
Definitions and Algorithms in SEGID

1 Mathematical definitions

Given a (multiple) sequence alignment, SEGID first converts it into a sequence of numbers, where
each number is the alignment score of a column. (SEGID also directly accepts a sequence of
numbers as input.) Then it provides three algorithms to identify conserved segments (high score
substrings):

1. Longest segment (with average value lower bound): given a string of numbers and
a number A, find a substring (consecutive numbers in the string) with maximum length such that
the average value of those numbers in the substring is at least A.

2. All maximal length segments (with average value lower bound and length lower
bound): given a string of real numbers S, a number A, and an integer L (the lower bound of
substring length), find all substrings T ’s satisfying the following properties:

(a) the average of any prefix/suffix of T is at least A;
(b) no proper superstring of T satisfies (a);
(c) the length of T is at least L.
Intuitively, all maximal length segments are some substrings of numbers with average value at

least A. Property (a) implies that T does not include bad columns at its two ends; (b) guarantees
that T is ”maximal” in that it cannot be extended any more; and (c) allow users to set a length
threshold to exclude extremely short segments. The set of all maximal length segments thus defined
are disjoint, so it gives an intuitive view of clusters of good columns and is particularly suitable for
coloring.

3. N-Maximum scores segments: given a string of real numbers S and two integers U (the
upper bound of substring length) and N (number of segments), find N (disjoint) substrings with
length at most U such that the kth substring (k ≤ N) has the highest score after the first (k − 1)
(disjoint) substrings are selected.

We give below in detail the algorithms for the first two problems, which are both of time com-
plexity O(n). The notion of maximum score segment (N - maximum scores segments when N = 1)
is raised in efficient algorithms for locating the length-constrained heaviest segments, with applica-
tions to biomolecular sequence analysis (Y. L. Lin, T. Jiang, K. M. Chao, Journal of Computer and
System Science, 2002), which also gives a linear algorithm to solve the problem. We repeat the

1



algorithm N times to solve the N - maximum scores segments problem. Since the time to find each
segment is no more than O(n), the total time complexity is O(N ∗ n).

2 Algorithm for computing the Longest Segment

First, we obtain a new string of numbers S = (S1, S2, . . . , Sn) by subtracting A from each of the
numbers in the given string. Let (i, j) denote the substring Si, Si+1, . . . , Sj . sum(i, j) is the sum
of all the numbers in (i, j). A substring (i, j) is non-negative if sum(i, j) ≥ 0. Then the problem is
to find a non-negative substring with maximal length. Calculate all sum(1, i) in advance (in linear
time), and then any sum(i, j) can be retrieved in constant time.

Description of Algorithm
1. preprocess. For each i = 1, 2, . . . , n, define ms[i] = maxj=i,i+1,...,nsum(i, j) , and msp[i] = j,

where sum(i, j) = ms(i). To compute the vector of ms[i] and msp[i], we consider another vector
max[i] = maxj=i,i+1,...,nsum(1, j). By definition, max[n] = sum(1, n). max[i] can be computed as
max[i] = max{max[i + 1], sum(1, i)} from right to left. Then, ms[i] can be obtained as ms[i] =
max[i]− sum(1, i).

2. main procedure. For a fixed i, we want to compute the longest non-negative substring starting
at position i. The main observation is that if (i, j) is non-negative, then either (i,msp[j+1]) is non-
negative or (i, j) is the longest non-negative substring starting at position i. So, if (i,msp[j +1]) is
still non-negative, we get a longer substring (i, j′). We repeat the process until sum(i,msp[j′ + 1])
is negative. In this way, we find (i, l(i)), the longest substring starting at position i that is non-
negative. Another trick is that we do not have to compute l(i) for all i’s. Assume that we have
computed l(i1). If sum(i1, i2 − 1) ≥ 0 for some i2 > i1, then l(i2) ≤ l(i1) since we can always
pad (i1, i2 − 1) before (i2, l(i2)) to get a longer non-negative substring. Therefore, we can move
forward i from i1 until sum(i1, i− 1) < 0. Now move forward j from minl(i1) + 1, i, since (i, l(i1))
is certainly non-negative when l(i1) > i. The procedure terminates when i or j reaches the end of
the string.

