suppose A and B are uncorrelated, i.e., Pr[d ∈ DA | d ∈ DB] = Pr[d ∈ DA] = pA,

then it is easy to see

Corollary 8. If A and B are uncorrelated set of terms, then

|D| = |DA| · |DB|
|DAB| .
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Thus, Corollary 8 can be used to estimate the corpus size without resorting to

sampling documents in the corpus uniformly at random.

While Corollary 8 is very attractive if the query pool A and B are perfectly

uncorrelated, in practice it may be hard to construct or obtain such sets. However,

we observe even if the set of terms A and B are correlated, the measure of correlation

directly translates to the quality of approximation of the corpus size. More precisely,

let pA|B denote Prd∈D[d ∈ DA | d ∈ DB]. If c1pA ≤ pA|B ≤ c2pA for some non-zero

constants c1 ≤ c2, then it follows along the lines of Corollary 8 that

c1
|DA| · |DB|
|DAB| ≤ |D| ≤ c2

|DA| · |DB|
|DAB| .

2.5 Experiments on TREC

In this section we present our experiments on the TREC collection.

2.5.1 Data and Methodology

The document set D consists of 1,246,390 HTML files from the TREC .gov test

collection; this crawl is from early 2002 (ir.dcs.gla.ac.uk/test_collections/

govinfo.html). Our methodology is to first define a query pool, pick sufficiently

many sample terms from this query pool, query the index for these sample terms,

and then compute the weight of the sample query terms according to (2.3). All our

sampling is done with replacement. For all the experiments, we compute 11 averaged

estimators as discussed in Section 2.3.2 and the final estimate is the median of these

11 averaged estimators. We preprocess the entire data by applying lynx on each of

the files to process the HTML page and output a detagged textual version. This is so

that the meta-data information in the HTML files is not used in the indexing phase.

Moreover, this also serves as a data cleaning phase. We tokenize the documents using

whitespace as the separator.

An important point to keep in mind is a consistent interpretation of a term “oc-

curring” in a document. This plays a role in two different cases. First, in the answers
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returned by the index — the index should return all and only documents in which

the given query term occurs. Second, in the computation of weight of a term in (2.1)

— we need to know how many terms from A occur in the document. The first of

these cases can be handled easily by having a very “strict” definition of “occurring”

and checking to see if each document returned by the index for a given query term

actually contains the term according to the definition of “occurring”. The second

case is trickier, unless we have a reasonable understanding of the way the indexer op-

erates. For sake of this experiment, we adopt the safe approach by hand-constructing

a straight-forward indexer.

2.5.2 Corpus Size via Random Documents

We illustrate the performance of our methods using two different query pools and

random documents from the corpus. For both the query pools A and B, we estimate

pA and pB by examining random TREC documents. The experiment in this case

has been constructed to remove any systematic bias from the estimate of pA and pB

in order to evaluate how well the techniques perform when the random samples are

good.

A = set of five-digit numbers

We choose the first query pool A to be the set of all five-digit numbers, including

numbers with leading zeros. Thus, |A| = 105. Our notion of a term occurring in a

document is governed by the regular expression /^\d{5}$/. This will, for instance,

ensure that 12, 345 or 12345.67 are not valid matches for the term 12345 ∈ A. Under

these definitions, we have |DA| = 234, 014 and so pA = 0.1877 and 94,918 terms in

|A| actually occur in some document in D.

The following table shows the error of results of our experiments with set A. Here,

error is measured relative to |D|, which we know (|D| = 1, 246, 390), as a function of

the number of samples used for each averaged estimator.

Samples 100 500 1000 2000 5000

Error (%) 48.50 37.56 13.31 16.12 6.44
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As we see, the error of the method is quite low.

Variance Reduction. We next investigate whether the performance of this method

can be improved by applying the variance reduction techniques presented in Section

2.3.3. To understand this further, we compute the weights of all terms in A to see

if it indeed has a heavy tail. Figure 2.1 shows the distribution of weights of terms

in the set |A|. From the figure, it is easy to see that the distribution conforms to

a power law (the exponent of the pdf is ∼ -1.05). So, there is hope of improving

Figure 2.1: Distribution of weights of terms in |A|.

the performance of the method by the variance reduction method outlined in Section

2.3.3. To identify the candidate elements in A′ — the terms with highest weights —

we resort to sampling once again. We randomly sample documents from the corpus,

and for each term a ∈ A that occur in a document d, we maintain a histogram of its

weight according to wA
d as in (2.1); note that these weights are in fact approximations

to their actual weights wA
a as in (2.2). We finally sort the terms in decreasing order

of their accumulated weights and declare the terms that contribute to the top 75% of

the weights to be present in A′.
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This operation defines a new query pool A \ A′, upon which our methods apply

as before. Thus, the correctness of this approach is not dependent on the exact

determination of the most frequent terms, or even upon uniform sampling. The

method is always correct, but the variance will only benefit from a more accurate

determination. The results are shown below.

Samples 100 500 1000 2000 5000

Error (%) 14.39 16.77 19.75 11.68 0.39

We can see that overall this method obtains estimates with significantly lower

error, even with few samples.

B = set of medium frequency words

We repeat the same experiments with a different set B of terms. This time we

want to choose B with two properties: none of the terms in B matches too many

documents and B is reasonably large. The former property will reduce the variance of

the sampling steps if the occurrence of terms is correlated positively with the weights.

We provide some evidence towards this. See Figure 2.2. We first extract all terms

in the document set D using whitespace separated tokenization and then we sort the

terms according to their frequency of occurrence. We then pick B to be the terms

(that are not purely numbers) that occur from position 100,000 to position 200,000

in this list. Thus, |B| = 100,000. Under these definitions, we obtain |DB| = 396, 423

and so pB = 0.3180.

Samples 100 500 1000 2000 5000

Error (%) 3.51 3.66 1.24 0.95 1.80

We see that the method performs extremely well and this can be attributed to

our careful choice of the set B. In fact, our experiments showed no appreciable

improvement when we applied the variance reduction method to the set B. This is

to be expected, as B is specifically constructed so that no term occurs significantly

more often than any other term, and so no term will introduce substantial skew into

the measurement.
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Figure 2.2: Correlation of weights and number of occurrences of terms in A.

2.5.3 Corpus Size via Uncorrelated Query Pools

We need to construct query pools A and B that are reasonably uncorrelated. To do

this, we first try A and B as defined before. Since we have the corpus available, we can

actually measure the amount of dependence between the sets A and B. We explicitly

calculate pA|B and pA. The values are pA = 0.1877 whereas pA|B = 0.2628 indicating

some correlation between the term sets. To reduce the correlation, we modify the

sets DA and DB to be slightly different.

We set D′
A to be the set of documents that contain exactly one term from A;

D′
B is defined analogously. We do this in order to reduce the potential correlation

caused by large documents. Using this, we calculate p′A = 0.1219, p′B = 0.1437, and

p′A|B = 0.1455, indicating a significant reduction in correlation.

Modifying Lemma 1, we can estimate |D′
A| and |D′

B|. We use Corollary 7 to

estimate |DAB|. We proceed as before, except that in computing the weight of a

sample term from B, we discard documents that do not contain any term from A.

The following table shows the error of the method.
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Samples 1000 2000 5000

Error (%) 27.64 23.01 21.32

As we see from the results, the method obtain a reasonable estimate of the corpus

size, without using any random sample of documents. Obviously, the accuracy of this

method can be improved if we work with even less correlated query pools.

2.6 Experiments on the Web

In this section we present our experiments on the Web. We used the public interface

of three of the most prominent search engines, which we refer to as SE1, SE2, and

SE3. We present three series of results for the Web. First we use the basic estimator

defined in Section 2.3.1 to compute the relative sizes of the three engines. We then use

the random document approach and the uncorrelated query pool approach defined

in Section 2.4 to compute absolute sizes of the “visible” portion of the engines. (See

below.)

2.6.1 Method

Our methodology for the Web is similar to the one we used for TREC. We first define

a query pool, sample sufficiently many terms from the query pool, and compute the

weights as defined in (2.3). We postprocess the results using lynx to remove the

HTML markup of on each of result pages. Then we compute the weights based on

this cleaned version of the result pages, using whitespace tokenization. We use the

same definition of a term “occurring” in a document as in the TREC experiment —

the cleaned version of the document must contain the queried term. This eliminates

documents in which the query term does not appear in the document, including

documents in which the query term appears only in anchor text, dead pages (404),

and pages that match stemmed versions of the query term. Furthermore, since the

capabilities of lynx as an HTML parser are limited, many pages are “invisible” to our

method, in particular most pages containing Java script, frames, Flash, etc. Thus

the absolute sizes that we are reporting, are only estimates for the sets “visible”
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to our methodology. Assuming that each search engine carries the same proportion

of “visible” pages, we can obtain relative sizes of the search engines, but absolute

estimates are still an elusive goal.

2.6.2 Results

We first compute the relative sizes of engines SE1, SE2, and SE3, using the our basic

estimator. We define A to be the set of all eight-digit numbers, including numbers

with leading zeros, thus, |A| = 108, and follow the approach detailed for the TREC

experiments. The following table shows the results of our experiments with query

pool A.

Engine SE1 SE2 SE3

Samples 3486 3529 3433

WA,D 0.29 0.51 0.08

If we assume that pA is the same for all the three search engines, i.e., that the three

engines index the same proportion of pages with eight-digit numbers, the above values

provide the relative sizes of the engines corpus. However, pA varies from engine to

engine. We used a random sample of pages provided to us by Bar-Yossef and Gurevich

produced according to the random walk approach described in their work [BYG06].

The following table shows pA for the three engines and the sample sizes.

Engine SE1 SE2 SE3

Samples 199 137 342

pA 0.020 0.051 0.008

Using these values, we can easily compute the absolute sizes of the “visible” por-

tion of the three search engines (in billions) as below.

Engine SE1 SE2 SE3

Size 1.5 1.0 0.95

Next, we used the uncorrelated query pool approach to estimate the absolute

corpus sizes. The query pool A is again the set of all eight-digit numbers, and as
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for TREC, we chose the query pool B to be the medium frequency words, which

was determined from a histogram of term counts from the index of one of the search

engines. We assume that these words are also the medium frequency words on the

other two engines. Furthermore, we also verified that when queried, all three engines

always returned less than 1000 results for all our samples from pool B. However, for

the Web there is no straightforward way to verify that pool A and pool B are indeed

independent or to estimate their correlation.

The following table shows the resulting estimates for the “visible” portion of the

three search engines (in billions) using uncorrelated query pools.

Engine SE1 SE2 SE3

Size 2.8 1.9 1.1

As can be readily seen, the estimates are now larger although still much less than

published values for the entire corpus of these engines while the relative sizes are

fairly consistent. The next section explains why this happens.

2.6.3 Discussion and Caveats

Even though our methods are intended to produce absolute estimates for the corpus

size, they are still affected by many idiosyncracies that exist in web documents. Here

we list some of the caveats while drawing conclusions from the results above.

1. Even though our methods are fairly generic, they end up measuring only a

large slice of the corpus (rather than the corpus in its entirety), what we call

the “visible” corpus. In particular, our methods exclude documents in the

so-called frontier. These documents are not indexed in full, nevertheless the

search engine is aware of their existence through anchortext and might return

these documents as results to queries (especially when these queries match the

anchortext). Our method might end up discarding these documents since the

query term may not explicitly occur in the document. Hence, our method

will underestimate the corpus size. A similar comment to the many types of

documents that are not parsed by our HTML parser (lynx). Although lynx
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has the advantage of being very consistent, in future work we intend to use a

more sophisticated parser.

2. Even though we chose our query pools carefully, for about 3% of the queries

in the numbers query pool, the search engines return more than 1000 results.

For such queries, we do not have access to the result documents after the first

1000. Thus in this cases we end up underestimating the weight of the query,

and consequently, the corpus size.

3. Even though the search engine may return fewer than 1000 results for a given

query, to promote diversity, it might restrict the number of results from a single

host/domain. For the engines we tested this limit is set to two results per

host/domain.

4. The number of samples used to estimate pA is fairly small, since these sam-

ples were graciously provided by the authors of [BYG06] and their generation

method is fairly laborious. These samples are uniformly random over a large

portion of the underlying corpus restricted to English documents, namely those

pages that match at least one query from the pool used in [BYG06]. Thus what

we estimate using these samples, is the number of “visible” pages that match at

least one query from the pool used in [BYG06], which is restricted to English

only. This explain why these estimates are substantially lower than the second

set of estimates, while the relative sizes are fairly consistent.

5. In the uncorrelated query pool approach, our choice of the query pool B has a

natural bias against non-English documents. In other words, the pools A and

B are presumably uncorrelated only with respect to the English portion of the

corpus. Once again, this will result an underestimate of the actual corpus size.

For instance the addition of one billion pages in Chinese that do not contain

contiguous eight digit strings would be invisible to our approach.
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2.7 Summary

In this chapter we addressed the problem of estimating the index size of a search engine

given access to only public query interface. We constructed a basic estimator that can

estimate the number of documents in the corpus that contain at least one term from a

given query pool. Using this estimator, we compute the corpus size using two different

algorithms, depending on whether or not it is possible to obtain random documents

from the corpus. While the ability to randomly sample the corpus makes the problem

easier, we show that by using two query pools that are reasonably uncorrelated, it

is possible to obviate the need for random document samples. En route, we also

obtain a novel way to provably reduce the variance of a random variable where the

distribution of the random variable is monotonically decreasing; this technique may

be of independent interest.

We applied our algorithms on the TREC collection to measure their performance.

The algorithms that uses random document samples perform quite well as expected.

More surprisingly, by carefully constructing query pools that are reasonably uncorre-

lated, we show that it possible to estimate the corpus size to modest accuracies. We

also apply our algorithms to estimate the “visible” corpus size of major web search

engines.
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Chapter 3

Estimating Sum by Weighted

Sampling

Estimating Web size or search engine index sizes can be mapped to the classic prob-

lem of estimating the sum of n non-negative variables, which has numerous important

applications in various areas of computer science, statistics and engineering. Measur-

ing the exact value of each variable incurs some cost, so we want to get a reasonable

estimator of the sum while measure as few variables as possible.

In most traditional applications, only uniform sampling is allowed, i.e. each time

we can sample one variable uniformly at random and ask its value. It is simple to

estimate the sum from such samples: we can simply take the average of the samples

as an estimator of the actual average, which is an unbiased estimator. It is easy

to see that any reasonable estimator requires a linear sample size if the underlying

distribution is arbitrary. Consider the following two instances of inputs: in the first

input all variables are 0, while in the second input all are 0 except one variable x1 is

a large number. Any sampling scheme cannot distinguish the two inputs until it sees

x1, and with uniform sampling it takes linear samples to hit x1. We defer the formal

definition of “reasonable estimator” to Section 3.1, but intuitively we cannot get a

good estimator if we cannot distinguish the two inputs.

We can map the problem of estimating index sizes or Web size to this problem

by partitioning the search index (or the web) into domains (or web servers), with

43
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each variable representing the size of a domain (or a web server), and estimating the

size is simply estimating the sum of those variables. It is relatively easy to get the

total domain (web server) number n (either by uniformly sampling IP space or this

number is published periodically). For example in 1999 Lawrence and Giles estimated

the number of web servers to be 2.8 million by randomly testing IP addresses; then

they exhaustively crawled 2500 web servers and found that the mean number of pages

per server was 289, leading to an estimate of the web size of 800 million [LG00].

Lawrence and Giles essentially used uniform sampling to estimate the sum, however,

the domain size distribution is known to be highly skewed and uniform sampling has

high variance for such inputs.

Now for our problem of estimating the Web size, a new sampling primitive becomes

available: we can sample a variable with probability proportional to its value, which

we refer to as linear weighted sampling. We can implement linear weighted sampling

on domains as follows: uniformly sample a page from the web or a search engine

index (uniform sampling of webpages is a nontrivial research problem by itself, and

there has been extensive literature in the techniques of uniform sampling a page from

the web [HHMN00, BYBC+00, RPLG01] or a search engine index [BB98, BYG06])

and take the domain of the page; it is easy to see that the probability of sampling a

domain is proportional to its size.

This new sampling primitive proposes interesting theoretical questions: how can

we derive an estimation of the sum from such weighted samples? Does it improve

sample complexity over uniform sampling? For the bad example of uniform sampling,

just one sample from linear weighted sampling is sufficient to distinguish the two

inputs, so it seems plausible that we can get good sum estimator with less samples

using the new sampling method.

In this chapter we present an algorithm for sum estimation with Õ(
√

n) samples

using only linear weighted sampling. Next, if we use both uniform sampling and

linear weighted sampling, we can further reduce the number of samples to Õ( 3
√

n)

samples. Our algorithm assumes no prior knowledge about the input distribution.

We also show the two estimators are almost optimal by proving lower bounds on the

sample complexity of Ω(
√

n) and Ω( 3
√

n) respectively.
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Finally, we show a negative result that more general weighted sampling methods,

where the probability of sampling a variable can be proportional to any function of its

value, do not yield better estimators: we prove a lower bound of Ω( 3
√

n) samples for

any reasonable sum estimator, using any combination of general weighted sampling

methods. This implies that our sum estimator combining uniform and linear weighted

sampling is almost optimal (up to a poly-log factor), hence there is no need to pursue

fancier sampling methods for the purpose of estimating sum.

3.1 Definitions and Summary of Results

Let x1, x2, . . . , xn be n variables. We consider the problem of estimating the sum

S =
∑

i xi, given n. We also refer to variables as buckets and the value of a variable

as its bucket size.

In (general) weighted sampling we can sample a bucket xi with probability pro-

portional to a function of its size f(xi), where f is an arbitrary function of xi (f

independent on n). Two special cases are uniform sampling where each bucket is

sampled uniformly at random (f(x) = 1), and linear weighted sampling where the

probability of sampling a bucket is proportional to its size (f(x) = x). We assume

sampling with replacement.

We say an algorithm is (ε, δ)-estimator (0 < ε, δ < 1), if it outputs an estimated

sum S ′ such that with probability at least 1 − δ, |S ′ − S| ≤ εS. The algorithm

can take random samples of the buckets using some sampling method and learn the

sizes as well as the labels of the sampled buckets. We measure the complexity of

the algorithm by the total number of samples it takes. The algorithm has no prior

knowledge of the bucket size distribution.

The power of the sum estimator is constrained by the sampling methods it is

allowed to use. This paper studies the upper and lower bounds of the complexities of

(ε, δ)-estimators under various sampling methods. As pointed out in Section 1, using

only uniform sampling there is no (ε, δ)-estimator with sub-linear samples.

First we show an (ε, δ)-estimators using linear weighted sampling with Õ(
√

n)

samples. While linear weighted sampling is a natural sampling method, to derive the
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sum from such samples does not seem straightforward. Our scheme first converts the

general problem to a special case where all buckets are either empty or of a fixed size;

now the problem becomes estimating the number of non-empty buckets and we make

use of birthday paradox by examining how many samples are needed to find a repeat.

