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1 PERSONALIZED JOB RECOMMENDATION:
PRACTICAL CHALLENGES

Online professional social networks such as LinkedIn play a key
role in helping job seekers �nd right career opportunities and job
providers reach out to potential candidates. LinkedIn’s job ecosys-
tem has been designed to serve as a marketplace for e�cient match-
ing between potential candidates and job postings, and to provide
tools to connect job seekers and job providers. LinkedIn’s job rec-
ommendations product is a crucial mechanism to help achieve
these goals, wherein personalized sets of recommended job post-
ings are presented for members based on the structured, context
data present in their pro�les.

The problem of recommending jobs to LinkedIn members poses
several unique information retrieval, system, and modeling chal-
lenges. (1) Personalized recommendations need to be computed in
real-time by scoring millions of structured candidate job documents
associated with each query while providing a high degree of data
freshness and meeting strict latency requirements. Here, the query
incorporates the member context / interests expressed through
member pro�le, and hence can become very large, comprising of
thousands of Boolean clauses over hundreds of document attributes.
Consequently, candidate selection techniques need to be applied
since it is infeasible to retrieve and score all matching jobs from the
underlying inverted index. (2) Typically, the underlying retrieval
systems may use content-based recommendation models, which are
primarily based on the explicit member context / interests obtained
from the pro�le, and may not take into account the implicit context
in the form of user interactions. Hence, we may face the challenge
of incorporating di�erent types of user interaction signals as part
of the relevance model. (3) The job recommendation problem is
fundamentally di�erent from traditional recommendation system
problems such as recommending books, products, or movies to
users. While all of the above have a common objective to maximize
the engagement rate of the users, one key di�erence is that a job
posting is typically meant to hire one or a few employees only,
whereas the same book, product, or movie could be potentially
recommended to hundreds of thousands of users for consumption.
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As LinkedIn’s job posters pay to post jobs on the site, on the one
hand it is critical to deliver su�cient number of applications from
quali�ed candidates to each job, such that the job poster can inter-
view the top candidates and �nally hire one or a few of them. On
the other hand, it is not desirable either for the system to deliver too
many applications to any posted jobs with one or a few openings, as
the amount of e�ort for the job poster to interview would become
much greater than expected. Also, if too many job seekers compete
for the same job posting, each job seeker’s chances of getting that
job will be dramatically reduced.

In this talk, we will present how we formulated and addressed
the above problems, the overall system design and architecture, the
challenges encountered in practice, and the lessons learned from
the production deployment of these systems at LinkedIn. By pre-
senting our experiences of applying techniques at the intersection
of recommender systems, information retrieval, machine learning,
and statistical modeling in a large-scale industrial setting and high-
lighting the open problems, we hope to stimulate further research
and collaborations with the RecSys community.

2 OVERVIEW OF SYSTEMS DEVELOPED AND
DEPLOYED AT LINKEDIN

Figure 1: Architecture of LinkedIn’s job recommendation
engine.

The overall architecture of LinkedIn’s job recommendation en-
gine is shown in Figure 1. Our system can be subdivided into an
online system for serving job recommendations and an o�ine work-
�ow for updating di�erent machine learned and statistical forecast-
ing models (not fully shown).

We now provide a description of the overall �ow for how a client
request (query) is processed in our online job serving system. It
makes use of a multi-tier service architecture, wherein the rec-
ommendation request queries are handled in a distributed fashion
across hundreds of production servers. The online query processing
proceeds as follows:

• Whenever a job recommendation needs to be shown to a
user, the client application issues a query containing the
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userId and other metadata to the backend distributed job
recommendation application service tier (step 1).

• The job recommendation application service then retrieves
relevant structured user data from the user �elds store (step
2), determines the appropriate A/B testing experimental
treatment that the user falls under (step 3), and fetches
the necessary ranking models based on the experimental
treatment (step 4). Then, it creates a request object con-
taining the user data and the models, which is issued to
the distributed search service tier (step 5).

• Our search based retrieval system is built on top of LinkedIn’s
Galene search platform [5]. This system is responsible for
applying the candidate selection model [1] [4] to the user
data to generate a corresponding Galene query, issuing this
query to the distributed search index service, scoring the re-
sulting jobs using the �nal-pass GLMix ranking model [7],
and returning back the top ranked job recommendation
results (step 6).

• The job recommendation application service then performs
post-processing (such as applying �lters and certain busi-
ness rules), and in particular, invokes the job boosting and
penalization module [2] (steps 7–11).

We will focus on three sub-systems in this talk:
Candidate Selection: Inspired by our prior work in CaSMoS [1] ,

we present a new machine learning framework to construct e�ec-
tive queries as part of candidate selection in personalized search
and recommendation systems via decision trees [4]. Query con-
struction is done by converting the branch paths in the decision
tree to corresponding Weighted AND (WAND) clauses [3]. The
deployment of the prior candidate selection system resulted in up
to 25% reduction in latency without sacri�cing recommendation
quality. Iterating on top of this system by introducing decision trees
and early termination with static rank further reduced p99 latency
by 56%. These system e�ciency improvements paved the way for
usage of more sophisticated scoring models, including GLMix.

Personalized Relevance Models: Dionysius was our �rst work for
incorporating user interactions to personalize job recommendations
in a system originally built as a content-based recommender [6].
Designed to leverage existing recommendation infrastructure, we
learned the hidden �elds for each user by considering the hierarchy
of interaction signals and replaced the user pro�le-based �elds with
them to use in our ranking model. Through improved modeling and
ranking infrastructure, we have replaced Dionysius with large-scale
generalized linear mixed models (GLMix) containing millions of
parameters [7]. In order to capture user’s personal preferences on
items and the item’s speci�c attraction, we introduce member and
job level regression coe�cients in addition to the global regression
coe�cients. The global regression coe�cients act as our prior pre-
diction given a member pro�le and job posting. The posterior is
estimated through �tting the per-member and per-job regression
coe�cients, which becomes more e�ective as a member interacts
with more jobs and a job receives more attention. The end result
is tailored job recommendations for a member given their pro�le,
activity, and activity of similar members. Deploying the GLMix
model increased job applications by 20% to 40% per day.

LiJAR: LiJAR is LinkedIn’s job applications forecasting and re-
distribution system, designed with the goal of ensuring that job
postings do not receive too many or too few applications, while
providing job recommendations to users with the same level of

relevance as the system that purely optimizes for user engage-
ment [2]. This system uses a dynamic forecasting model to estimate
the expected number of applications at the job expiration date,
and algorithms to either promote or penalize jobs based on the
output of the forecasting model in real time. Our online A/B test-
ing experiments demonstrate the e�ectiveness of our approach in
increasing the engagement of users for underserved jobs by 6.5%,
while keeping the user engagement in terms of the total number of
job applications the same.
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