Theorem 1 There is a linear time algorithm for the longest segment with average value lower
bound problem.

Proof. It is clear that the above algorithm correctly computes the longest segment subjected
to average lower bound. The preprocessing stage takes linear time since it only need to scan through
S once from right to left. In the main procedure, either the value of j or i increases by at least 1 in
each iteration, and they never decrease. Thus, the total time required is at most O(n). Therefore,
the longest segment with average value lower bound problem can be solved in linear time. 2

2



3 Algorithm for computing All Maximal Length Segments

For the all maximal length segments problem, we also subtract A from each number in the given
string. Thus, property (a) becomes (a’) ”any prefix/suffix of T is non-negative”.

Description of Algorithm
We process the resulting string S from left to right. Record the first number Si ≥ 0, and

extend until some negative number Sj is met. Thus we detect that substring (i, j− 1) is a segment
satisfying property (a’), and put it into a list. Then we go on to scan the text for next segment
starting from Sj+1 and satisfying (a’). Each time a new segment is detected, we examine whether it
can be merged with other segments in the list to form a longer segment. The merging examination is
based on the following property: Define the left partner lp(i, j) of segment (i, j) to be the rightmost
segment (k, l) in the list such that sum(k, i− 1) ≥ 0. If sum(l + 1, j) ≥ 0, then (k, j) satisfies (a’).
In this case, (k, l) is inserted into the list, and correspondingly, segments between (k, l) and (i, j)
are deleted. Otherwise, (i, j) cannot be merged, and is simply added into the list. In a word, while
scanning through S, we detect new segments, examine if it can be merged, and merge or add them
into the list. In this way, we maintain a segment-list SL where segments are ordered by position.
Finally, when the end of the string is reached, those segments in SL whose lengths are less than L,
the given length lower bound, are excluded.

Theorem 2 There is a linear time algorithm for the all maximal length segments problem.

To prove Theorem2, we need the following lemmas.

Lemma 3 If lp(i, j) = (k, l) and sum(l + 1, j) ≥ 0, then for any segment (p, q) in the list between
(k, l) and (i, j), the following inequalities hold: (1) sum(k, p− 1) ≥ 0, and (2) sum(q + 1, j) ≥ 0.

Proof. Note that (k, l) is the rightmost segment such that sum(k, i − 1) ≥ 0, and (p, q) is
to the right of (k, l), Thus, we have sum(p, i − 1) < 0. Since i > p, we have sum(k, p − 1) =
sum(k, i− 1)− sum(p, i− 1). From the facts that sum(k, i− 1) ≥ 0 and sum(p, i− 1) < 0, we have
sum(k, p− 1) ≥ 0 .

Now we prove inequality (2). If (2) does not hold, we have sum(l+1, q) = sum(l+1, j)−sum(q+
1, j) ≥ 0. If (k, l) = lp(p, q), then from the condition sum(l+1, q) ≥ 0 , (k, l) and (p, q) should have
been merged before segment (i, j) is created. So (k, l) cannot be the left partner of (p, q). Suppose
lp(p, q) = (p1, q1), where (p1, q1) is also a segment between (k, l) and (i, j). According to inequality
(1), we have sum(k, p1 − 1) ≥ 0. Similarly, we can show lp(p1, q1) = (p2, q2) is a segment between
(k, l) and (p1, q1). This procedure can be repeated infinitely. However, the number of segments
between (k, l) and (i, j) is finite, which leads to a contradictory. Therefore, inequality (2) must
hold.2

3



Lemma 4 A segment (i, j) satisfying property (a’) can be merged into a longer segment (i′, j) which
also satisfies (a’) if and only if (i, j)’s left partner (k, l) satisfies sum(l + 1, j) ≥ 0. Moreover, if
(i, j)’s left partner (k, l) satisfies sum(l + 1, j) ≥ 0 then (k, j) satisfies (a’).

Proof. First, we prove that if sum(l, j − 1) ≥ 0, then (k, j) satisfies property (a’), i.e.
∀x ∈ [k, j], sum(k, x) ≥ 0, and sum(x, j) ≥ 0.