Each step involves some non-trivial construction and the detailed proof is presented

in Section 3.3.

In Section 3.4 we consider sum estimators where both uniform and linear weighted

sampling are allowed. Section 3.4.1 proposes an algorithm with Õ( 3
√

n) samples which

builds upon the linear weighted sampling algorithm in Section 3.3. Section 3.4.2 gives

a different algorithm with Õ(
√

n) samples: although it is asymptotically worse than

the former algorithm in terms of n, it has better dependency on ε and a much smaller

hidden constant; this algorithm also is much neater and easier to implement.

Finally we present lower bounds in Section 3.5. We prove that the algorithms in

Section 3.3 and 3.4.1 are almost optimal in terms of n up to a poly-log factor. More

formally, we prove a lower bound of Ω(
√

n) samples using only linear weighted sam-

pling (more generally, using any combination of general weighted sampling methods

with the constraint f(0) = 0); a lower bound of Ω( 3
√

n) samples using any combination

of general weighted sampling methods.

All algorithms and bounds can be extended to the case where the number of

buckets n is only approximately known (with relative error less than ε).

3.2 Related Work

Estimating the sum of n variables is a classical statistical problem. For the case

where all the variables are between [0, 1], an additive approximation of the mean can

be easily computed by taking a random sample of size O( 1
ε2

lg 1
δ
) and computing the

mean of samples; [CEG95] prove a tight lower bound on the sample size. However,

uniform sampling works poorly on heavily tailed inputs when the variables are from

a large range, and little is known beyond uniform sampling.

Weighted sampling is also known as “importance sampling”. General methods

of estimating a quantity using importance sampling have been studied in statistics
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(see for example [Liu96]), but the methods are either not applicable here or less

optimal. To estimate a quantity hπ =
∑

π(i)h(i), importance sampling generates

independent samples i1, i2, . . . , iN from a distribution p. One estimator for hπ is

µ̂ = 1
N

∑
h(ik)π(ik)/p(ik). For the sake of estimating sum, π(i) = 1 and h(i) is the

value of ith variable xi. In linear weighted sampling, p(i) = xi/S, where S is exactly

the sum we are trying to estimate, therefore we are not able to compute this estimator

µ̂ for sum. Another estimator is

µ̃ =

∑
h(ik)π(ik)/p̃(ik)∑

π(ik)/p̃(ik)
,

where p̃ is identical to p up to normalization and thus computable. However, the

variance of µ̃ is even larger than the variance using uniform sampling.

A related topic is priority sampling and threshold sampling for estimating subset

sums proposed and analyzed in [DLT05, ADLT05, Sze06]. But their cost model and

application are quite different: they aim at building a sketch so that the sum of any

subset can be computed (approximately) by only looking at the sketch; in particular

their cost is defined as the size of the sketch and they can read all variables for free,

so computing the total sum is trivial in their setting.

There is extensive work in estimating other frequency moments Fk =
∑

xk
i (sum

is the first moments F1), in the random sampling model as well as in the streaming

model (see for example [AMS99, CCMN00, BYKS01]). The connection between the

two models is discussed in [BYKS01]. [BYKS01] also presents lower and upper bounds

of the sample size on Fk for k ≥ 2; note that their sampling primitive is different from

ours, and they assume F1 is known.

3.3 An Õ(
√

n) Estimator using Linear Weighted

Sampling

Linear weighted sampling is a natural sampling method, but to efficiently derive the

sum from such samples does not seem straightforward. Our algorithm first converts

the general problem to a special case where all buckets are either empty or of a fixed
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size, and then tackle the special case making use of the birthday paradox, which states

that given a group of
√

365 randomly chosen people, there is a good chance that at

least two of them have the same birthday.

Let us first consider the special case where all non-zero buckets are of equal sizes.

Now linear weighted sampling is equivalent to uniform sampling among non-empty

buckets, and our goal becomes estimating the number of non-empty buckets, denoted

by B (B ≤ n). We focus on a quantity we call “birthday period”, which is the

number of buckets sampled until we see a repeated bucket. We denote by r(B) the

birthday period of B buckets and its expected value E[r(B)] is Θ(
√

B) according to

the birthday paradox. We will estimate the expected birthday period using linear

weighted sampling, and then use it to infer the value of B. Most runs of birthday

period take O(
√

B) = O(
√

n) samples, and we can cut off runs which take too long;

lg 1
δ

runs are needed to boost confidence, thus in total we need O(
√

n) samples to

estimate B.

Now back to the general problem. We first guess the sum is an and fix a uniform

bucket size εa. For each bucket in the original problem, we round its size down to kεa

(k being an integer) and break it into k buckets. If our guess of sum is (approximately)

right, then the number of new buckets B is approximately n/ε; otherwise B is either

too small or too large. We can estimate B by examining the birthday period as above

using O(
√

n/ε) samples, and check whether our guess is correct. Finally, since we

allow a multiplicative error of ε, a logarithmic number of guesses suffice.

Before present the algorithm, we first establish some basic properties of birthday

period r(B). The following lemma bounds the expectation and variance of r(B);

property (3) shows that birthday period is “gap preserving” so that if the number of

buckets is off by an ε factor, we will notice a difference of cε in the birthday period.

We can write out the exact formula for E[r(B)] and var(r(B)), and the rest of the

proof is merely algebraic manipulation.

Lemma 9. (1) E[r(B)] monotonically increases with B;

(2) E[r(B)] = Θ(
√

B);

(3) E[r((1 + ε)B)] > (1 + cε)E[r(B)], where c is a constant.

(4) var(r(B)) = O(B);
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Proof. (1) r(B) > i when there is no repeated buckets in the first i samples.

Pr[r(B) > i] =
B

B

B − 1

B
. . .

B − (i− 1)

B
= (1− 1

B
) . . . (1− i− 1

B
)

E[r(B)] =
∑

1<i≤B+1

Pr[r(B) = i] ∗ i =
∑

1<i≤B+1

Pr[r(B) ≥ i] =
∑

1≤i≤B

Pr[r(B) > i]

Pr[r(B) > i] monotonically increases with B for all i, so E[r(B)] also monotoni-

cally increases with B.

(2) First bound Pr[r(B) > i] using the fact e−2x < 1− x < e−x:

Pr[r(B) > i] ≤ e−
1
B e−

2
B . . . e−

i−1
B = e−

i(i−1)
2B

Pr[r(B) > i] ≥ e−
2
B e−

4
B . . . e−

2(i−1)
B = e−

i(i−1)
B

Using the first inequality,

E[r(B)] =
∑

1≤i≤B

Pr[r(B) > i] ≤
∑

1≤i≤B

exp(−i(i− 1)

2B
)

≤
∫ B

1

exp(−i(i− 1)

2B
)di

=

√
Bπ

2
exp(

1

8B
)erf(

2 ∗B − 1

2
√

2B
)−

√
Bπ

2
exp(

1

8B
)erf(

2 ∗ 1− 1

2
√

2B
)

≤
√

Bπ

2
exp(

1

8B
) = O(

√
B)

Similarly, using the second inequality we can prove

E[r(B)] ≥
∑

1≤i≤B

exp(−i(i− 1)

B
= Ω(

√
B)

Therefore E[r(B)] = Θ(
√

B).

(3) Let bi = B−i
B

, b′i = (1+ε)B−i
(1+ε)B

; let ai =
∏

j=1..i−1 bj, a′i =
∏

j=1..i−1 b′j.
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It is easy to see E[r(B)] =
∑

1≤i≤B ai and E[r((1 + ε)B)] =
∑

1≤i≤(1+ε)B a′i, there-

fore E[r((1+ε)B)]−E[r(B)] ≥ ∑
1≤i≤B a′i−ai. We will prove that ∆ai = a′i−ai ≥ c′ε

for all i ∈ [
√

B, 2
√

B], which gives a lower bound on E[r((1 + ε)B)]− E[r(B)].

Notice that ai = ai−1bi−1 < ai−1. Let ∆bi = b′i − bi = εi
(1+ε)B

> 0.

For i ∈ [
√

B, 2
√

B], a′i > ai > exp(− i(i−1)
B

) > e−4, therefore

a′i − ai = a′i−1b
′
i−1 − ai−1bi−1 = ai−1(b

′
i−1 − bi−1) + b′i−1(a

′
i−1 − ai−1)

> ai−1∆bi−1 + bi−1∆ai−1

> ai−1∆bi−1 + bi−1(ai−2∆bi−2 + bi−2∆ai−2)

> ai(∆bi−1 + ∆bi−2) + bi−1bi−2∆ai−2

. . .

> ai(∆bi−1 + ∆bi−2 + . . . + ∆b1) = ai
ε

(1 + ε)B
∗ i(i− 1)

2

> e−4 ε

2(1 + ε)
= Θ(ε)

Finally

E[r((1 + ε)B)]− E[r(B)] >
∑

i∈[
√

B,2
√

B]

∆ai = Θ(ε
√

B) = Θ(ε)E[r(B)]

(4)

var(r(B)) = E[r(B)2]− E[r(B)]2 ≤ E[r(B)2]

=
∑

2≤i≤B+1

Pr[r(B) = i]i2 =
∑

2≤i≤B+1

B

B

B − 1

B
. . .

B − (i− 2)

B
∗ i− 1

B
∗ i2

<
∑

2≤i≤B+1

i3

B
exp(−(i− 1)(i− 2)

2B
)

≤ (
9

16B
e−

5
2B

√
2πB(4B + 3)erf(

2x− 3

2
√

2B
)− 1

4
e−

x2−3x+2
2B (4x2 + 6x + 8B + 9))|B+1

2

= O(B)
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BucketNumber(b, ε, δ)
1. Compute r = E[r(b)];
2. for i = 1 to k1 = c1 lg 1

δ

3. for j = 1 to k2 = c2/ε
2

4. sample until see a repeated bucket; let rj be the number of samples

5. if
∑k2

j=1 rj/k2 ≤ (1 + cε/2)r then si = true, else si = false

6. if more than half of si are true then output “≤ b buckets”
else output “≥ b(1 + ε) buckets”

Figure 3.1: Algorithm BucketNumber

Lemma 10 tackles the special case, stating that with
√

b samples we can tell

whether the total number of buckets is at most b or at least b(1 + ε). The idea is

to measure the birthday period and compare with the expected period in the two

cases. We use the standard “median of the mean” trick: first get a constant correct

probability using Chebyshev inequality, then boost the probability using Chernoff

bound. See detail in the algorithm BucketNumber. Here c is the constant in Lemma

9; c1 and c2 are constants.

Lemma 10. If each sample returns one of B buckets uniformly at random, then

the algorithm BucketNumber tells whether B ≤ b or B ≥ b(1 + ε) correctly with

probability at least 1− δ; it uses Θ(
√

b lg 1
δ
/ε2) samples.

Proof. We say the algorithm does k1 runs, each run consisting of k2 iterations. We

first analyze the complexity of the algorithm. We need one small trick to avoid long

runs: notice that we can cut off a run and set si = false if we have already taken

(1 + cε/2)rk2 samples in this run. Therefore the total number of samples is at most

(1 + cε/2)rk2k1 = (1 + cε/2)E[r(b)]
c2

ε2
c1 lg

1

δ
= Θ(

√
b lg 1

δ

ε2
).

The last equation uses Property (2) of Lemma 9.

Below we prove the correctness of the algorithm. Consider one of the k1 runs.

Let r′ be the average of the k2 measured birthday periods rj. Because each measured

period has mean E[r(B)] and variance var(r(B)), we have E[r′] = E[r(B)] and
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var(r′) = var(r(B))/k2.

If B ≤ b, then E[r′] = E[r(B)] ≤ r. By Chebyshev inequality [MR95],

Pr[r′ > (1+
cε

2
)r] ≤ Pr[r′ > E[r(B)]+

rcε

2
] ≤ var(r(B))/k2

(rcε/2)2
≤ O(b)ε2/c2

(Θ(
√

b)cε/2)2
=

O(1)

c2

If B ≥ b(1 + ε), then E[r′] ≥ E[r(b(1 + ε))] ≥ (1 + cε)r by Lemma 9.

Pr[r′ < (1 +
cε

2
)r] ≤ Pr[r′ < (1− cε

4
)E[r′]] ≤ var(r(B))/k2

(E[r(B)]cε/4)2
=

O(1)

c2

We choose the constant c2 large enough such that both probabilities are no more

than 1/3. Now when B ≤ b, since Pr[r′ > (1+cε/2)r] ≤ 1/3, each run sets si = false

with probability at most 1/3. Our algorithm makes wrong judgement only if more

than half of the k1 runs set si = false, and by Chernoff bound [MR95], this probability

is at most e−c′k1 . Choose appropriate c1 so that the error probability is at most δ.

Similarly, when B ≥ (1 + ε)b, each run sets si = true with probability at most 1/3,

and the error probability of the algorithm is at most δ.

Algorithm LWSE (stands for Linear Weighted Sampling Estimator) shows how

to estimates sum for the general case. The labelling in step 3 is equivalent to the

following process: for each original bucket, round its size down to a multiple of ε1a and

split into several “standard” buckets each of size ε1a; each time sampling returns a

standard bucket uniformly at random. The two processes are equivalent because they

have the same number of distinct labels (standard buckets) and each sampling returns

a label uniformly at random. Therefore by calling BucketNumber(n(1+ε1)/ε1, ε1, δ1)

with such samples, we can check whether the number of standard buckets B ≤ n(1 +

ε1)/ε1 or B ≥ n(1 + ε1)
2/ε1, allowing an error probability of δ1.

Theorem 11. LWSE is an (ε, δ)-estimator with O(
√

n(1
ε
)

7
2 log n(log 1

δ
+log 1

ε
+log log n))

samples, where n is the number of buckets.

Proof. We first show that the algorithm terminates with probability at least 1 − δ1.

S must fall in [a0n, a0n(1 + ε1)] for some a0, and we claim that the algorithm will
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LWSE(n, ε, δ)
1. get a lower bound L of the sum: sample one bucket using linear

weighted sampling and let L be the size of the sampled bucket;
2. for a = L/n, L(1+ ε1)/n, . . . , L(1+ ε1)

k/n, . . . (let ε1 = ε/3)
3. for each sample returned by linear weighted sampling, create

a label as follows: suppose a bucket xi of size s is sampled
and s = mε1a+ r (m is an integer and r < ε1a); discard the
sample with probability r/s; with the remaining probability
generate a number l from 1..m uniformly at random and
label the sample as il;

4. call BucketNumber(n(1 + ε1)/ε1, ε1, δ1), using the above
samples in step 4 of BucketNumber. If BucketNumber
outputs “≤ n(1 + ε1)/ε1”, then output S ′ = an as the esti-
mated sum and terminate.

Figure 3.2: Algorithm LWSE

terminate at this a0, if not before: since S ≤ a0n(1 + ε1), the sum after rounding

down is at most a0n(1 + ε1) and hence the number of labels B ≤ n(1 + ε1)/ε1; by

Lemma 10 it will pass the check with probability at least 1 − δ1 and terminate the

algorithm.

Next we show that given that LWSE terminates by a0, the estimated sum is

within (1± ε)S with probability 1−δ1. Since the algorithm has terminated by a0, the

estimated sum cannot be larger than S, so the only error case is S ′ = an < (1− ε)S.

The sum loses at most naε1 after rounding down, so

B ≥ S − anε1

aε1

≥
an
1−ε

− anε1

aε1

=
n

(1− ε)ε1

− n ≥ n
1− ε1

(1− ε)ε1

≥ n
(1 + ε1)

2

ε1

The probability that it can pass the check for a fixed a < a0 is at most δ1; by union

bound, the probability that it passes the check for any a < a0 is at most δ1 log1+ε
S
L
.

Combining the two errors, the total error probability is at most δ1(log1+ε
S
L

+ 1).

Choose δ1 = δ/(log1+ε
S
L

+ 1), then with probability at least 1 − δ the estimator

outputs an estimated sum within (1± ε)S.

Now we analyze the complexity of LWSE. Ignore the discarded samples for now
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and count the number of valid samples. By Lemma 10, for each a we need

N1 = O(
log 1

δ1
∗

√
n(1+ε1)

ε1

ε2
1

) = O(
√

n(
1

ε
)

5
2 (log

1

δ
+ log

1

ε
+ log log

S

L
))

samples, and there are log1+ε
S
L

= O(log S
L
/ε) as. As for the discarded samples, the

total discarded size is at most anε1, and we always have S ≥ an if the algorithm is

running correctly, therefore the expected probability of discarded samples is at most

ε1 = ε/3 ≤ 1/3. By Chernoff bound, with high probability the observed probability of

discarded samples is at most half, i.e. the discarded samples at most add a constant

factor to the total sample number.

Finally, the complexity of the estimator has the term log S
L
. Had we simply started

guessing from L = 1, the cost would depend on log S. The algorithm chooses L to be

the size of a sampled bucket using linear weighted sampling. We claim that with high

probability L ≥ S/n2: otherwise L < S/n2, then the probability that linear weighted

sampling returns any bucket of size no more than L is at most n ∗ L/S < 1/n.

Summing up, the total sample number used in LWSE is

N1 ∗O(
log n2

ε
) = O(

√
n(

1

ε
)

7
2 log n(log

1

δ
+ log

1

ε
+ log log n)).¤

3.4 Combining Uniform and Linear Weighted Sam-

pling

In this section we design sum estimator using both uniform sampling and linear

weighted sampling. We present two algorithms. The first uses LWSE in Section 3.3

as a building block and only needs Õ( 3
√

n) samples. The second algorithm is self-

contained and easier to implement; its complexity is worse than the first algorithm

in terms of n but has better dependency on ε and a much smaller hidden constant.
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CombEst(n, ε, δ)
1. find t such that the number of buckets whose size is larger than

t is Nt = Θ(n2/3) (we leave the detail of this step later); call a
bucket large if its size is above t, and small otherwise

2. use weighted linear sampling to estimate the total size of large
buckets S ′large:
if the fraction of large buckets in the sample is less than ε1/2,
let S ′large = 0;
otherwise ignore small buckets in the samples and estimate
S ′large using LWSE(Nt, ε1, δ/2), where ε1 = ε/4

3. use uniform sampling to estimate the total size of small buckets
S ′small:

divide the small bucket sizes into levels [1, 1 + ε1), . . . , [(1 +
ε1)

i, (1 + ε1)
i+1), . . . , [(1 + ε1)

i0 , t); we say a bucket in level i
(0 ≤ i ≤ i0) if its size ∈ [(1 + ε1)

i, (1 + ε1)
i+1)

make k = Θ(n1/3 log n/ε4
1) samples using uniform sampling;

let ki be the number of sampled buckets in level i. Estimate
the total number of buckets in level i to be n′i = kin/k and
S ′small =

∑
i n

′
i(1 + ε1)

i

4. output S ′small + S ′large as the estimated sum

Figure 3.3: Algorithm CombEst

3.4.1 An Estimator with Õ( 3
√

n) Samples

In this algorithm, we split the buckets into two types: Θ(
3
√

n2) large buckets and

the remaining small buckets. We estimate the partial sum of the large buckets using

linear weighted sampling as in Section 3.3; we stratify the small buckets into different

size ranges and estimate the number of buckets in each range using uniform sampling.

Theorem 12. CombEst is an (ε, δ)-estimator with O(n1/3(1
ε
)

9
2 log n(log 1

δ
+ log 1

ε
+

log log n)) samples, where n is the number of buckets.

Proof. We analyze the error in the estimated sum. Denote by Slarge(Ssmall) the actual

size of large (small) buckets; by ni the actual bucket number in level i.

In Step 2, since we are using linear weighted sampling, the expected fraction of

large buckets in the samples equals to Slarge/S. If Slarge/S > ε1, then by Chernoff

bound the observed fraction of large buckets in the sample is larger than ε1/2 with
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high probability, and we will get S ′large within (1± ε1)Slarge with probability at least

1−δ/2 according to Theorem 11; otherwise we lose at most Slarge = ε1S by estimating

S ′large = 0. Thus, with probability at least 1 − δ/2, the error introduced in Step 2 is

at most ε1S.

In Step 3, it is easy to see that n′i is an unbiased estimator of ni. For a fixed i, if

ni ≥ ε2
1n

2/3 then by Chernoff bound the probability that n′i deviates from ni by more

than an ε1 fraction is

Pr[|n′i − ni| ≥ ε1ni] ≤ exp(−ckε2
1ni/n) ≤ exp(−c′

n1/3 log n

ε4
1

ε2
1

ε2
1n

2/3

n
) = n−c′

This means that for all ni ≥ ε1n
2/3, with high probability we estimate ni almost

correctly, introducing a relative error of at most ε1.

We round all bucket sizes of small buckets down to the closest power of 1 + ε1;

this rounding introduces a relative error of at most ε1.

For all levels with ni < ε2
1n

2/3, the total bucket size in those levels is at most

∑
0≤i≤i0

ni(1 + ε1)
i+1 < ε2

1n
2/3

∑
i

(1 + ε1)
i+1 < ε2

1n
2/3 t

ε1

= ε1tn
2/3 < ε1Slarge < ε1S

The error introduced by those levels adds up to at most ε1.

Summing up, there are four types of errors in our estimated sum, with probability

at least 1− δ each contributing at most ε1S = εS/4, so S ′ has an error of at most εS.

Now we count the total number of samples in CombEst. According to Theorem

11, Step 2 needs O(
√

n2/3(1
ε
)

7
2 log n2/3(log 1

δ
+ log 1

ε
+ log log n2/3)) samples of large

buckets, and by our algorithm the fraction of large buckets is at least ε1/2. Step 3

needs Θ(n1/3 log n/ε4
1) samples, which is dominated by the sample number of Step 2.

Therefore the total sample number is

O(n1/3(
1

ε
)

9
2 log n(log

1

δ
+ log

1

ε
+ log log n)).¤

There remains to be addressed the implementation of Step 1. We make n1/3 log n
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samples using uniform sampling and let t be the size of the 2 log n-th largest bucket

in the samples. Let us first assume all the sampled bucket have different sizes. Let

Nt be the number of buckets with size at least t; we claim that with high probability

n2/3 ≤ Nt ≤ 4n2/3. Otherwise if Nt < n2/3, then the probability of sampling a bucket

larger than t is Nt/n < n−1/3 and the expected number of such buckets in the samples

is at most log n; now we have observed 2 log n such buckets, by Chernoff bound the

probability of such event is negligible. Similarly the probability that Nt ≥ 4n2/3 is

negligible. Hence t satisfies our requirement. Now if there is a tie at position 2 log n,

we may cut off at any position c log n instead of 2 log n, and Nt will still be Θ(n2/3)

using the same argument. In the worst case where all of them are ties, let t be this

size, define those buckets with sizes strictly larger than t as large buckets and those

with sizes strictly less than t as small, estimating Slarge and Ssmall using Steps 2 and 3;

estimate separately the number of buckets with size exactly t using uniform sampling

– since the number is at least Θ(n2/3 log n), O(n1/3) samples are sufficient. Finally

we only know the approximate number of large buckets, denoted by N ′
t , and have

to pass N ′
t instead of Nt when call LWSE. Fortunately an approximate count of n

suffices for LWSE, and a constant factor error in n only adds a constant factor in its

complexity.

3.4.2 An Estimator with Õ(
√

n) Samples

Next we present a sum estimator using uniform and weighted sampling with Õ(
√

n)

samples. Recall that uniform sampling works poorly for skewed distributions, espe-

cially when there are a few large buckets that we cannot afford to miss. The idea of

this algorithm is to use weighted sampling to deal with such heavy tails: if a bucket

is large enough it will keep appearing in weighted sampling; after enough samples we

can get a fairly accurate estimate of its frequency of being sampled, and then infer

the total size by only looking at the size and sampling frequency of this bucket. On

the other hand, if no such large bucket exists, the variance cannot be too large and

uniform sampling performs well.

Theorem 13. CombEstSimple is an (ε, δ)-estimator with O(
√

n/ε2δ) samples.
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CombEstSimple(n, ε, δ)
1. Make k = c1

√
n log 1

δ
/ε2 samples using weighted linear sam-

pling. Suppose the most frequently sampled bucket has size
t and is sampled k1 times (breaking ties arbitrarily). If
k1 ≥ k/2

√
n, output S ′ = tk/k1 as estimated sum and ter-

minate
2. Make l =

√
n/δε2 samples using uniform sampling and let a

be the average of sampled bucket sizes. Output S ′ = an as
estimated sum

Figure 3.4: Algorithm CombEstSimple

Proof. Obviously CombEstSimple uses k + l = O(
√

n/ε2δ) samples. Below we prove

the accuracy of the estimator.

We first prove that if Step 1 outputs an estimated sum S ′, then S ′ is within (1±ε)S

with probability 1 − δ/2. Consider any bucket with size t whose frequency of being

sampled f ′ = k1/k is more than 1/2
√

n. Its expected frequency of being sampled is

f = t/S, so we can bound the error |f ′ − f | using Chernoff bound.

Pr[f − f ′ > εf ] ≤ exp(−ckfε2) ≤ exp(−ckf ′ε2) = exp(Θ(c1) log
1

δ
) = δΘ(c1)

Pr[f ′ − f > εf ] ≤ exp(−ckfε2) ≤ exp(−ck
f ′ε2

1 + ε
) = exp(Θ(c1) log

1

δ
) = δΘ(c1)

Choose c1 large enough to make Pr[|f−f ′| > εf ] less than δ/2, then with probability

1− δ/2, f ′ = k1/k is within (1± ε)t/S, and it follows that the estimated sum tk/k1

is within (1± ε)S.

We divide the input into two cases, and show that in both cases the estimated

sum is close to S.

Case 1, the maximum bucket size is greater than S/
√

n. The probability that the

largest bucket is sampled less than k/2
√

n times is at most exp(−ck 1√
n
) < δ/2; with

the remaining probability, Step 1 outputs an estimated sum, and we have proved it

is within (1± ε)S.

Case 2, the maximum bucket size is no more than S/
√

n. If Step 1 outputs an
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estimated sum, we have proved it is close to S. Otherwise we use the estimator in

Step 2. a is an unbiased estimator of the mean bucket size. The statistical variance

of xi is

var(x) ≤ E[x2] =

∑
i x

2
i

n
≤

( S√
n
)2
√

n

n
=

S2

n
√

n

and the variance of a is var(x)/l. Using Chebyshev inequality, the probability that

a deviates from the actual average S/n by more than an ε fraction is at most

var(a)/(εS/n)2 =
√

n/lε2 = δ.

3.5 Lower Bounds

Finally we prove some lower bounds on the sample number of sum estimators. Those

lower bound results use a special type of input instances where all bucket sizes are

either 0 or 1. The results still hold if all bucket sizes are strictly positive, using similar

counterexamples with bucket sizes either 1 or a large constant b.

Theorem 14. There exists no (ε, δ)-estimator with o(
√

n) samples using only linear

weighted sampling, for any 0 < ε, δ < 1.

Proof. Consider two instances of inputs: in one input all buckets have size 1; in the

other, (1− ε)n/(1+ ε) buckets have size 1 and the remaining are empty. If we cannot

distinguish the two inputs, then the estimated sum deviates from the actual sum by

more than an ε fraction.

For those two instances, linear weighted sampling is equivalent to uniform sam-

pling among non-empty buckets. If we sample k = o(
√

n) buckets, then the probabil-

ity that we see a repeated bucket is less than 1− exp(−k(k− 1)/((1− ε)n/(1+ ε))) =

o(1) (see the proof of Lemma 9). Thus in both cases with high probability we see

all distinct buckets of the same sizes, so cannot distinguish the two inputs in o(
√

n)

samples.

More generally, there is no estimator with o(
√

n) samples using any combination

of general weighted sampling methods with the constraint f(0) = 0. Recall that

weighted sampling with function f samples a bucket xi with probability proportional
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to a function of its size f(xi). When f(0) = 0, it samples any empty bucket with

probability 0 and any bucket of size 1 with the same probability, thus is equivalent

to linear weighted sampling for the above counterexample.

Theorem 15. There exists no (ε, δ)-estimator with o( 3
√

n) samples using any combi-

nation of general weighted sampling (the sampling function f independent on n), for

any 0 < ε, δ < 1.

Proof. Consider two instances of inputs: in one input n2/3 buckets have size 1 and

the remaining buckets are empty; in the other, 3n2/3 buckets have size 1 and the

remaining are empty. If we cannot distinguish the two inputs, then the estimated

sum deviates from the actual sum by more than 1
2
. We can adjust the constant to

prove for any constant ε.

We divide weighted sampling into two types:

(1) f(0) = 0. It samples any empty bucket with probability 0 and any bucket

of size 1 with the same probability, thus it is equivalent to uniform sampling among

non-empty buckets. There are at least n2/3 non-empty buckets and we only make

o(n1/3) samples, with high probability we see o(n1/3) distinct buckets of size 1 for

both inputs.

(2) f(0) > 0. The probability that we sample any non-empty buckets is

f(1)cn2/3

f(1)cn2/3 + f(0)(n− cn2/3)
= Θ(n−1/3),

so in o(n1/3) samples with high probability we only see empty buckets for both inputs,

and all these buckets are distinct.

Therefore whatever f we choose, we see the same sampling results for both inputs

in the first o(n1/3) samples, i.e. we cannot distinguish the two inputs with o(n1/3)

samples using any combination of weighted sampling methods.
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Chapter 4

Searchability in Random Graphs

Since Milgram’s famous “small world” experiment [Mil67], it has generally been un-

derstood that social networks have the property that a typical node can reach any

other node through a short path (the so-called “six degrees of separation”). An impli-

cation of this fact is that social networks have small diameter. Many random graph

models have been proposed to explain this phenomenon, often by showing that adding

a small number of random edges causes a highly structured graph to have a small

diameter (e.g., [WS98, BC88]). A stronger implication of Milgram’s experiment, as

Kleinberg observed [Kle00], is that for most social networks there are decentralized

search algorithms that can find a short path from a source to a destination without

a global knowledge of the graph. As Kleinberg proved, many of the random graph

models with small diameter do not have this property (i.e., any decentralized search al-

gorithm in such graphs can take many steps to reach the destination), while in certain

graph models with a delicate balance of parameters, decentralized search is possible.

Since Kleinberg’s work, there have been many other models that provably exhibit the

searchability property [KLNT06, Fra05, Sli05, LNNK+05, Kle01, DHLS06]; however,

we still lack a good understanding of what contributes to this property in graphs.

In this chapter, we look at a general framework for searchability in random graphs.

We consider a general random graph model in which the set of edges leaving a node

u is independent of that of any other node v 6= u. This framework includes many ex-

isting random graph models such as those proposed in [CL03, ACL00, Kle00, Kle01,

63
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LCKF05, ACK+07]. It is worth noting that, in a random graph model where edges can

have arbitrary dependencies, the search problem includes arbitrarily difficult learn-

ing problems as special cases, and therefore one cannot expect to have a complete

characterization of searchable graphs in such a model.

Throughout most of this chapter, we restrict the class of decentralized search al-

gorithms that we consider to deterministic memoryless algorithms that succeed in

finding a path to the destination with probability 1. This is an important class of

search algorithms, and includes the decentralized search algorithms used in Klein-

berg’s work on long-range percolation graphs and hierarchical network models. For

this class, we give a simple characterization of graphs that are searchable in terms

of a node ordering property (Theorem 16). Then we will use this characterization to

show a monotonicity property for searchability: if a graph is searchable in our model,

it stays searchable if the probabilities of edges are increased (Theorem 21).

The rest of this chapter is organized as follows: Section 4.1 contains the description

of the model. Section 4.2 presents a characterization of searchable random graphs.

The monotonicity theorem is presented in Section 4.3. We conclude in Section 4.4

with a discussion of open problems.

4.1 The Model

We define a random graph model parameterized by a a positive integer n (the size of

the graph) and n independent distributions Ω1, Ω2, . . . , Ωn. For each i ∈ {1, . . . , n},
Ωi is a distribution over the collection of all subsets of {1, . . . , n}. The random digraph

G(n, Ω) is defined as follows: the vertex set of this graph is V = {1, . . . , n}, and for

every i, the set of vertices that have an edge from i (i.e., the out-neighbors of i) is

picked (independently) from the distribution Ωi. For i ∈ V , let Γ(i) denote the set of

out-neighbors of i. We denote by ωi,S the probability that Γ(i) = S.

This graph model is quite general. It includes models such as the directed vari-

ant of the classical Erdős–Rényi graphs [ER59], random graphs with a given ex-

pected degree sequence (e.g., [CL03]), ACL graphs [ACL00], long-range percolation

graphs [Kle00], hierarchical network models [Kle01], and graphs based on Kronecker
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products [LCKF05, ACK+07], but not models such as preferential attachment [BA99]

in which the distribution of edges leaving a node is dependent on the other edges of

the graph. For example, for the long-range percolation graphs [Kle00], the support

of the distribution Ωi is all possible subsets consisting of all vertices with Hamming

distance 1 to i in the lattice and one extra vertex j (denoting this subset by Sj), and

the probability of Sj equals to the probability that the long range edge from i lands

at j.

A special case of this model that deserves special attention is when all edges of

the graph are independent. In this case, given a positive integer n and an n × n

matrix P with entries pi,j ∈ [0, 1], we define a directed random graph G(n,P) with

the node set V = {1, . . . , n} and with a directed edge connecting node i to node j

with probability pij, independently of all other edges. Note that this is a special case

of the G(n, Ω) random graph model, with ωi,S :=
∏

j∈S pij

∏
j 6∈S(1− pij).

We fix two nodes s, t ∈ V of G(n, Ω) as the source and the destination. We

investigate the existence of a decentralized search algorithm that finds a path from

s to t of at most a given length d in expectation.1 We restrict our attention to

deterministic memoryless algorithms. A deterministic memoryless algorithm can be

defined as a partial function A : V × 2V → V . Such an algorithm A defines a

path v0, v1, v2, . . . on a given graph G as follows: v0 = s, and for every i ≥ 0,

vi+1 = A(vi, Γ(vi)). The length of this path is defined as the smallest integer i such

that vi = t. If no such i exists, we define the length of the path as infinity.

We are now ready to define the notion of searchability. For a given (n, Ω), source

and destination nodes s and t, and a number d, we say that G(n, Ω) is d-searchable

using a deterministic memoryless algorithm A if the expected length of the path

defined by A on G(n, Ω) is at most d. Note that this definition requires the algorithm

to find a path from s to t with probability 1.

1Alternatively, we could ask for which graphs a decentralized search algorithm can find a path
between every pair of nodes s and t, or between a random pair of nodes s and t. Our techniques
apply to these alternative formulations of the problem as well. The only point that requires some
care is that the orderings in the characterization theorem can depend on s and t.



66 CHAPTER 4. SEARCHABILITY IN RANDOM GRAPHS

4.2 A Characterization of Searchable Random Graphs

In this section, we provide a complete characterization of searchable random graphs.

We begin by defining a class of deterministic memoryless search algorithms param-

eterized by two orderings of V , and then prove that if a graph is d-searchable, it is

also d-searchable using an algorithm from this narrow class.

Definition 1. Let σ, π be two orderings (i.e., permutations) of the node set V . We

define a deterministic memoryless algorithm Aσ,π corresponding to these orderings as

follows: for every u ∈ V , Aσ,π(u, Γ(u)) is defined as the maximum element according

to π of the set {v ∈ Γ(u) : σ(v) > σ(u)}.

In other words, algorithm Aσ,π never goes backwards according to the ordering σ,

and, subject to this restriction, makes the maximum possible progress according to

π.

Before stating our main result, we comment on why the class of search algo-

rithms we are considering is defined based on two permutations and not just one.

Common intuition based on the known results (e.g., on the long-range percolation

model [Kle00], or the hierarchical network models [Kle01]) might lead one to con-

jecture that it is enough to consider decentralized search algorithms that always try

to get as close to the destination as possible according to a single ordering of the

vertices. This, however, is not true, as the following simple example shows.

Example 1. Consider a graph with the vertex set s = u1, u2, . . . , un = t. For every

i, j ∈ {1, . . . , n/2}, i 6= j, there is edge from i to j with probability 1. For i =

n/2, . . . , n − 1, there is an edge from ui to ui+1 with probability 1. Finally, for i =

2, . . . , n/2−1, there is an edge from ui to t with probability 1/2. One can find a path in

this graph using a deterministic memoryless search algorithm as follows: the algorithm

traverses the path su2u3 . . . un/2−1 in this order until it finds the first vertex that has

a direct edge to t. If it finds such a vertex, it goes to t; otherwise, it takes the path

un/2un/2+1 . . . un to t. The expected length of this path is 2+1
2
+1

4
+· · ·+ 1

2n/2−1 +
n

2n/2 < 4.

However, a memoryless algorithm that is based on a single ordering cannot visit more

than one of the vertices in the set S = {u2, . . . , un/2−1}. This is because if the first
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vertex in S that the algorithm visits is ui, ui must be ahead of all other vertices of S

in the ordering. Hence, if the algorithm visits another uj ∈ S, as its next step it must

go back to ui (since it has the exact same set of choices as it had in the step it first

visited ui), and therefore it will fall into a loop. Therefore, such an algorithm cannot

achieve an expected distance smaller than n/4.

We are now ready to state our main theorem which characterizes random graphs

that are d-searchable.

Theorem 16. (Characterization of d-Searchable Random Graphs) For a given

n, collection of out-neighbor distributions Ω, source and destination nodes s and t,

and number d, if G(n, Ω) is d-searchable using a deterministic memoryless algorithm

A, then there exist two orderings σ and π of V such that G(n, Ω) is d-searchable using

Aσ,π.

To prove this theorem, we first construct the ordering σ using the structure of the

search algorithm A. Next, we define an ordering π using σ. Finally, we use induction

with respect to the ordering σ to show that the expected length of the path defined

by Aσ,π on G(n, Ω) is not more than the one defined by A.