Case 1: x is in some segment (i1, j1).
From inequality (1) in Lemma 3 and the fact that (i1, j1) satisfies property (a’), we have

sum(k, x) = sum(k, i1 − 1) + sum(i1, x) ≥ 0 . From inequality (2) in Lemma 3 and the fact that
(i1, j1) satisfies (a’), we have sum(x, j) = sum(x, j1) + sum(j1 + 1, j) ≥ 0.

Case2: x is not in any segment in the list, i.e., x is between segment (i1, j1) and (i2, j2).
Then the numbers between j1 + 1 and x are all negative. (Otherwise, they would have formed

another segment.) Thus, sum(x, j) = sum(j1 + 1, j) − sum(j1 + 1, x − 1) ≥ sum(j1 + 1, j) ≥ 0.
Similarly, the numbers between x and i2−1 are all negative and we can conclude that sum(k, x) ≥
sum(k, i2 − 1) ≥ 0.

Now, we prove that if there exists (i′, j) satisfying (a’) and i′ < i, then (i, j)’s left partner (k, l)
satisfies sum(l + 1, j) ≥ 0.

i′ must be in some segment in the list. (Otherwise Si′ is negative, and prefix (i′, i′) breaks
property (a’).) We can assume that i′ is the left point of the segment (i′, j′) in the list. (If i′ is in
the middle of segment (i1, j1), we can extend (i′, j) to (i1, j), which also satisfies (a’).)

Since (i′, i−1) is a prefix of (i′, j), sum(i′, i−1) ≥ 0. Thus, (k, l) = lp(i, j) must be to the right
of (i′, j′). In that case, (l + 1, j) is a suffix of (i′, j). Thus, sum(l + 1, j) ≥ 0.2

Lemma 5 All left partners can be computed in time O(n).

Proof. We use the following procedure to compute the left partner of a new segment (i, j).

set (k, l) to be the last segment in the list;

while sum(k, i− 1) < 0 do (k, l) = lp(k, l);

The above procedure correctly computes (k, l) = lp(i, j), because sum(k, i − 1) ≥ 0 when
the while loop stops, and no segment (i′, j′) to the right of (k, l) can satisfy sum(i′, i − 1) ≥ 0.
(Otherwise, (i′, j′) must have not been examined in while loop. Suppose (i′, j′) is between two
examined segments (i1, j1) and (i2, j2). According to the algorithm, we have (i1, j1) = lp(i2, j2).
However, sum(i′, i − 1) ≥ 0 and sum(i2, i − 1) < 0 results in sum(i′, i2 − 1) ≥ 0, and (i′, j′) is to
the right of (i1, j1), so (i1, j1) cannot be left partner of (i2, j2), which leads to a contradictory.)

If a segment is examined in while loop and does not halt the loop (we call this a non-halting
step), then the segment is ”bypassed” by the ’lp’ link list and never examined again later. Therefore,
the total number of non-halting steps is no more than the number of segments that have appeared

4



in the list, which is bounded by O(n). On the other hand, the number of halting steps equals to
the number of segments. Thus, the total time required to compute all left partners is O(n).2

Now we are ready to prove Theorem 2.
Proof. First, the algorithm correctly computes the set of all maximal length segments.
we claim that after detection of each segment, the segment-list SL is the set of all segments

satisfying property (a’) and (b) with respect to substring (1, i), where Si is the last position scanned.
The ”if” part of Lemma 4 guarantees all segments in SL satisfy property (a’). And for any segment,
there is no proper superstring in (1, i) satisfying (a’), because otherwise the condition in Lemma 4
must be satisfied, and the segment should have been merged. Thus, when we reach the end of S,
SL is just the set of all segments satisfying property (a’) and (b). The final deletion step checks
property (c), and returns the set of all maximal length segments.

Then, we show the time complexity of above algorithm is O(n).
Obviously, the total time of detecting new segments is linear. According to Lemma 5, the

total time to compute left partners for all these detected segments is O(n), and so is the time for
merging examination. If the new segment is simply added to SL, it takes time O(1); otherwise,
some segments need to be deleted from SL, but the time of deleting a segment can be charged to
that of adding a segment, and the number of segments added to SL is at most n. In all, the time
required by above algorithm is linear.

Therefore, the algorithm given at the beginning of this section is a linear algorithm for the all
maximal length segments problem.2

5