We assume, without loss of generality, that for every set S ⊆ V , A(t, S) = t. In

other words, we assume that A never leaves t once it reaches this node.

Define a graph H with the node set V as follows: for every pair u, v ∈ V , the

edge (u, v) is in H if and only if this edge is on the path from s to t defined by A on

some realization of G(n, Ω) (i.e., on some graph that has a non-zero probability in

the distribution G(n, Ω)). We have the following important lemma.

Lemma 17. The graph H is acyclic.

Proof. Assume, for contradiction, that H contains a simple cycle C. Note that by

the definition of H, if an edge (u, v) is in H, then u must be reachable from s in H.

Therefore, every node of C must be reachable from s in H. Let v∗ be a node in C

that has the shortest distance from s in H, and s = v0, v1, . . . , v` = v∗ be a shortest

path from s to v∗ in H. Also, let v∗ = v`, v`+1, . . . , vk, vk+1 = v∗ denote the cycle C.
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Therefore, v0, v1, . . . , vk are all distinct nodes, and for every i ∈ {0, . . . , k}, there is

an edge from vi to vi+1 in H.

By the definition of H, for every i ∈ {0, . . . , k}, there is a realization of G(n, Ω)

in which A traverses the edge (vi, vi+1). This means that there is a realization of

G(n, Ω) in which the set Γ(vi) of out-neighbors of vi is S∗i , for some set S∗i such

that A(vi, S
∗
i ) = vi+1. Recall that by the definition of G(n, Ω), the random variables

Γ(u) are all independent. Hence, since vi’s are all distinct and for each i, there is a

realization satisfying Γ(vi) = S∗i , there must be a realization in which Γ(vi) = S∗i for

all i. In this realization, the algorithm A falls in the cycle C, and therefore will never

reach t. Thus the path found by A in this realization is infinitely long, and therefore

the expected length of the path found by A is infinite. This is a contradiction.

By Lemma 17, we can find a topological ordering of the graph H. Furthermore,

since by assumption t has no outgoing edge in H, we can find a topological ordering

that places t last. Let σ be such an ordering; more precisely, σ is an ordering of V

such that

(i) t is the maximum element of V under σ;

(ii) for every edge (u, v) in H, we have σ(v) > σ(u); and

(iii) all isolated nodes of H are placed at the beginning of σ in an arbitrary order,

i.e., σ(u) > σ(v) for any isolated node v and non-isolated node u.

By the definition of H, these conditions mean that the algorithm A (starting from

the node s) never traverses an edge (u, v) with σ(u) > σ(v).

Given the ordering σ, we define numbers ru for every u ∈ V to be the expected

time to reach t from u following the best path that does not backtrack with respect

to σ. ru can be computed recursively as follows:

ru =





0 if u = t

1 +
∑

S⊆Tu,S 6=∅
qu,S ·min

v∈S
{rv} if u 6= t and qu,∅ = 0

∞ if u 6= t and qu,∅ > 0,

(4.1)
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where Tu := {v : σ(v) > σ(u)} and, for a set S ⊆ Tu, we write

qu,S :=
∑

S′:S′∩Tu=S

ωu,S′

to denote the probability that the subset of nodes of Tu that are out-neighbors of u is

precisely S.2 Note that the above formula defines ru in terms of rv for σ(v) > σ(u),

and therefore the definition is well founded.

We can now define the ordering π as follows: let π(u) > π(v) if ru < rv. Pairs u, v

with ru = rv are ordered arbitrarily by π.

The final step of the proof is the following lemma, which we will prove by induction

using the ordering σ. To state the lemma, we need a few pieces of notation. For a

search algorithm B, let d(B, u) denote the expected length of the path that the

algorithm B, started at node u, finds to t. Also, let V0 denote the set of non-isolated

nodes of H—i.e., V0 is the set of nodes that the algorithm A (started from s) has a

non-zero chance of reaching.

Lemma 18. Let σ and π be the orderings defined as above. Then for every node

u ∈ V0, we have that d(A, u) ≥ d(Aσ,π, u) = ru.

Proof. We prove this statement by induction on u, according to the ordering σ. The

statement is trivial for u = t. We now show that for u ∈ V0 \ {t} if the statement

holds for every node v ∈ V0 with σ(v) > σ(u) (i.e., for every v ∈ Tu ∩V0), then it also

holds for u. Observe that for any deterministic memoryless algorithm B,

d(B, u) = 1 +
∑

S⊂V,S 6=∅
ωu,S · d(B, B(u, S)). (4.2)

This statement follows from the fact that the algorithm B is memoryless, and that

2In the special case of G(n,P), we have qu,S :=
(∏

v∈S puv

) (∏
v∈Tu\S(1− puv)

)
.
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ωu,∅ = 0 since u ∈ V0. Applying Equation (4.2) to Aσ,π implies

d(Aσ,π, u) = 1 +
∑

S⊂V,S 6=∅
ωu,S · d(Aσ,π, Aσ,π(u, S))

= 1 +
∑

S′⊂V,S′ 6=∅
ωu,S′ · d(Aσ,π, Aσ,π(u, S ′ ∩ Tu)) (4.3)

= 1 +
∑

S⊆Tu,S 6=∅

∑

S′:S′∩Tu=S

ωu,S′ · d(Aσ,π, Aσ,π(u, S))

= 1 +
∑

S⊆Tu,S 6=∅
qu,S · d(Aσ,π, Aσ,π(u, S)), (4.4)

where (4.3) follows from the fact that by definition of Aσ,π, Aσ,π(u, S) only de-

pends on u and S ∩ Tu, and (4.4) follows from the definition of qu,S. Since by

the definition of Aσ,π, σ(Aσ,π(u, S)) > σ(u), the induction hypothesis implies that

d(Aσ,π, Aσ,π(u, S)) = rAσ,π(u,S). Furthermore, by the definition of Aσ,π and π, we have

that rAσ,π(u,S) = minv∈S{rv}. Combined with Equation (4.4) and the definition of ru,

this shows d(Aσ,π, u) = ru, as desired.

We now prove that d(A, u) ≥ ru. By Lemma 17 and the definition of V0, we have

A(u, S) ∈ S ∩ Tu ∩ V0. Therefore,

d(A,A(u, S)) ≥ min
v∈S∩Tu∩V0

{d(A, v)}. (4.5)

By the induction hypothesis, we have that d(A, v) ≥ rv for every v ∈ Tu ∩ V0. This,



4.2. A CHARACTERIZATION OF SEARCHABLE RANDOM GRAPHS 71

together with equations (4.2) and (4.5), imply

d(A, u) ≥ 1 +
∑

S⊂V,S 6=∅
ωu,S · d(A,A(u, S))

≥ 1 +
∑

S⊂V,S 6=∅
ωu,S · min

v∈S∩Tu∩V0

{d(A, v)}

≥ 1 +
∑

S⊂V,S 6=∅
ωu,S · min

v∈S∩Tu∩V0

{rv}

= 1 +
∑

S⊆Tu,S 6=∅

∑

S′:S′∩Tu=S

ωu,S′ · min
v∈S∩V0

{rv}

= 1 +
∑

S⊆Tu,S 6=∅
qu,S ·min

v∈S
{rv} (4.6)

= ru,

where (4.6) follows from the definition of qu,S and the fact that by property (iii) of σ,

S ∩ V0 = S for every S ⊆ Tu. This completes the proof of the induction step.

of Theorem 16. Define the graph H, the ordering σ, the values ru, and the ordering

π as above. By Lemma 18, we have that d(Aσ,π, s) ≤ d(A, s). Since G(n, Ω) is

d-searchable using A by assumption, we have that d(A, s) ≤ d. Hence we have

d(Aσ,π, s) ≤ d, as desired.

Note that in the above proof, the second ordering π was defined in terms of the

first ordering σ. Therefore, the condition for the searchability of G(n, Ω) can be stated

in terms of only one ordering σ as follows:

Corollary 19. G(n, Ω) is d-searchable if and only if there is an ordering σ on the

nodes for which rs ≤ d, where r is defined as in (4.1).

A second corollary of the above characterization is that the following problem

belongs in the complexity class NP.

Searchability: Given a positive integer n, an n × n matrix P, two

vertices s and t, and a positive number d, decide if G(n,P) is d-searchable.

Corollary 20. Searchability is in NP.



72 CHAPTER 4. SEARCHABILITY IN RANDOM GRAPHS

Proof. We use the ordering σ as a polynomial size certificate for membership in

Searchability. By Corollary 19, it is enough to show that ru can be computed

in polynomial time. We prove this by rewriting Equation 4.1 for vertices u with u 6= t

and qu,∅ = 0. To do this, fix any such u and let v1, . . . , vt denote the vertices of Tu

ordered in increasing order of their rv’s, i.e., rv1 ≤ rv2 ≤ · · · ≤ rvt . We have

ru = 1 +
∑

S⊆Tu,S 6=∅

∏
v∈S

puv

∏

v∈Tu\S
(1− puv) ·min

v∈S
{rv}

= 1 +
t∑

i=1

∑

S⊆{1,...,t},min{S}=i

∏
j∈S

puvj

∏

j∈{1,...,t}\S
(1− puvj

) · rvi

= 1 +
t∑

i=1

rvi
puvi

i−1∏
j=1

(1− puvj
)

∑

S⊆{i+1,...,t}

∏
j∈S

puvj

∏

j∈{i+1,...,t}\S
(1− puvj

)

= 1 +
t∑

i=1

rvi
puvi

i−1∏
j=1

(1− puvj
).

Given this equation, one can compute ru given rv for all v ∈ Tu in polynomial time.

Therefore, by Corollary 19, membership in Searchability can be tested in polyno-

mial time given the certificate σ.

4.3 The Monotonicity Property

Armed with the characterization theorem of the previous section, we can now prove

the following natural monotonicity property for searchability.

Theorem 21. Let P, P′ be two n× n probability matrices such that for every i and

j, we have pij ≤ p′ij. Fix the source and destination nodes s and t. Then, if G(n,P)

is d-searchable for some d, so is G(n,P′).

Proof. By Corollary 19, since G(n,P) is d-searchable, there is an ordering σ such

that the value rs defined using Equation (4.1) is at most d. To show d-searchability

of G(n,P′), we apply the same ordering σ. Let {r′u} denote the values computed

using Equation (4.1), but with P replaced by P′. Similarly, we define q′u,S’s. By
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Corollary 19, it suffices to show that r′s ≤ d. To do this, we prove by induction that,

for every u ∈ V , we have r′u ≤ ru. This statement is trivial for u = t. We assume it

is proved for every v ∈ V with σ(v) > σ(u), and prove it for u. First, note that if

q′u,∅ > 0, we have qu,∅ =
∏

v∈Tu
(1− puv) ≥

∏
v∈Tu

(1− p′uv) = q′u,∅ > 0. Hence, ru = ∞
and the inequality r′u ≤ ru holds. Therefore, we may assume q′u,∅ = 0. Thus, we have

r′u = 1 +
∑

S⊆Tu,S 6=∅

∏
v∈S

p′uv

∏

v∈Tu\S
(1− p′uv) ·min

v∈S
{r′v}

≤ 1 +
∑

S⊆Tu,S 6=∅

∏
v∈S

p′uv

∏

v∈Tu\S
(1− p′uv) ·min

v∈S
{rv}

Let 1, 2, . . . , k denote the nodes of Tu, ordered in such a way that r1 ≤ r2 ≤ · · · ≤ rk.

Recall that
∏

v∈S p′uv

∏
v∈Tu\S(1−p′uv) is the probability that in G(n,P′), Γ(u)∩Tu =

S. Therefore, we have

r′u ≤ 1 +
∑

S⊆Tu,S 6=∅
PrG(n,P′)[Γ(u) ∩ Tu = S] ·min

v∈S
{rv}

= 1 +
k∑

i=1

ri ·PrG(n,P′)[min{Γ(u) ∩ Tu} = i]

= 1 +
k∑

i=1

ri

(
PrG(n,P′)[min{Γ(u) ∩ Tu} ≤ i]−PrG(n,P′)[min{Γ(u) ∩ Tu} ≤ i− 1]

)

= 1 + rk −
k−1∑
i=1

PrG(n,P′)[min{Γ(u) ∩ Tu} ≤ i](ri+1 − ri).

The coefficient of (ri+1− ri) in the above expression is the probability of the event

that the set of nodes that have an edge from u in G(n,P′) contains at least one of the

nodes 1, . . . , i. This event is monotone; therefore the probability of this event under
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G(n,P) is less than or equal to the probability under G(n,P′). Therefore,

r′u ≤ 1 + rk −
k−1∑
i=1

PrG(n,P)[min{Γ(u) ∩ Tu} ≤ i](ri+1 − ri)

= 1 +
k∑

i=1

ri ·PrG(n,P)[min{Γ(u) ∩ Tu} = i]

≤ ru,

where the last inequality follows from the definition of ru (and holds with equality

unless qu,∅ > 0). This completes the proof of the induction step.

We want to point out that the monotonicity result may seem surprising especially

to those who are familiar with Kleinberg’s result on the searchability of long range

percolation graphs [Kle00]: in that graph model, there is a critical value for a param-

eter r that the graph is searchable in poly-logarithmic steps only if r takes on this

value; either larger or smaller values for r would render graphs with polynomial time

decentralized routing time. Our result is not contradictary with Kleinberg’s result: in

his model changing the parameter r affects the probabilities of many edges simultane-

ously; in particular those probabilities sum up to 1, so either increasing or decreasing

the value of r will cause the probability of certain edges to decrease. Therefore the

condition for our monotonicity result does not hold in his model.

Theorem 21 is proven under deterministic memoryless algorithms. We also prove

monotonicity result for randomized algorithms with memory; the proof can be found

in Section 5.4. However, we do not know whether a similar statement holds for

randomized memoryless algorithms or deterministic algorithms with memory.

4.4 Summary and Open Problems

In this chapter, we defined a general class of random graphs, and gave a simple

characterization of random graphs in this class that are searchable using decentralized

deterministic memoryless algorithms. Our framework includes many of the previously

studied small world networks. Two important corollaries of our characterization are
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the monotonicity of the searchability property, and membership of the problem of

testing searchability of a given graph in the complexity class NP.

Our framework and results lead to many interesting open questions. First, it

would be interesting to settle the complexity of Searchability. We proved that

this problem belongs to NP. However, we do not know if this problem can be solved

in polynomial time, or if it is NP-complete.

Characterizing searchability with respect to more general classes of decentralized

search algorithms is another important open question. The class of search algorithms

we considered in this paper can be generalized in three ways: allowing the algorithm

to use randomization, allowing the algorithm to have memory, and allowing the algo-

rithm to fail (i.e., not find a path to t) with a small probability ε. The following simple

example shows any of these generalizations (or in fact, even allowing the algorithm

to store one bit of memory) can drastically increase the power of the algorithm.

Example 2. Consider a graph, consisting of vertices s = u0, u1, . . . , un−2 = t, and v.

For every i = 0, . . . , n − 1, there is an edge from ui to ui+1 with probability 1. Also,

there is an edge from s to v and one from v to s with probability 1. Finally, there is

an edge from v to t with probability 1 − 1/n. A deterministic memoryless algorithm

on this graph cannot ever visit v, since if it does and the direct edge from v to t is

not present, it has to go back to s and then it will fall into a loop, as it has to go

back to v. Therefore, any such algorithm reaches t in expected n− 2 steps. However,

if the algorithm is allowed to have one bit of memory, it can first go to v, and if the

edge to t is not present, go back to s, remembering that it has already visited v. This

achieves an expected path length of (1− 1/n)2 + 1
n
· n < 3. Similarly, if the algorithm

is allowed to use randomization, it can flip a coin at s, and choose to go to either v

or u1 with probabilities 1− 1/n and 1/n, respectively. If it goes to v and the edge to

t is not present, it returns to s and flips the coin again. It is not hard to prove that

the expected number of steps that this algorithm takes to reach t is at most 6.

The above example suggests that a characterization as simple as the one in Theo-

rem 16 is probably impossible for algorithms that have memory, use randomization, or

are allowed to fail. But at least it would be interesting to determine if these problems
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belong to NP.

Finally, we note that despite the fact that it seems intuitive that the searchability

property is monotone, we only know how to prove this property for deterministic

memoryless algorithms and for algorithms with memory. Most importantly, proving

this property for randomized memoryless algorithms is an intriguing open question.



Chapter 5

Stochastic Kronecker Graphs

A generative model based on Kronecker matrix multiplication was recently proposed

by Leskovec et al. [LCKF05] as a model that captures many properties of real-world

networks. In particular, they observe that this model exhibits a heavy-tailed degree

distribution, and has an average degree that grows as a power law with the size

of the graph, leading to a diameter that stays bounded by a constant (the so-called

densification power law [LKF05]). Furthermore, Leskovec and Faloutsos [LF07] fit the

stochastic model to some real world graphs, such as Internet Autonomous Systems

graph and Epinion trust graphs, and find that Kronecker graphs with appropriate

2× 2 initiator matrices mimic very well many properties of the target graphs.

Most properties of the Kronecker model (such as connectivity and diameter) are

only rigorously analyzed in the deterministic case (i.e., when the initiator matrix is a

binary matrix, generating a single graph, as opposed to a distribution over graphs),

and empirically shown in the general stochastic case [LCKF05]. In this chapter we

analyze some basic graph properties of stochastic Kronecker graphs with an initiator

matrix of size 2. This is the case that is shown by Leskovec and Faloutsos [LF07] to

provide the best fit to many real-world networks. We give necessary and sufficient

conditions for Kronecker graphs to be connected or to have giant components of size

Θ(n) with high probability. Our analysis of the connectivity of Kronecker graphs

is based on a general lemma about connectivity in random graphs (Theorem 22)

that might be of independent interest. We prove that under the parameters that the

77
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graph is connected with high probability, it also has a constant diameter with high

probability. This unusual property is consistent with the observation of Leskovec et

al. [LKF05] that in many real-world graphs the effective diameters do not increase,

or even shrink, as the sizes of the graphs increase, which is violated by many other

random graph models with increasing diameters. Finally we show that Kronecker

graphs do not admit short (poly-logarithmic) routing paths by decentralized routing

algorithms based on only local information.

5.1 Model and Overview of Results

In this chapter we mainly focuses on stochastic Kronecker graphs with an initiator

matrix of size 2, as defined below:

Definition 2. A (stochastic) Kronecker graph is defined by

(i) an integer k, and

(ii) a symmetric 2×2 matrix θ: θ[1, 1] = α, θ[1, 0] = θ[0, 1] = β, θ[0, 0] = γ, where

0 ≤ γ ≤ β ≤ α ≤ 1. We call θ the base matrix or the initiator matrix.

The graph has n = 2k vertices, each vertex labeled by a unique bit vector of length

k; given two vertices u with label u1u2 . . . uk and v with label v1v2 . . . vk, the probability

of edge (u, v) existing, denoted by P [u, v], is
∏

i θ[ui, vi], independent on the presence

of other edges.

We can think of the label of a vertex as describing k attributes of the vertex, each

bit representing one attribute. The initiator matrix specifies how the values of two

vertices on one bit influences connection strength (edge probability). We focus on the

case where γ ≤ β ≤ α; intuitively this means that if a vertex is strong in an attribute,

then it has larger probability of being linked to. A special case of Kronecker graph

model is that when α = β = γ, it becomes the well studied random graph G(n, p)

with p = αk.

Leskovec and Faloutsos [LF07] showed that the Kronecker graph model with 2×2

initiator matrices satisfying the above conditions is already very powerful in simulat-

ing real world graphs. In fact, their experiment shows that the matrix [.98, .58; .58, .06]
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is a good fit for the Internet AS graph. When the base matrix does not satisfy the

condition stated in the above definition (i.e., when α ≥ γ ≥ β or β ≥ α ≥ γ),

Kronecker graphs appear to have different structural properties, and require different

analytic techniques. We prove some of our results in these regimes as well (see Section

5.5); for all other sections, we concentrate on the γ ≤ β ≤ α case.

We analyze basic graph properties of the stochastic Kronecker graph model, in-

cluding connectivity, giant component sizes, diameters and searchability. The main

results are summarized below.

Theorem 25 The necessary and sufficient condition for Kronecker graphs to be

connected with high probability (for large k) is β + γ > 1 or α = β = 1, γ = 0.

(Section 5.2.2)

Theorem 27 The necessary and sufficient condition for Kronecker graphs to

have a giant component of size Θ(n) with high probability is (α + β)(β + γ) > 1, or

(α + β)(β + γ) = 1 and α + β > β + γ. (Section 5.2.3)

Theorem 29 When β + γ > 1, the diameters of Kronecker graphs are constant

with high probability. (Section 5.3)

Theorem 31 Kronecker graphs are not n(1−α) log2 e-searchable. (Section 5.4)

To prove some of the results for Kronecker graphs, we sometimes study a general

family of random graphs G(n, P ) (see also Section 4.1), which generalizes all random

graph models where edges are independent, including Kronecker graphs and G(n, p).

Definition 3. A random graph G(n, P ), where n is an integer and P is an n×n ma-

trix with elements in [0, 1], has n vertices and includes each edge (i, j) independently

with probability P [i, j].

Throughout this chapter we consider undirected G(n, P ): P is symmetric and

edges are undirected. We prove two useful theorems about connectivity and search-

ability in this model, which may be of independent interest; namely, we show that if

the min-cut size of the weighted graph defined by P is at least c ln n (c is a sufficiently

large constant), then with high probability G(n, P ) is connected (Section 5.2.1); we

also prove a monotonicity property for searchability in this model (Section 5.4).

In Section 5.6 we consider an alternative model where the labels of vertices are
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chosen randomly from all possible k-bit vectors. Most of the results for Kronecker

graphs still hold for this random label Kronecker model. Finally, we conclude in

Section 5.7 by pointing out open problems and presenting some conjectures.

5.2 Connectivity and Giant Components

We first state a sufficient condition for connectivity of general random graphs G(n, P )

(Section 5.2.1), then use this condition to analyze connectivity and giant components

of Kronecker graphs (Section 5.2.2, 5.2.3).

5.2.1 Connectivity of G(n, P )

We give a sufficient condition of the matrix P for G(n, P ) graphs to be connected. Let

V be the set of all vertices. For any S, S ′ ⊆ V , define P (i, S) =
∑

j∈S P [i, j]; P (S, S ′) =∑
i∈S,j∈S′ P [i, j].

Theorem 22. If the min-cut size of the weighted graph defined by P is c ln n (c

is a sufficiently large constant), i.e. ∀S ⊂ V, P (S, V \ S) ≥ c ln n, then with high

probability G(n, P ) is connected.

Proof. A k-minimal cut is a cut whose size is at most k times the min-cut size.

We use the following result about the number of k-minimal cuts due to Karger

and Stein [KS96]: In any weighted graph, the number of k-minimal cuts is at most

O((2n)2k).

Consider the weighted graph defined by P . Denote its min-cut size by t. We

say a cut is a k-cut if its size is between kt and (k + 1)t. By the above result there

are at most O((2n)2k+2) k-cuts. Now consider a fixed k-cut in a random realization

of G(n, P ): the expected size of the cut is at least kt, so by Chernoff bound the

probability that the cut has size 0 in the realization is at most e−kt/2. Taking the

union bound over all k-cuts, for all k = 1, 2, . . . , n2, the probability that at least one

cut has size 0 is bounded by

∑

k=1,...,n2

e−kt/2O((2n)2k+2)
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For t = c ln n where c is a sufficiently large constant, this probability is o(1). Therefore

with high probability G(n, P ) is connected.

Note that G(n, p) is known to be disconnected with high probability when p ≤
(1 − ε) ln n/n, i.e., when the min-cut size is (1 − ε) ln n. Therefore the condition in

the above theorem is tight up to a constant factor. Also, extrapolating from G(n, p),

one might hope to prove a result similar to the above for the emergence of the giant

component; namely, if the size of the min-cut in the weighted graph defined by P is

at least a constant, G(n, P ) has a giant component. However, this result is false, as

can be seen from this example: n vertices are arranged on a cycle, and P assigns a

probability of 0.5 to all pairs that are within distance c (a constant) on the cycle, and

0 to all other pairs. It is not hard to prove that with high probability G(n, P ) does

not contain any connected component of size larger than O(log n).

5.2.2 Connectivity of Kronecker Graphs

We define the weight of a vertex to be the number of 1’s in its label; denote the vertex

with weight 0 by ~0, and the vertex with weight k by ~1. We say a vertex u is dominated

by vertex u′, denoted by u ≤ u′, if for any bit i, ui ≤ u′i. Recall that P [u, v] is as

defined in Definition 2.

The following lemmas state some simple facts about Kronecker graphs. Lemma

23 is trivially true given the condition α ≥ β ≥ γ.

Lemma 23. For any vertex u, ∀v, P [u, v] ≥ P [~0, v];∀S, P (u, S) ≥ P (~0, S). Gener-

ally, for any vertices u ≤ u′, ∀v, P [u, v] ≤ P [u′, v]; ∀S, P (u, S) ≤ P (u′, S).

Lemma 24. The expected degree of a vertex u with weight l is (α + β)l(β + γ)k−l.

Proof. For any vertex v, let i be the number of bits where ub = vb = 1, and let j be

the number of bits where ub = 1, vb = 0, then P [u, v] = αiβj+l−iγk−l−j. Summing

P [u, v] over all v, the expected degree of u is

l∑
i=0

k−l∑
j=0

(
l

i

)(
k − l

j

)
αiβj+l−iγk−l−j =

l∑
i=0

(
l

i

)
αiβl−i

k−l∑
j=0

(
k − l

j

)
βjγk−l−j = (α+β)l(β+γ)k−l
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Theorem 25. The necessary and sufficient condition for Kronecker graphs to be

connected with high probability (for large k) is β + γ > 1 or α = β = 1, γ = 0.

Proof. We first show that this is a necessary condition for connectivity.

Case 1. If β + γ < 1, the expected degree of vertex ~0 is (β + γ)k = o(1), with high

probability vertex ~0 is isolated and the graph is thus disconnected.

Case 2. If β + γ = 1 but β < 1, we again prove that with constant probability vertex

~0 is isolated:

Pr[~0 has no edge] =
∏

v

(1− P [~0, v]) =
k∏

w=0

(1− βwγk−w)(
k
w) ≥

k∏
w=0

e−2(k
w)βwγk−w

= e−2
Pk

w=0 (k
w)βwγk−w

= e−2(β+γ)k

= e−2

Now we prove it is also a sufficient condition. When α = β = 1, γ = 0, the graph

embeds a deterministic star centered at vertex ~1, and is hence connected. To prove

β + γ > 1 implies connectivity, we only need to show the min-cut has size at least

c ln n and apply Theorem 22. The expected degree of vertex ~0 excluding self-loop is

(β + γ)k − γk > 2ck = 2c ln n given that β and γ are constants independent on k

satisfying β + γ > 1, therefore the cut ({~0}, V \ {~0}) has size at least 2c ln n. Remove

~0 and consider any cut (S, V \ S) of the remaining graph, at least one side of the

cut gets at least half of the expected degree of vertex ~0; without loss of generality

assume it is S i.e. P (~0, S) > c ln n. Take any node u in V \ S, by Lemma 23,

P (u, S) ≥ P (~0, S) > c ln n. Therefore the cut size P (S, V \S) ≥ P (u, S) > c ln n.

5.2.3 Giant Components

Lemma 26. Let H denote the set of vertices with weight at least k/2, then for any

vertex u, P (u,H) ≥ P (u, V )/4.

Proof. Given u, let l be the weight of u. For a vertex v let i(v) be the number of

bits where ub = vb = 1, and let j(v) be the number of bits where ub = 0, vb = 1.
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we partition the vertices in V \ H into 3 subsets: S1 = {v : i(v) ≥ l/2, j(v) < (k −
l)/2}, S2 = {v : i(v) < l/2, j(v) ≥ (k − l)/2}, S3 = {v : i(v) < l/2, j(v) < (k − l)/2}.

First consider S1. For a vertex v ∈ S1, we flip the bits of v where the corresponding

bits of u is 0 to get v′. Then i(v′) = i(v) and j(v′) ≥ (k − l)/2 > j(v). It is easy

to check that P [u, v′] ≥ P [u, v], v′ ∈ H, and different v ∈ S1 maps to different v′.

Therefore P (u,H) ≥ P (u, S1).

Similarly we can prove P (u,H) ≥ P (u, S2) by flipping the bits corresponding to

1s in u, and P (u,H) ≥ P (u, S3) by flipping all the bits. Adding up the three subsets,

we get P (u, V \H) ≤ 3P (u,H). Thus, P (u,H) ≥ P (u, V )/4.

Theorem 27. The necessary and sufficient condition for Kronecker graphs to have

a giant component of size Θ(n) with high probability is (α + β)(β + γ) > 1, or (α +

β)(β + γ) = 1 and α + β > β + γ.

Proof. When (α + β)(β + γ) < 1, we prove that the expected number of non-isolated

nodes are o(n). Let (α + β)(β + γ) = 1 − ε. Consider vertices with weight at least

k/2+k2/3, by Chernoff bound the fraction of such vertices is at most exp(−ck4/3/k) =

exp(−ck1/3) = o(1), therefore the number of non-isolated vertices in this category is

o(n); on the other hand, for a vertex with weight less than k/2 + k2/3, by Lemma 24

its expected degree is at most

(α + β)k/2+k2/3

(β + γ)k/2−k2/3

= (1− ε)k/2(
α + β

β + γ
)k2/3

= n−ε′co(log n) = o(1)

Therefore overall there are o(n) non-isolated vertices.

When α+β = β +γ = 1, i.e. α = β = γ = 1/2, the Kronecker graph is equivalent

to G(n, 1/n), which has no giant component of size Θ(n) [ER59].

When (α + β)(β + γ) > 1, we prove that the subgraph induced by H = {v :

weight(v) ≥ k/2} is connected with high probability, hence forms a giant connected

component of size at least n/2. Again we prove that the min-cut size of H is c ln n

and apply Theorem 22. For any vertex u in H, its expected degree is at least ((α +

β)(β + γ))k/2 = ω(ln n); by Lemma 26 P (u,H) ≥ P (u, V )/4 > 2c ln n. Now given

any cut (S,H \ S) of H, we prove P (S,H \ S) > c ln n. Without loss of generality

assume vertex ~1 is in S. For any vertex u ∈ H, either P (u, S) or P (u,H \ S) is at
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least c ln n. If ∃u such that P (u,H \ S) > c ln n, then since u ≤ ~1, by Lemma 23

P (S, H \S) ≥ P (~1, H \S) ≥ P (u,H \S) > c ln n; otherwise ∀u ∈ H, P (u, S) > c ln n,

since at least one of the vertex is in H \ S, P (S, H \ S) > c ln n.

Finally, when (α + β)(β + γ) = 1 and α + β > β + γ, let H1 = {v : weight(v) ≥
k/2 + k1/6}, and we will prove that the subgraph induced by H1 is connected with

high probability by proving its min-cut size is at least c ln n (Claim 1), and that

|H1| = Θ(n) (Claim 2), therefore with high probability H1 forms a giant connected

component of size Θ(n).

Claim 1. For any cut (S, H1 \ S) of H1, P (S, H1 \ S) > c ln n.

Proof of Claim 1. First, for any u ∈ H1,

P (u, V ) ≥ (α + β)k/2+k1/6

(β + γ)k/2−k1/6

= ((α + β)/(β + γ))k1/6

= ω(ln n).

By Lemma 26, P (u,H) = ω(ln n). We will prove P (u,H1) ≥ P (u,H \H1)/2, and it

follows that P (u,H1) = ω(ln n). Then we can apply the same argument as in case

(α+β)(β +γ) > 1 and prove that for any cut (S,H1 \S) of H1, P (S, H1 \S) > c ln n:

assume vertex ~1 is in S; for any vertex u ∈ H1, either P (u, S) or P (u,H1 \ S) is at

least c ln n; if ∃u such that P (u,H1 \ S) > c ln n, then P (S, H1 \ S) ≥ P (~1, H1 \ S) ≥
P (u,H1 \ S) > c ln n; otherwise ∀u ∈ H1, P (u, S) > c ln n, since at least one vertex is

in H1 \ S, we have P (S,H1 \ S) > c ln n.

It remains to prove P (u,H1) ≥ P (u,H\H1)/2. We will map each vertex v ∈ H\H1

to a vertex f(v) = v′ ∈ H1 such that v ≤ v′ (and hence P [u, v] ≤ P [u, v′]), and

each vertex in H1 is mapped to at most twice. Once we have such a mapping,

then P (u,H \ H1) =
∑

v∈H\H1
P [u, v] ≤ ∑

v∈H\H1
P [u, f(v)] ≤ ∑

v′∈H1
2P [u, v′] =

2P (u,H1). The mapping is as follows: for each i in [k/2, k/2 + k1/6), construct a

bipartite graph Gi where the left nodes Li are vertices with weight i, and make two

copies of all vertices with weight i+ k1/6 to form the right nodes Ri, and add an edge

if a right node dominates a left node. It is easy to see that the union of Lis forms

exactly H \H1, while all right nodes are in H1 and each node appears at most twice.

The bipartite graph Gi has a maximum matching of size |Li|, because all left (right)

nodes have the same degree by symmetry and |Li| < |Ri| (proved below). We take
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any such maximum matching to define the mapping and it satisfies that v ≤ f(v),

f(v) ∈ H1 and each v′ ∈ H1 is mapped to at most twice. Finally we prove |Li| < |Ri|
for k/2 ≤ i < k/2 + k1/6:

|Ri|
|Li| =

2
(

k
i+k1/6

)
(

k
i

) ≥
2
(

k
k/2+2k1/6

)
(

k
k/2

) =
2k

2
. . . (k

2
− 2k1/6 + 1)

(k
2

+ 2k1/6) . . . (k
2

+ 1)

≥ 2(
k
2
− 2k1/6

k
2

)2k1/6 ≥ 2e−ck−5/6∗k1/6

= 2e−o(1) = 2(1− o(1)) > 1

Claim 2. |H1| = Θ(n).

Proof of Claim 2. We count the number of vertices with weight k/2 + i:

(
k

k/2 + i

)
≤

(
k

k/2

)
= Θ(

√
2πk(k/e)k

(
√

2πk/2(k/2e)k/2)2
) = Θ(

2k

√
k
)

Therefore the size of H \H1 is at most
∑k1/6

i=0

(
k

k/2+i

) ≤ k1/6 ∗ 2k/
√

k = o(n). It is

easy to see |H| > n/2, thus |H1| > n/2− o(n).

Combining the two claims, we get that with high probability H1 forms a giant

connected component of size Θ(n).

5.3 Diameter

We analyze the diameter of a Kronecker graph under the condition that the graph is

connected with high probability. When α = β = 1, γ = 0, every vertex links to ~1 so

the graph has diameter 2; below we analyze the case where β+γ > 1. We will use the

following result about the diameter of G(n, p), which has been extensively studied in

for example [KL81, Bol90, CL01].

Theorem 28. [KL81, Bol90] If (pn)d−1/n → 0 and (pn)d/n →∞ for a fixed integer

d, then G(n, p) has diameter d with probability approaching 1 as n goes to infinity.
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Theorem 29. If β +γ > 1, the diameters of Kronecker graphs are constant with high

probability.

Proof. Let S be the subset of vertices with weight at least β
β+γ

k. We will prove that

the subgraph induced by S has a constant diameter, and any other vertex directly

connects to S with high probability.

Claim 3. With high probability, any vertex u has a neighbor in S.

Proof of Claim 3. We compute the expected degree of u to S:

P (u, S) ≥
∑

j≥ β
β+γ

k

(
k

j

)
βjγk−j = (β + γ)k

∑

j≥ β
β+γ

k

(
k

j

)
(

β

β + γ
)j(

γ

β + γ
)k−j

The summation is exactly the probability of getting at least β
β+γ

k HEADs in k coin

flips where the probability of getting HEAD in one trial is β
β+γ

, so this probability is

at least a constant. Therefore P (u, S) ≥ (β + γ)k/2 > c ln n for any u; by Chernoff

bound any u has a neighbor in S with high probability.

Claim 4. |S| ·minu,v∈S P [u, v] ≥ (β + γ)k.

Proof of Claim 4. We have

min
u,v∈S

P [u, v] ≥ β
β

β+γ
kγ

γ
β+γ

k

and

|S| ≥
(

k
β

β+γ
k

)
≈ (k

e
)k

( βk
(β+γ)e

)
β

β+γ
k( γk

(β+γ)e
)

γ
β+γ

k
=

(β + γ)k

β
β

β+γ
kγ

γ
β+γ

k

Therefore |S| ·minu,v∈S P [u, v] ≥ (β + γ)k.

Given Claim 4, it follows easily that the diameter of the subgraph induced by S is

constant: let β+γ = 1+ε where ε is a constant, the diameter of G(|S|, (β+γ)k/|S|) is

at most d = 1/ε by Theorem 28; since by increasing the edge probabilities of G(n, P )

the diameter cannot increase, the diameter of the subgraph of the Kronecker graph

induced by S is no larger than that of G(|S|, (β + γ)k/|S|). Therefore, by Claim 3,
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for every two vertices u and v in the Kronecker graph, there is a path of length at

most 2 + 1/ε between them.

5.4 Searchability

In Section 5.3 we showed that the diameter of a Kronecker graph is constant with high

probability, given that the graph is connected. However it is yet a question whether a

short path can be found by a decentralized algorithm where each individual only has

access to local information. In this section, we examine searchability of Kronecker

graphs: instead of restricting with deterministic memoryless routing algorithms as

in Chapter 4, we allow a more powerful family of routing algorithms - randomized

algorithms with memory, and prove that Kronecker graphs do not admit short routing

path even using such powerful algorithms.

We define searchability on G(n, P ) graphs using randomized algorithms with mem-

ory as follows:

Definition 4. In a decentralized routing algorithm for G(n, P ), the message is passed

sequentially from a current message holder to one of its neighbors until reach the

destination t, using only local information. In particular, the message holder u at a

given step has knowledge of:

(i) the probability matrix P ;

(ii) the label of destination t;

(iii) edges incident to all visited vertices.

A G(n, P ) graph is d-searchable if there exists a decentralized routing algorithm such

that for any destination t, source s, with high probability the algorithm can find an

s-t path no longer than d.

We first give a monotonicity result of searchability on general random graphs

G(n, P ) (an analogue of Theorem 21 for randomized search algorithms with memory),

then use it to prove Kronecker graphs with α < 1 is not poly-logarithmic searchable.

It is possible to directly prove our result on Kronecker graphs, but we believe the

monotonicity theorem might be of independent interests.
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Theorem 30. If G(n, P ) is d-searchable, and P ≤ P ′ (∀i, j, P [i, j] ≤ P ′[i, j]), then

G(n, P ′) is d-searchable.

Proof. Given G(n, P ′) we simulate G(n, P ) by ignoring some edges. Given a realiza-

tion G of G(n, P ′), we keep an edge (i, j) in G with probability P [i, j]/P ′[i, j], and

delete the edge otherwise; do so for each edge independently. We claim that random

graphs generated by the above process is equivalent to G(n, P ): the probability that

edge (i, j) presents is P ′[i, j] ∗ (P [i, j]/P ′[i, j]) = P [i, j], independent on other edges.

Now we have a G(n, P ) graph, we use its decentralized routing algorithm, which will

find a path with length at most d with high probability for any s and t.

Note that we cannot process all edges in the beginning, because there is no global

data structure to remember which edges are deleted. Instead we will decide whether

to delete an edge the first time we visit one of its endpoints and this information will

be available to all vertices visited later.

Theorem 31. Kronecker graphs are not n(1−α) log2 e-searchable.

Proof. Let P be the probability matrix of the Kronecker graph, and P ′ be the matrix

where each element is p = n−(1−α) log2 e. We have P ≤ P ′ because maxi,jP [i, j] ≤ αk ≤
e−(1−α)k = n−(1−α) log2 e = p. If the Kronecker graph is n(1−α) log2 e-searchable, then by

Theorem 30 G(n, p) where p = n−(1−α) log2 e is also n(1−α) log2 e-searchable. However,

G(n, p) is not 1
p
-searchable. This is because given any decentralized algorithm, when-

ever we first visit a vertex u, independent on the routing history, the probability that

u has a direct link to t is no more than p, hence the routing path is longer than the

geometry distribution with parameter p, i.e. with constant probability the algorithm

cannot reach t in 1/p steps.

5.5 Other Settings of Parameters

In the previous sections, we investigate the various properties of stochastic Kronecker

graphs with 2× 2 initiator matrices under the constraint α ≥ β ≥ γ. In this section

we present some results on other settings of parameters, still with 2 × 2 initiator
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matrices. Those settings also have interesting practical implications; for example, in

the case where min(α, γ) ≥ β a vertex tends to link to vertices more alike to itself.

5.5.1 Connectivity

We prove that if β + min(α, γ) > 1, then Kronecker graphs are connected with high

probability, for arbitrary α, β, γ ∈ [0, 1].

Theorem 32. If β + min(α, γ) > 1, then Kronecker graphs are connected with high

probability.

Proof. We first prove for the case where α ≥ γ ≥ β. We may assume α = γ. Let

d(u, v) be the Hamming-distance between the labels of u and v. Then P [u, v] =

γk(β
γ
)d(u,v).

Claim 5. In λk-th power of hypercube (i.e. a vertex u is connected to all vertices v

with d(u, v) ≤ λk), the min-cut size is at least
(

k
λk−1

)
/2.

Proof of Claim 5. Given a cut (S, S̄), take any vertex u ∈ S. For any vertex u′ with

d(u, u′) = 1, the number of common neighbors of u and u′ is at least
(

k
λk−1

)
, because

all vertices within distance λk−1 to u are within distance λk to u′ and are thus their

common neighbors. If the cut size is less than
(

k
λk−1

)
/2, then at least half of those

common neighbors must be in S, and u′ must also be in S. Apply the same argument

iteratively and all vertices will end up being in S.

Now given a cut (S, S̄) in the Kronecker graph, for any edge of this cut in λk-

th power of hypercube, the Hamming-distance of the two endpoints is at most λk,

and the corresponding edge presents in the Kronecker graph with probability at least

γk(β
γ
)λk, therefore

P (S, S̄) ≥ 1

2

(
k

λk − 1

)
γk(

β

γ
)λk ≥ 1

2k
((

1

λ
)λ(

1

1− λ
)1−λγ(

β

γ
)λ)k

Let λ = β
β+γ

, P (S, S̄) ≥ 1
2k

(β + γ)k = ω(ln n). According to Theorem 22, the graph

is connected with high probability.
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For the case where β ≥ max(α, γ), the proof is similar as above. Without loss of

generality assume α ≥ γ. Instead of λk-th power of hypercube, we can prove that in

the graph where a vertex u is connected to all vertices v with d(u, v) ≥ λk, the min-cut

size is at least
(

k
λk−1

)
/2; again, for any edge in such hypercube, the corresponding edge

in the Kronecker graph has probability at least γk(β
γ
)λk, and we can use computation

exactly like the above to bound the cut size in Kronecker graphs. We have proven

the result when α ≥ β ≥ γ (Theorem 25).

When β + min(α, γ) < 1 or β + min(α, γ) = 1 but all of them are strictly less

than 1, the graph is not connected with at least constant probability because vertex

~0 is isolated with probability at least e−2 as the proof in Theorem 25.

5.5.2 Giant Components

Unlike the previous results, we are not able to give a necessary and sufficient condition

for giant components for other setting of parameters.

Theorem 33. Consider the case where α ≥ γ ≥ β. If (α + β)(β + γ) < 1, then with

high probability there is no giant component with size Θ(n); if β +
√

αγ > 1, then

with high probability there exists a giant component with size Θ(n).

Proof. If (α + β)(β + γ) < 1, then we can prove that the expected number of non-

isolated nodes are o(n), with exactly the same argument as in Theorem 27.

Now if β +
√

αγ > 1, again let H be the subset of vertices with weight at least k/2

and we will show that the subgraph induced by H is connected with high probability,

which forms a giant connected component of size Θ(n).

Claim 6. In the subgraph induced by H in λk-th power of hypercube, the min-cut size

is at least
(

k
λk−1

)
/8.

Proof of Claim 6. The proof is similar to that of Claim 5, except that now we are

only concerned with nodes in H. We will prove that for any node u ∈ H, the number

of vertices in H whose distance to u are λk − 1 is at least
(

k
λk−1

)
/4. Since the total

number of such vertices is
(

k
λk−1

)
, we only need to prove that at least a quarter of
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them are in H; equivalently, we may consider the following process: we have k coins

with w = weight(u) HEADs and k − w TAILs; randomly choose l = λk − 1 coins

and flip them; we need to prove that the probability that finally there are more than

half HEADs is at least 1/4 if we start with w ≥ k/2 HEADs and flip l < k/2 coins.

To prove this, let us imagine partitioning the coins into two sets, a set S with k − w

HEADs and k−w TAILs, and a set T with the remaining HEADs. After flipping, the

probability that S has at least as many HEADs as TAILs is 1/2 by symmetry; if we

flip less than half of the coins (l < k/2), it is easy to see that T ends up more HEADs

than TAILs with probability at least 1/2. When both events happen, we guarantee

that finally there more than half HEADs, therefore this happens with probability at

least 1/4.

Note that for any two vertices that are both in H, there must be more bits with

1 − 1 matching than 0 − 0 matching. Therefore if u, v ∈ H have Hamming distance

d, then the probability of edge (u, v) in the Kronecker graph is at least βd(αγ)(k−d)/2.

Now given a cut (S, S̄) in the subgraph induced by H in Kronecker graph, for

any edge of this cut in λk-th power of hypercube, the Hamming-distance of the two

endpoints is at most λk, so the corresponding edge presents in the Kronecker graph

with probability at least βλk(
√

αγ)(1−λ)k, therefore

P (S, S̄) ≥ 1

8

(
k

λk − 1

)
βλk(

√
αγ)(1−λ)k ≥ 1

8k
((

1

λ
)λ(

1

1− λ
)1−λ√αγ(

β√
αγ

)λ)k

Let λ = β
β+
√

αγ
, P (S, S̄) ≥ 1

2k
(β +

√
αγ)k = ω(ln n). Applying Theorem 22, the

subgraph is connected with high probability.

There is a gap between our necessary condition and sufficient condition. We

conjecture that (α + β)(β + γ) > 1 is also the sufficient condition for linear size giant

component. The case γ ≥ α ≥ β is exactly symmetric to α ≥ γ ≥ β. However,

the proof technique does not apply directly to the β ≥ max(α, γ) case where vertices

with large Hamming distance are more likely to link to each other.
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5.6 An Alternative Model: Vertices with Random

Labels

In this section we consider an alternative model where the labels of the vertices are

chosen uniformly at random from all possible k bit vectors; the probability of an edge

is decided by the labels of the two endpoints as before. For simplicity of discussion,

let us assume for now that the number of vertices is n = 2k.

Ideally we wish we could prove a general connectivity theorem in this alternative

model similar to Theorem 22: define RG(n, P ) to be a random graph with n vertices

where the label l of any vertex is chosen at random from 1..n (with replacement), and

an edge (u, v) presents independently with probability P [l(u), l(v)]; if the min-cut size

of the weighted graph P is c ln n, then GR(n, P ) is connected with high probability.

If we could prove it, then all the results and proofs could automatically carry over

to the alternative model. Unfortunately such a statement is not true. Consider a

deterministic graph consisting of three parts S, T and {v}: each of S and T is a

complete graph containing almost half vertices, and there is no edge between S and

T ; vertex v links to all vertices. Let P be the adjacent matrix of this graph. The

min-cut size of P is much larger than c ln n, but GR(n, P ) is not connected if v is not

chosen, which happens with a constant probability 1/e.

Fortunately most of the results regarding Kronecker graphs are still true in the

random label model, and the proofs are similar except that now in addition we need

to consider the random choices of labels. We present as an example the proof of the

sufficient condition for connectivity in the random label model (analogous to Theorem

25); extending other results is very similar.

Theorem 34. When β + γ > 1, Kronecker graphs with random labels are connected

with high probability.

Proof. Let us first decide the random choices of vertex labels; denote the choice by

θ. The family of random graphs conditioned on θ is a G(n, P ) graph where P is

decided by θ. We want to show that if β + γ > 1, with high probability (with respect

to random choices of θ), P (θ) has min-cut size at least c ln n; then we can apply
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Theorem 22 and conclude that with high probability the graph is connected.

Now let us fix θ, and consider the min-cut in the matrix P (θ). Imagine that we

add a dummy vertex with label ~0, then its expected degree over random choices of θ

is (β/2 + γ/2)k ∗ (2k) = (β + γ)k > 2c ln n. What is more, its expected degree is the

sum of n i.i.d. random variables whose value is in the range of [0, 1], so its expected

degree conditioned on θ sharply concentrates around the expectation according to

Chernoff bound, i.e. with high probability its expected degree conditioned on θ is at

least 2c ln n. Now consider any cut (S, V \ S) where V is the vertex set excluding

the dummy node; note that S and V are deterministic sets given θ. At least one

side of the cut gets at least half of the expected degree of the dummy; without loss of

generality assume it is S i.e. P (~0, S) > c ln n. Take any node u in V \S, by Lemma 23,

P (u, S) ≥ P (~0, S) > c ln n. Therefore the cut size P (S, V \S) ≥ P (u, S) > c ln n.

We may relax the requirement that the number of vertices n = 2k. When n =

Θ(2k), the same results hold; for other n, our analysis techniques are still applicable,

but the condition will depend on the values of n and k.

5.7 Summary and Open Problems

In this chapter we analyzed several important properties of stochastic Kronecker

graphs with an initiator matrix of size 2; in particular, we studied connectivity, giant

component, diameter and searchability for the most interesting case where γ ≤ β ≤ α.

We also extended some of the results to other settings of parameters and variants of

the model.

There are several interesting problems about Kronecker graphs that we would like

to explore further in the future:

1. Conditions for giant components with size Θ(n) in Kronecker graphs with 2× 2

initiator matrices. We presented one necessary and one sufficient conditions for

giant components (Section 5.5.2), but there is a gap between the two bounds.

We propose the following conjecture:
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Conjecture 35. If (α + β)(β + γ) < 1, then with high probability there is no

giant component with size Θ(n); if (α+β)(β+γ) > 1, then with high probability

there exists a giant component with size Θ(n).

2. Diameters of Kronecker graphs with 2×2 initiator matrices. We conjecture that

the graph has a constant diameter with high probability under the condition

that the graph is connected with high probability. We proved this result for

the α ≥ β ≥ γ case (Theorem 29). For the α ≥ γ ≥ β case, we checked two

extreme cases where α = β = γ, or α = γ = 1 and β is small; in both cases the

diameter is constant.

Conjecture 36. Under the parameters where the graph is connected with high

probability, the diameter is constant with high probability.

3. Conditions for connectivity in Kronecker graphs with initiator matrices of arbi-

trary sizes. One necessary condition is that the sum of any row is at least 1. Oth-

erwise suppose the matrix is d×d and row 0 is (a1, . . . , ad) where a1+. . .+ad < 1,

then the expected degree of vertex ~0 is ( 1
d
(a1 + . . . + ad))

k ∗ dk = o(1), therefore

~0 is isolated with high probability. The other necessary condition is that if we

view the initiator matrix as the adjacent matrix of a graph, the graph must be

connected. Otherwise suppose 0 and 1 are disconnected in the initiator matrix,

then vertices ~0 and ~1 in the Kronecker graph generated from this matrix are

disconnected with probability 1.



Chapter 6

Link Privacy in Social Networks

6.1 Motivation

Participation in online communities is becoming ubiquitous. Not only do people keep

personal content such as their journals, photos, bookmarks and contacts online, they

also increasingly interact online, both socially and professionally. When participating

in an online blogging community, such as Blogger or LiveJournal, it is fairly common

to specify a set of friends, i.e., a set of users whose blogs one reads, and who are

permitted to read one’s blog posts written within a friend-only privacy setting. When

participating in photo-sharing communities, such as Flickr and PicasaWeb, it is also

fairly common to specify a set of friends, i.e. a set of users who are permitted to see

one’s private pictures, and whose pictures one is interested in seeing or being notified

about.

In online communities whose primary goal is social networking, such as MySpace,

Facebook, and LinkedIn, each user’s set of trusted users is of paramount importance

to their activity on the website. For example, in the case of LinkedIn, an online

network of professionals, each connection signifies a professional relationship between

two individuals, such as having worked together in the past. One’s connections, and

connections’ connections, and so on, form a network that an individual has access

to and can tap to foster professional connections or to find potential collaborators,

clients, employers and subject experts.

95
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It is no surprise then that a major part of the value of a social network or of

participating in a web-service with an online community, is in the community itself

and in its structure. Furthermore, entities other than the users themselves could

benefit from the knowledge of the social network structure even when such an outcome

is not intended. For example, a potential employer might want to be able to look at

the immediate network of a potential employee, to evaluate its size and quality, or

to be able to ask former colleagues of the individual for their opinions. A potential

advertiser might want to look at the profiles and interests of people in the user’s

network, in order to more accurately infer the user’s interests for the purpose of

targeted advertisements. In other words, knowledge of the network opens the door

for powerful data mining, some of which may not be desirable to the users of the

social network.

Some social networks such as LiveJournal allow users to see all the links of any user

in the network. However our motivation for this chapter is networks such as LinkedIn

where relationships (in this case professional) between users may be sensitive, and

the link information is a valuable asset to the network owner, so a user is permitted

only limited access to the link structure. We will use LinkedIn as a running example

throughout the paper. A LinkedIn user can see the profiles and the list of friends of

each of his friends, the profiles of friends of friends, as well as the names of people

that the friends of friends are connected to. Viewing the social network as a graph

(with users as nodes and links between users as edges), a LinkedIn user can see his

edge-node-edge-node neighborhood as well as the names of users at distance 3 from

him.

Even though the intention is to give users access to only a small portion of the

social network graph, one could imagine resourceful users stitching together local

information about different parts of the network to gain global information about

the network as a whole. In this chapter, we analyze methods one could employ to

obtain information about the link structure of a social network, and the difficulties

that lie therein depending on the type of neighborhood access permitted by the web

application. We concentrate on the case in which an attacker, whose goal is to

ascertain a significant fraction of the links in a network, obtains access to parts of
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the network by gaining access to the accounts of some select users. This is done

either maliciously by breaking into user accounts or by offering each user a payment

or service in exchange for their permission to view their neighborhood of the social

network. We describe both experimental and theoretical results on the success of such

an attack in obtaining the link structure of a significant portion of the network, and

make recommendations for the type of neighborhood access that a web application

should permit to prevent such an attack and protect the privacy of its network and

its users.

Our work is thus different from the line of work in [BDK07] and [MMJ+07] where

“anonymized” releases of social network graphs are considered. In that setting the

owner of the social network releases the underlying graph structure after removing

all username annotations of the nodes, and the goal of an attacker is to uniquely

identify the node that corresponds to a real world entity in this anonymized graph.

In contrast, we consider a case where no underlying graph is released and, in fact, the

owner of the network would like to keep the entire structure of the graph hidden from

any individual. However, an attacker with access to some number of user accounts is

able to learn who links to whom for a significant fraction of users on the network.

In Section 6.2, we discuss related work on privacy in social networks. Section 6.3

lays out the formal model of the kind of attack we consider and the goal of the attack.

We present experimental results of the success of different attack strategies on both

simulated and real world social network graphs in Section 6.4, and present a rigorous

theoretical analysis in Section 6.5. We conclude in Section 6.6 with recommendations

of actions for web service providers that would preserve user privacy.

6.2 Related Work

There has been much recent interest in the context of anonymized data releases.

[BDK07] considers a framework where a social network owner announces the intention

to release an anonymized version of the network graph, i.e. a copy where true user

names are replaced with random ids but the network structure is unchanged. They

show that, if given a chance to create as few as Θ(log(n)) new accounts in the network,
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prior to the release of the anonymized network, an attacker can efficiently recover the

structure of connections between any Θ(log2(n)) nodes chosen apriori by identifying

the new accounts that he inserted in to the network. In [MMJ+07], the authors

experimentally evaluate how much background information about the structure of

the neighborhood of an individual would be sufficient for an attacker to uniquely

identify the individual in such an anonymized graph. In [ZG07] the emphasis is on

protecting the types of links associated with individuals in an anonymized release.

Simple edge-deletion and node-merging algorithms are proposed to reduce the risk of

sensitive link disclosure.

While the privacy attack model of [BDK07] is very interesting and has received

substantial research focus, in this paper we study the privacy in social networks from

an entirely different angle. We consider a case where no underlying graph is released,

and, in fact, the owner of the network would like to keep the entire structure of the

graph hidden from any one individual. An attacker we consider does not have access

to the entire anonymized structure of the graph, nor is his goal to de-anonymize

particular individuals from that graph. In contrast, he aims to compromise the link

privacy of as many individuals as possible by determining the link structure of the

graph based on the local neighborhood views of the graph from the perspective of

several non-anonymous users.

In the attack strategies that we consider, the effectiveness of the attack is likely to

depend to a large extent on the degree distribution of the nodes in the social network

which is commonly known to be close to power law [WF94, CS04, MK]. In our

theoretical analysis of the effectiveness of an attack, we would therefore like to use a

model for social networks that guarantees a power law distribution. We use the Power

Law Random Graph model of [BC78] and [ACL00]. Unlike the evolutionary models

such as preferential attachment, this model does not consider the process that forms

the power law degree sequence; rather, it takes the power law degree distribution as

given and generates a random graph whose degree distribution follows such a power

law. The model is described in more detail in Section 6.4.

As a side note, our theoretical and experimental results also have implications

on the power of lookahead in speeding up web crawls studied in [MST07]. [MST07]
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analyzes a particular crawling strategy where the crawler performs a random walk on

the graph; we can potentially use some of the strategies in this paper for crawling,

and they provide larger coverage than a random walk crawler. A similar problem

has been studied in [ALPH01], but as pointed out by [MST07], the main result of

[ALPH01] does not hold.

6.3 The Model

In this section we formalize the privacy threat drafted in the Introduction. We first

define the primary goal of the privacy attack considered in this paper (Section 6.3.1);

then discuss the knowledge of social networks available to users, and thus adversaries

(Section 6.3.2); finally, we list possible attack strategies (Section 6.3.3).

6.3.1 Goal of the Attack

We view a social network as an undirected graph G = (V,E), where the nodes V

are the users and the edges E represent friendships or interactions between users.

While some online social networks (such as LiveJournal) allow friendship to be one-

directional, many others (such as LinkedIn and Facebook) do require mutual friend-

ship, and in those graphs interactions between users are naturally modeled as undi-

rected edges. From now on we consider only undirected graphs for simplicity of

discussion and analysis.

As informally discussed in Section 6.1, the primary goal of the privacy attack is

to discover information about who links to whom in the network. Thus we measure

the effectiveness of an attack by the amount of the network graph structure exposed

to the attacker:

Node Coverage: the fraction of nodes whose entire immediate neighbor-

hood is known. We say that a node is covered and its entire immediate

neighborhood is known, if the attacker knows precisely which nodes it

connects to and which nodes it is not connected to.
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We also refer to node coverage as user coverage or simply coverage. We may also

measure the effectiveness of an attack by “edge coverage”. There are two possible

definitions of edge coverage. One definition is: among all existing edges, the fraction

of edges known to the attacker. However, this notion of edge coverage does not

measure the attacker’s knowledge of non-existence of an edge, and is therefore not

a comprehensive view of an attacker’s knowledge. The other possible definition is:

among all pairs of users, the fraction of pairs between which the attacker knows

whether or not an edge exists. As we will see in the following sections, node coverage

makes sense for the attacker strategies we consider and directly implies this kind of

edge coverage. We will use node coverage as the primary measure throughout the

chapter.

6.3.2 The Network through a User’s Lens

As mentioned in Section 6.1, LinkedIn allows a user to see all edges incident to himself

as well as all edges incident to his friends. In general, a social network could choose

how much visibility to provide its users depending on how sensitive links are. We

distinguish such differing neighborhood visibilities by the term lookahead. We say

that the social network has lookahead of 0 if a user can see exactly who he links to;

that the social network has lookahead 1 if a user can see exactly the friends that he

links to as well as the friends that his friends link to. In general, we say that the

social network has lookahead l if a user can see all of the edges incident to the nodes

within distance l from him. Using this definition, LinkedIn has lookahead 1. In terms

of node coverage, a lookahead of l therefore means that each node covers all nodes

within distance l of it; the nodes that are at distance l + 1 are seen, but not covered.

There are several other variations on the type of access that a user can have to the

graph structure. Some networks allow a user to see the shortest path between himself

and any other user, some display the path only if it is relatively short, some only

display the length of the shortest path, and others let the user see the joint friends

he has with any other user. Some networks offer the users a combination of these

options. We largely ignore these additional options in our discussion, while noting
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that all of them potentially make the task of discovering the entire link structure

easier.

In addition to the connection information, a typical online social network also

provides a search interface, where we can search for users by username, first name,

last name, other identifying information such as email, or different combinations of

the above. The search interface will return usernames of all users who satisfy the

query, often with the numbers of friends of those users, i.e. the degrees of the nodes

corresponding to those users in the social network graph, G. For example LinkedIn

allows such queries and provides degree information.

To summarize, the possible interface that a social network exposes to users which

may be leveraged by attackers to target specific user accounts includes:

• neighbors(username, password, l): Given a username with proper authentication

information, return all users within distance l and all edges incident to those

users in the graph G;

• exists(username): Given a username, return whether the user exists in the

network;

• degree(username): Given a username, return the degree of the user with that

username. Note that degree(username) implies exists(username);

• userlist(): Return a complete list of all usernames in the network.

Among above, only neighbors() requires authentication information; all others are

publicly available. A social network might expose some or all of those functions to

its users. For example, LinkedIn provides neighbors(username, password, l) for l = 0

or 1, but not for l > 1; it also provides exists(username) and degree(username).

Most social networks do not expose userlist() directly; however, adversaries may be

able to generate the complete (or nearly complete) list of usernames through other

functionalities provided by the network. For example, Facebook allows fuzzy search

of, say, the first two letters of last names, so one can easily obtain its username list

by searching all possible two-letter combinations.
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Note that a particular network may expose only a subset of the above functions;

even if all functions are available, their costs may vary greatly. Therefore when we

discuss attack strategies in the next section we list the functions required by each

strategy, and when we evaluate and compare strategies there is a trade-off between

effectiveness of an attack and the interface it requires.

6.3.3 Possible Attack Strategies

As mentioned in Section 6.1, we consider an attack that attempts to discover the

link structure of a social network by strategically gaining access to the accounts of

some select users, and combining the views from their different perspectives in order

to obtain a coherent network picture. The access to user accounts is gained either

by maliciously breaking into the accounts or by offering each user a payment, service

or reward that increases their status within the social network (for example, adding

them as a friend, or writing them a positive recommendation or review) in exchange

for their permission to view their neighborhood of the social network. Recall that

each time the attacker gains access to a user account, he immediately covers all nodes

that are at distance less than the lookahead distance enabled by the social network,

i.e., he gets to see exactly the edges incident to these nodes. So if the lookahead is l,

then by bribing node u, he immediately covers all nodes that are within distance l of

u. Additionally, he gets to see all nodes that are within distance l + 1. We will call

the users, to whose user accounts the attacker has managed to obtain access, bribed

users.

We now discuss the possible strategies that an attacker may want to utilize when

targeting users to bribe. Different strategies may require different knowledge of the

social network; we order the strategies in decreasing order of the information needed

for the attacker to implement them. The attacker would like to obtain as large

coverage as possible by bribing a fixed number of users; in Sections 6.4 and 6.5 we

will study the performance of these strategies both experimentally and theoretically.

• BENCHMARK-GREEDY: In this strategy at each time, the attacker picks

the next user to bribe as the one whose perspective on the network will give
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the largest possible amount of new information. More formally, in each step

the algorithm picks the node covering the maximum number of nodes not yet

covered. For lookahead less than or equal to 1, this can be implemented if

the attacker can access the degrees of all users on the network. However for

lookahead greater than 1, it requires that for each node the attacker have access

to all usernames covered by that node, which is not a primitive that we consider

available to the attacker. So this strategy serves as a benchmark rather than

a feasible attack – it is the optimal bribing algorithm that is computationally

feasible when given access to the entire graph G1.

Requires: G;

• Heuristically Greedy: A heuristically greedy bribing strategy picks the next user

to bribe as the one who can offer the largest possible amount of new information,

according to some heuristic measure. The heuristic measure is chosen so that

the attacker does not need to know G to evaluate it. In particular, we consider

the following strategy:

– DEGREE-GREEDY: Select the next user to bribe as the one with the max-

imum “unseen” degree, i.e., its degree according to the degree(username)

function minus the number of edges incident to it already seen by the ad-

versary.

Requires: neighbors(username, password, l), degree(username), userlist();

• HIGHEST-DEGREE: In this strategy, users are bribed in descending order of

their degrees.

Requires: neighbors(username, password, l), degree(username), userlist();

• Random: In this strategy, the users to bribe are picked randomly. Variations

could include picking the users uniformly at random, proportional to their de-

grees, etc. In particular, we study one strategy in this category:

1The attacker’s goal is to cover G or most of G by bribing as few nodes as possible. However,
to find the optimal bribing set for a given G is NP hard, and the best polynomial-time (thus
computationally feasible) approximation algorithm is the greedy algorithm described above. This
can be proved by a reduction to the set cover problem.
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– UNIFORM-RANDOM: here the attacker selects users uniformly at ran-

dom.

Requires: neighbors(username, pwd, l), userlist();

• Crawler: This strategy is similar to the Heuristically Greedy strategy, but the

attacker chooses the next node to bribe only from the nodes already seen (within

distance l + 1 of some bribed node). We consider one such strategy:

– DEGREE-GREEDY-CRAWLER: The next node to bribe is selected as

the one with the maximum unseen degree among nodes already seen.

Requires: neighbors(username, password, l), degree(username);

Note that the DEGREE-GREEDY-CRAWLER and UNIFORM-RANDOM strate-

gies are very easily implementable in practice on most social networks, since they do

not require any knowledge of nodes that are not within the attacker’s visible neighbor-

hood. Further the DEGREE-GREEDY-CRAWLER strategy could also be used by

web crawlers to crawl web pages more rapidly when each web page stores information

about its lookahead.

6.4 Experimental Results

In this section we present experimental results of applying the strategies of Section

6.3.3 to both synthetic and real world social network data. At a high level, the ex-

periments explore the fraction, f , of nodes that need to be bribed for an attacker

using the different bribing strategies to achieve 1 − ε node-coverage for a social net-

work with lookahead l. Our experimental results show that the number of users an

attacker needs to bribe in order to acquire a fixed coverage decreases exponentially

with increase in lookahead. In addition, this number is also fairly small from the

perspective of actual implementation, indicating that several of the attack strategies

from Section 6.3.3 are feasible to implement in practice and achieve good results.

We implemented and evaluated the following five strategies, ordered in decreasing

order of the complexity of the interface that needs to be exposed for an attacker
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to implement them: BENCHMARK-GREEDY (abbreviated as BENCHMARK);

DEGREE-GREEDY (abbreviated as GREEDY); HIGHEST-DEGREE (abbreviated

as HIGHEST); UNIFORM-RANDOM (abbreviated as RANDOM); DEGREE-GREEDY-

CRAWLER (abbreviated as CRAWLER).

6.4.1 Results on Synthetic data

Generating Synthetic Graphs

In order to measure the effectiveness of the different attack strategies, we generate

random graphs with power-law degree distributions and apply our strategies to them.

We use the Power Law Random Graph model in [ACL00] to generate the graphs (see

Section 6.2 for an explanation of why we choose this model). The model essentially

generates a graph that satisfies a given degree distribution, picking uniformly at

random from all such graphs.

More specifically, let n be the total number of nodes in G, α (2 < α ≤ 3)

be the power law parameter; let d0 and dmax be the minimum and maximum degree

of any node in the graph, respectively. First, we generate the degrees of all the

nodes d(vi), i = 1, . . . , n independently according to the distribution Pr[d(vi) = x] =

C/xα, d0 ≤ x ≤ dmax, where C is the normalizing constant. Second, we consider

D =
∑

d(vi) minivertices which correspond to the original vertices in a natural way

and generate a random matching over D. Finally, for each edge in the matching,

we construct an edge between corresponding vertices in the original graph. As a

result, we obtain a random graph with a given power-law degree distribution. The

graph is connected almost surely [GMS03]. The graph has a few multi-edges and

self-loops that we remove in our experiments, without affecting the power law degree

distribution.

Furthermore, following the practice of [MST07], we cap dmax, the maximum num-

ber of connections that a user may have at
√

n, reflecting the fact that in a large

enough social network, a single person, even a very social one, cannot know a con-

stant fraction of users.

We denote the fraction of nodes bribed by f , the number of nodes bribed by
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k = fn, and the coverage achieved by 1− ε = number of nodes covered
n

.

Comparison of Strategies

We analyze the relative performance of five of the strategies proposed in Section 6.3.3

on random power-law graphs with 100, 000 nodes, α = 3 and dmin = 5. We run each

strategy on 10 power-law graphs generated as described in 6.4.1, with the aim of

achieving coverage of 0.5 through 0.99. For each strategy, we average across the runs

the fraction of nodes that need to be bribed with that strategy in order to achieve

the desired coverage. This gives us f as a function of 1 − ε for each strategy. We

present the results for lookahead 1 and 2 in Figure 6.1.

From the experimental results we can see that BENCHMARK has the best perfor-

mance, i.e., to achieve a fixed coverage of 1− ε, BENCHMARK needs to bribe fewer

nodes than any other strategy. However, as mentioned previously, BENCHMARK

is not possible to implement in practice because it requires knowledge of the entire

graph structure, and so it can only serve as a benchmark upper bound on how good

any given strategy can be.

Some of the other observations we make are that HIGHEST and BENCHMARK

perform almost equally well when the desired coverage is less than 90%. However

the performance of HIGHEST deteriorates as the lookahead increases and desired

coverage increases.

Somewhat surprisingly, we find that GREEDY performs worse than HIGHEST

while GREEDY and CRAWLER perform equally well. Not surprisingly, RANDOM

performs the worst out of all the strategies.

We choose the following strategies to analyze in more detail and show that these

can pose serious threats to the link privacy: HIGHEST and CRAWLER as a measure

of performance of a somewhat sophisticated yet still implementable strategy; RAN-

DOM as the most easily implementable attack strategy that can serve as a lower

bound on how well other strategies can work.
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Figure 6.1: Comparison of attack strategies on synthetic data. We plot the fraction
of bribed nodes against node coverage on synthetic graphs (with 100,000 nodes),
using the five bribing strategies with lookahead 1 and 2. Lines for CRAWLER and
GREEDY are almost overlapping.
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Dependence on the Number of Users

We analyze how the the performance of a bribing strategy changes with an increase

in the number of nodes in the graph. We observe in Figure 6.2 that the number of

nodes k that need to be bribed using the HIGHEST strategy in order to achieve a

fixed coverage of 1− ε is linear in the size of the network, for various values of ε and

lookahead of 2. The same was observed for other values of lookahead. Since HIGH-

EST has the best performance among all the suggested realistically implementable

strategies, this implies that k is linear in n for other strategies as well. However, it is

worth observing that the slope of the linear function is very small, for all ε not very

close to 1. As discussed in the next section, this makes all of the strategies a realistic

threat at lookahead greater than 1.
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Figure 6.2: Number of nodes that need to be bribed for graph sizes n using HIGHEST
with lookahead 2 for coverage 0.8, 0.9, 0.99.

Dependence on Lookahead

The performance of all strategies substantially improves with increase in lookahead.

Consider, for example, the performance of the HIGHEST strategy, plotted in Figure

6.3, and also detailed in Table 6.1. With each increase in lookahead, the number of
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nodes k that need to be bribed in order to achieve the same 1− ε coverage decreases

by two orders of magnitude. If in an 800, 000-user social network, one needs to bribe

36, 614 users to achieve a 0.8 coverage with lookahead 1 using HIGHEST, then in the

network of the same size one only needs to bribe 348 users to achieve the same coverage

with lookahead 2, and only 7 users to achieve the same coverage at lookahead 3. In

other words, the number of nodes that need to be bribed to achieve fixed coverage

decreases exponentially in the lookahead, rapidly making the HIGHEST strategy

attack a feasible threat at lookahead 2 in social networks with under 1 million users,

and a feasible threat at lookahead 3 in social networks with as many as 100 million

users.

1-ε f1/f2 f2/f3

0.7 112.3 39.3
0.8 105.0 49.1
0.9 88.6 65.1
0.95 73.1 79.0
0.99 46.6 101.7

Table 6.1: Factors of improvement in performance of HIGHEST with increases in
lookaheads.

We observe a similar exponential decrease with increase in lookahead in the num-

ber of nodes that need to be bribed for CRAWLER (Figure 6.3); similar result is

observed for RANDOM as well.

6.4.2 Results on Real data

We also ran our experiments on real network data. As we felt that actually bribing

LinkedIn users with a goal of recovering the network’s structure would be inappro-

priate as a research exercise, we used LiveJournal instead as a proxy, since its link

structure is readily available. We crawled LiveJournal using the friends and friends-of

listings to establish connections between users. We extracted a connected component

of 572, 949 users.

The obtained LiveJournal grah has an average degree of 11.8, dmin = 1, dmax =



110 CHAPTER 6. LINK PRIVACY IN SOCIAL NETWORKS

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.5  0.6  0.7  0.8  0.9  1

k,
 n

um
be

r 
of

 n
od

es
 n

ee
de

d 
to

 b
rib

e

1-ε desired

lookahead=1
lookahead=2
lookahead=3

(a) HIGHEST, n = 800k

 1

 10

 100

 1000

 10000

 100000

 0.5  0.6  0.7  0.8  0.9  1

k,
 n

um
be

r 
of

 n
od

es
 n

ee
de

d 
to

 b
rib

e

1-ε desired

lookahead=1
lookahead=2
lookahead=3

(b) CRAWLER, n = 100k

Figure 6.3: Effect of lookahead on synthetic data. The figures show the number of
nodes to bribe to achieve 1 − ε coverage with different lookahead, using HIGHEST
and CRAWLER respectively. Note that y axis is log scale.
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1974, α = 2.6.

Comparison of Strategies

Analogous to our discussion in Section 6.4.1 we compare the performance of the

different bribing strategies on the LiveJournal graph at lookaheads of 1 and 2 in

Figures 6.4. The relative performance of the different strategies is the same as on the

synthetic data.

Dependence on Lookahead

Furthermore, as on the synthetic data, the number of nodes that need to be bribed

in order to achieve fixed coverage of LiveJournal decreases exponentially with an

increase in lookahead (see Figure 6.5).

These experiments also confirm our hypothesis that while none of the strategies

are a truly feasible threat at lookahead 1, some of them become feasible at lookahead

2, and all of them become feasible at lookahead 3. For example, in order to obtain

80% coverage of a 572, 949-user LiveJournal graph using lookahead 2 HIGHEST needs

to bribe 6, 308 users, and to obtain the same coverage using lookahead 3 HIGHEST

needs to bribe 36 users – a number that is sufficiently small given the size of the

network; and thus possible to bribe in practice.

6.5 Theoretical Analysis for Random Power Law

Graphs

In this section, we theoretically analyze the performance of a couple of the bribing

strategies from Section 6.3: we analyze the fraction of nodes an attacker needs to

bribe to reach a constant node coverage with high probability for a power law graph

drawn from the Power Law Random Graph model (details about the model in Section

6.4). We were able to analyze the following two strategies in particular: UNIFORM-

RANDOM and HIGHEST-DEGREE. We carry out the analysis under power law



112 CHAPTER 6. LINK PRIVACY IN SOCIAL NETWORKS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85

F
ra

ct
io

n 
of

 b
rib

ed
 n

od
es

 n
ee

de
d,

 f

Targeted node coverage, 1-ε

Random
Crawler
Greedy
Highest

(a) Lookahead 1

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85

F
ra

ct
io

n 
of

 b
rib

ed
 n

od
es

 n
ee

de
d,

 f

Targeted node coverage, 1-ε

Random
Crawler
Greedy
Highest

(b) Lookahead 2

Figure 6.4: Comparison of attack strategies on LiveJournal data. We plot the fraction
of bribed nodes against node coverage on LiveJournal graph, using the four bribing
strategies with lookahead 1 and 2. The two lines for CRAWLER and GREEDY are
almost overlapping.
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(a) HIGHEST, n = 800k
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(b) CRAWLER, n = 100k

Figure 6.5: Effect of lookahead on LiveJournal data. The figures show the number of
nodes to bribe to achieve 1 − ε coverage with different lookaheads, using HIGHEST
and CRAWLER respectively. Note that y axis is log scale.
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graphs; for configuration models with other degree distributions, our analysis tech-

nique still applies, but the result will depend on the degree distribution.

We use the same notations as defined in Section 6.4. To recap: n is the number

of nodes in the network; m is the number of edges; d0 is the minimum degree of a

node;
√

n is the maximum degree; α is the power law parameter; C is the normalizing

constant in degree distribution so that
∑√

n
d=d0

Cd−α = 1; the target node coverage is

1− ε; f is the fraction of bribed nodes and k = fn is the number of bribed nodes.

6.5.1 Analysis of Lookahead 1

We first answer the following question: if in each trial we cover a node randomly with

probability proportional to its degree (all trials being independent), after how many

trials will we have covered (1 − ε)n distinct nodes? Once we answer this question,

we will come back to estimating the number of nodes to bribe by studying the rate

of “covering nodes” of different bribing strategies. This question is similar to the

well-known coupon collector problem if all nodes have an equal probability of being

covered.

Lemma 37. [MR95] (Coupon Collector) Consider an unlimited supply of coupons

of n distinct kinds. At each trial if we collect a coupon uniformly at random and

indpendently of previous trials, then after t trials, the number of distinct coupons

collected has the expectation n(1− e−t/n) and is sharply concentrated.

Now in our question each node has a different probability of being covered (col-

lected), thus can be viewed as a weighted coupon collector problem. Schelling studied

this problem in 1954 [vS54] when the probability of sampling each coupon is explicitly

given. In our problem we not only need to consider the random choices of coupon

collection, but also the random realization of the graph.

Lemma 38. In each trial we cover a node randomly with probability proportional

to its degree, independently of previous trials. After − ln ε0

d0
2m trials, the number of

distinct nodes covered is at least n(1 − ε − o(1)) with high probability, where ε =∑√
n

d=d0
ε

d/d0

0 Cd−α.
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Proof. First consider all nodes with degree d0 in the graph. Let c0 be the fraction

of such nodes; c0 = Θ(1) with high probability (see for example [MST07]). In each

trial, the probability of covering a node with degree d0 is c0nd0/2m (since the total

sum of degrees is 2m); in − ln ε0

d0
2m trials, on expectation there are −c0n ln ε0 trials

choosing nodes with degree d0, and by Chernoff bound ([MR95]) there are at least

−(c0 − o(1))n ln ε0 such trials with high probability. All nodes with degree d0 have

an equal probability of being covered, so it is a classic coupon collector problem if

constrained on such trials. By Lemma 37, the expected number of nodes with degree

d0 collected is at least

c0n(1− e(c0−o(1))n ln ε0/c0n) = c0n(1− ε0 − o(1))

and by sharp concentration the number of such nodes collected is at least c0n(1 −
ε0 − o(1)) with high probability.

Now consider nodes with degree di = Θ(1). Let ci be the fraction of such nodes

and again ci = Θ(1) with high probability. By a similar argument as above, there are

at least −(ci − o(1)) di

d0
n ln ε0 trials choosing nodes with degree di, and the number of

such nodes collected is at least cin(1− ε
di/d0

0 − o(1)).

Finally for all the remaining nodes with degree ω(1), the total number of such

nodes is o(n), so we miss at most o(n) such nodes.

In total, with high probability we miss at most
∑

di
cinε

di/d0

0 + o(n) nodes after
− ln ε0

d0
2m trials. In the power law random graph model, ci = Cd−α

i + o(1) with high

probability, therefore we miss at most
∑√

n
d=d0

Cd−αnε
d/d0

0 + o(n), i.e. we collect at

least n(1− ε− o(1)) nodes.

Both ε and ε0 are between 0 and 1, and we can show that ε is always smaller than

ε0. Table 6.2 gives some values of ε and ε0; for example when α = 3 and d0 = 5,

ε = 0.4 gives ε0 = 0.534.

Now we come back to the original question: how many nodes do we need to bribe

to cover a 1−ε fraction of the graph, using different bribing strategies with lookahead

1? Remember that with lookahead 1 we cover a node only if it is a direct neighbor

of a bribed node.
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Pick a node to bribe using any strategy. Consider one edge of the bribed node,

the other endpoint of the edge can be any node v and the probability of it being v is

d(v)/2m if we randomize over all graphs with the given degree sequence (the argument

can be formalized using Principle of Deferred Decisions [MR95]). Therefore if we bribe

a node with degree d and covers all its neighbors, it is equivalent to having made d

trials to cover nodes in the graph. And if we bribe nodes b1, b2, . . . , bk and cover

all their neighbors, it is like having made D =
∑k

i=1 d(bi) such trials. However not

each trial covers a node v with the same probability proportional to its degree: if v

was already covered in a previous trial, the probability of covering it again decreases,

whereas if it was not covered in a previous trial, the probability of covering it with each

new trial increases. More formally, the events that a node is collected in different trials

are negatively correlated; this only increases the number of distinct nodes we expect

to cover and so the result in Lemma 38 on the number of distinct nodes collected can

still serve as a lower bound. In summary, we have the following theorem.

Theorem 39. Bribe nodes b1, b2, . . . , bk (all bis distinct) selected using an arbitrary

strategy. Denote the sum of their degrees by D =
∑k

i=1 d(bi). If D = − ln ε0

d0
2m, then

the node coverage is at least 1−ε−o(1) with high probability under lookahead 2, where

ε =
∑√

n
d=d0

ε
d/d0

0 Cd−α.

Theorem 39 establishes the connection between the total degree of bribed nodes

(regardless of the strategy of choosing bribed nodes) and the node coverage. Now for

any particular bribing strategy, all we need to analyze is the total degree of k bribed

nodes.

We first analyze the strategy of bribing nodes uniformly at random (without

replacement). In any graph a node chosen uniformly at random has the expected

degree d̄ = 2m/n, and bribing k nodes yields expected total degree D = 2mk/n;

plugging into Theorem 39 we get the following Corollary.

Corollary 40. If an attacker bribes − ln ε0

d0
n nodes according to the UNIFORM-RANDOM

strategy, then he covers at least n(1 − ε − o(1)) nodes with high probability, where

ε =
∑√

n
d=d0

ε
d/d0

0 Cd−α.
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Next we analyze the HIGHEST-DEGREE strategy. To apply Theorem 39, we

compute the expected total degree of the top k = fn nodes, where f is a constant.

Let d be such that √
n∑

x=d+1

Cx−α < f ≤
√

n∑

x=d

Cx−α

When n is large we can use integration to approximate the sum and get the equation

∫ √
n

d

Cx−αdx = f

Remember that C is the normalizing constant satisfying
∫ √n

d0
Cx−αdx = 1. Solving

the equation, we get C ≈ (α− 1)dα−1
0 and d ≈ d0k

1/(1−α). When n is large and f is a

constant, the smallest degree of the top fn nodes is sharply concentrated around d;

we can roughly assume it is d. Now the top fn nodes have maximum degree
√

n and

minimum degree d, and the probability of having degree x is proportional to x−α.

Therefore the expected sum of degrees of the top fn nodes is

fn ∗
∑√

n
x=d x ∗ x−α

∑√
n

x=d x−α
≈ nC

∫ √
n

d

x ∗ x−αdx ≈ α− 1

α− 2
d0nk

α−2
α−1

On the other hand the overall total degree

2m =

√
n∑

x=d0

x ∗ Cx−αn ≈ α− 1

α− 2
d0n

Therefore the expected sum of the degrees of the top fn nodes is D = 2mk
α−2
α−1 .

When n is large and f is a constant, the smallest degree of the top fn nodes sharply

concentrates around d and the above analysis holds with high probability with a lower

order error. (Note that sharp concentration may not hold when f = O(1/n) thus k

is a constant.)

Corollary 41. If an attacker bribes (− ln ε0

d0
)

α−2
α−1 n nodes according to the HIGHEST-

DEGREE strategy, then he covers at least n(1− ε− o(1)) nodes with high probability,

where ε =
∑√

n
d=d0

ε
d/d0

0 Cd−α.
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Even though Corollaries 40 and 41 give lower bounds on the node coverage, our

simulation results indicate that the analysis is close to being tight (see Section 6.5.3).

Compare the two strategies: to cover a certain fraction of the nodes, we need to bribe

much fewer nodes in the case of HIGHEST-DEGREE than in UNIFORM-RANDOM.

For example when α = 3, if we bribe an f fraction of the nodes randomly, then we

only need to bribe an f 2 fraction of the nodes using HIGHEST-DEGREE to get the

same coverage. On the other hand, the bad news is that even if we have the power

to choose highest degree nodes, a linear number of nodes need to be bribed to cover

a constant fraction of the whole graph (the number of nodes to bribe is linear with n

in both Corollaries).

6.5.2 Heuristic Analysis of Lookahead l > 1

Finally we consider a social network with lookahead l > 1, i.e., the attacker covers all

nodes within distance l of a bribed node. As before we analyze the fraction of nodes

f that need to be bribed for the attacker to get a constant (1− ε) coverage.

Our heuristic analysis shows that using the UNIFORM-RANDOM strategy, f

needs to be approximately − ln ε0

d0bl for 1−ε coverage, where ε and ε0 satisfy the equation

in Lemma 38, b is of order lnn. For the strategy of HIGHEST-DEGREE, the attacker

needs approximately f = (− ln ε0

d0bl )2 (for α = 3). Below is the analysis.

For simplicity we use α = 3; the analysis can be generalized to any α > 2.

Denote by B the set of bribed nodes; by Nl(B) the set of nodes whose shortest

distance to B is exactly l. Our goal is to estimate the number of nodes within

distance l, denoted by Dl(B) = |⋃0≤i≤l Ni(B)| – then we have f = |B|/n where

Dl(B) = (1− ε)n.

Let us first assume Nl(B) is small enough such that there is no loop, i.e.
⋃

0≤i≤l+1 Ni(B)

is a forest rooted at B. In reality there may exist a few loops, but it does not introduce

too much error in estimating Dl(B) when Nl(B) is very small. Under this assump-

tion, |Nl(B)| is much larger than all |Ni(B)|s (i < l), so we can use |Nl(B)| as an

approximation to Dl(B). To compute |Nl(B)|, we first study the expansion rate from

Nl to Nl+1, denoted by b(l) = |Nl+1(B)|/|Nl(B)|. Under the no-loop assumption, b(l)
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equals to the average degree of nodes in Nl(B) minus 1 (we need minus 1 to exclude

the edges coming from Nl−1(B)). Note that nodes in Nl(B) are not chosen uniformly

at random; rather, they are chosen with probability proportional to their degrees,

because of the random realization of the graph. Therefore the probability that such a

node has degree x is proportional to x ∗Cx−3, and consequently the expected degree

of such node is ∑√
n

x=d0
x ∗ xCx−3

∑√
n

x=d0
xCx−3

≈ d0 ln

√
n

d0

Thus we have the expansion rate b = d0 ln
√

n
d0
− 1, independent of l. It follows that

dl(B) ≈ |Nl(B)| ≈ b|Nl−1(B)| ≈ bl−1|N1(B)|.
When b ∗ |Nl(B)| is large, we can no longer use the above assumption to estimate

|Nl+1(B)|: we still have b∗|Nl(B)| edges incident to Nl+1(B) but now some of the edges

may share the same endpoints. This is the same as the weighted coupon collector

problem in Lemma 38, so we can apply the result: if b ∗ |Nl(B)| = − ln ε0

d0
2m, then

|Nl+1(B)| ≈ n(1− ε).

Now we compute the fraction of bribed nodes for 1−ε node coverage, i.e. compute

f = |B|/n where B satisfies Dl(B) = n(1 − ε). We need b|Nl−1(B)| = − ln ε0

d0
2m by

Lemma 38, or |Nl−1(B)| = − ln ε0

d0
2m/b. For large n, b = Θ(ln n) is also large, so

|Nl−1(B)| is already small and we use the approximation |Nl−1(B)| = bl−2|N1(B)|.
Thus we have |N1(B)| = − ln ε0

d0
2m/bl−1. For the strategy of UNIFORM-RANDOM,

|N1(B)| = d̄fn, so approximately we need f = − ln ε0

d0bl . For the strategy of HIGHEST-

DEGREE, |N1(B)| = 2
√

fd0n (given α = 3), so we need f = (− ln ε0

d0bl )2.

We can see that the number of nodes to bribe decreases exponentially with the

lookahead distance. With lookahead ln ln n, bribing a constant number of nodes is

enough to cover almost the whole graph.

6.5.3 Validating the Analysis with Simulation

We validate our theoretical analysis by simulation.

For lookahead 1, our theoretical analysis shows that for fixed node coverage the

number of nodes to bribe is linear with the number of total nodes, i.e. f is a constant
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with varying n. This confirms our simulation results in Section 6.4.1.

UNIFORM-RANDOM HIGHEST-DEG
ε ε0 fp fs fp fs

0.4 0.534 0.125 0.103 0.016 0.015
0.2 0.309 0.235 0.183 0.055 0.045
0.1 0.173 0.350 0.259 0.123 0.090

Table 6.2: Predicted values vs simulation results. We compute f for varying ε, with
two bribing strategies. We compute f (1) by solving the equation in Corollary 40 and
41, shown in the column “fp”; (2) by simulation, shown in the column “fs”. We use
α = 3 and d0 = 5 in the table.

Next we check whether the f values predicted by Corollary 40 and 41 match the

simulation results. We can see from Table 6.2 that the actual f values in simulation

are smaller than those predicted in Corollary 40 and 41. This is because Theorem 39

gives a lower bound on the number of covered nodes. There are two factors causing

underestimation: (1) the different trials cover uncovered nodes with higher probabil-

ity; (2) we did not count the bribed nodes as covered. The second underestimation

is more severe when the number of bribed nodes is not negligible compared to the

number of covered nodes, especially when we use UNIFORM-RANDOM strategy.

We can take into consideration the bribed nodes and refine our analysis. Using the

same parameters in Table 6.2, for ε = 0.4, 0.2, 0.1, the refined predicted f for random

bribing strategy are 0.110, 0.204, 0.305 respectively, which are closer to the simulation

results.

For lookahead l > 1, both the theoretical analysis and simulation results indicate

that f decreases exponentially with the ability of lookahead l. The predicted values

are not too far from the actual results, although not as close as in case of lookahead

1. For example, for UNIFORM-RANDOM with lookahead 2, to get 0.8-coverage

(ε = 0.2), we predict f = 0.0092, while the simulation result is f = 0.0145.
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6.6 Summary

In this chapter we provided both theoretical and experimental analysis of the vul-

nerability of a social network such as LinkedIn to a certain kind of privacy attack.

We proposed several strategies for carrying out such attacks, and analyzed their suc-

cess as a function of the lookahead permitted by the social network. We have shown

that the number of user accounts that an attacker needs to subvert to obtain a fixed

portion of the link structure of the network decreases exponentially with increase in

lookahead permitted. We conclude that social networks interested in protecting their

users’ link privacy ought not to permit lookahead higher than 2 and may also want

to create a separate privacy setting enabling users to opt out from displaying the

number of connections that they have to anyone.
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Chapter 7

Conclusions

In this thesis we described our research effort towards a better understanding of the

Web. We focus on two major topics: (1) measuring the size of the Web and indexable

web; (2) modeling the Web and social networks using webgraph models.

In the first part, we discussed the problem of estimating the Web size. We devel-

oped the first methods for estimating absolute index sizes of search engines assuming

only access to their public query interface – the Random Document method and In-

dependent Query Pool method. We validated our methods with synthetic data sets,

and then applied them to estimate index sizes for major search engines. After pre-

senting the empirical results, we then studied the problem from a different angle by

mapping it to a classic theoretical problem of sum estimation, and proposed near

optimal algorithms for this problem.

Our algorithms of estimating search index size still reply on certain assumptions

and suffer from biases (see Section 2.6 for detailed discussion), so one future work is to

design more accurate estimators, preferably with theoretical guarantee on the quality

of estimator. It will also be of public interest to implement the existing algorithms

and constantly monitor search index sizes and the indexable web size. There is

already such effort: the website http://www.worldwidewebsize.com/ is keeping track

of indexable web size and updating every day. However, their estimation algorithm

is not very convincing: it is based on the algorithm in [BB98], with simplifications

which further introduce biases; in particular, they trust the number of hits reported by

123
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search engines for queries like “the”, which is known to be highly unreliable especially

for such queries with large numbers of hits.

In the second part, we presented our work on analyzing and applying random

webgraph models. We first study searchability in random graphs: we gave a char-

acterization of random graphs that are searchable with deterministic memoryless

searching algorithms, and based on this characterization we proved a monotonicity

result. Next, we analyzed graph properties of Stochastic Kronecker Graph model.

Finally we studied link privacy in social networks using webgraph models; we formal-

ized a particular attack on link privacy, and quantified how social networks’ access

control policy affects the complexity of attack.

Since the introduction of the first webgraph model by Barabási and Albert in

1999, a large number of models have been proposed in the last decade. But none of

them can capture all the important properties of the Webgraph, and theoreticians

are still in search for a “ultimate” model that incorporates all the nice properties of

existing models. Also, given so many web graph models proposed, there is a need of

systematic methods to evaluate and validate webgraph models.

An equally important direction is to apply webgraph models to studying real world

applications, and this has received far less attention than deserved. Compared to the

amount of research effort on this topic in academic community, there is very little

appreciation about the power of webgraph models in industry. I believe more effort

should be invested in advocating this nice theoretical tools to practitioners, and I

look forward to more applications of webgraph models.
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