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Abstract

The structural comparison of two proteins comes up in many applications in structural biology, where it

is often necessary to find similarities in very large conformation sets. This work describes techniques to

achieve significant speedup in the computation of structural similarity between two given conformations, at

the expense of introducing a small error in the similarity measure. Furthermore, the proposed computational

scheme allows for a tradeoff between speedup and error. This scheme exploits the fact that the Cα repre-

sentation of a protein conformation contains redundant information, due to the chain topology and limited

compactness of proteins. This redundancy can be reduced by approximating sub-chains of a protein by their

centers of mass, resulting in a smaller number of points to describe a conformation. A Haar wavelet anal-

ysis of random chains and proteins is used to justify this approximated representation. Similarity measures

computed with this representation are highly correlated to the measures computed with the original Cα rep-

resentation. Therefore, they can be used in applications where small similarity errors can be tolerated or

as fast filters in applications that require exact measures. Computational tests have been conducted on two

applications, nearest neighbor search and automatic structural classification.



Key words: Protein structure, similarity measures, structural alignment, random chains, nearest-neighbor
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1 Introduction

Automatic protein structure comparison is an important problem in computational structural biology, e.g., in

structural databases and classification [12, 16, 29, 31], structure prediction [8, 9, 23, 33, 37, 38], analysis of

trajectories through conformational space generated by molecular dynamics and Monte Carlo simulations

[26, 36, 43], graph-based methods for evaluating ensemble properties [2, 3, 39], etc.

In contrast to sequence matching, structural matching requires a similarity measure that is based on spa-

tial atom coordinates. Nevertheless, it is still important whether the structures that are compared have the

same amino acid sequence or not. For conformational samples from the same sequence there are no ambi-

guities about correspondences. In this case, similarity measures such ascRMSor dRMSare commonly used

[22]. These measures are defined as the root mean square (RMS) of either distances between corresponding

atoms in the two compared structures (cRMS) or their corresponding intra-molecular distance matrix entries

(dRMS). Comparing protein structures that derive from different sequences is more difficult because it is

generally not obvious which features (atoms) of one structure should be matched with which features from

the other structure. Moreover there is a tradeoff between the length of the correspondence that is chosen and

the quality of the similarity that results. Numerous methods for finding a set of correspondences have been

proposed, e.g. [10, 11, 13, 15, 22, 25, 35, 42].

Many similarity measures are based on a rather fine granularity feature selection. Typically, the co-

ordinates of all Cα atoms and sometimes even those of additional atom centers are considered. For large

proteins, the number of considered features greatly affects the efficiency of the structural comparison. For

example, the size of the intra-molecular distance matrices and the complexity of the dynamic programming
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algorithm in [11] are quadratic in the number of residues. While this is not a real problem when comparing

a single pair of structures (most proteins have less than 1000 residues), it becomes an important issue when

querying a database for similar structures or clustering a large set of structures.

In this paper, we show that the description size of a protein conformation can be reduced while intro-

ducing only a small error in the computed similarity measure. We uniformly sub-divide the backbone into

contiguous sub-chains of fixed length and represent each of the sub-chains by the average coordinates of its

atom centers. Similarity measures can then be computed on these “averaged conformations”. Although this

simplification introduces some error, we provide theoretical and experimental evidence that enough informa-

tion about relative similarity is retained to discriminate structures in practical applications. In particular, the

derived similarity measures using the averaged protein representation are highly correlated to their original

full-atomic counterparts. If high accuracy is a concern, approximate similarity measures are still useful as a

fast filter to considerably reduce the number of pairs that need to be passed to the exact similarity measure.

While we cannot give bounds on the error that is introduced, we show through wavelet analysis of

protein structures and random chains that averaging is a reasonable method for reducing the dimensionality

of structure descriptors. Our analysis reveals two properties of proteins, which makes averaging work. The

first property is the chain topology of proteins, which forces atoms that are nearby in the chain to also be

spatially close in any conformation the protein chain assumes. The second property is the fact that van der

Waals forces limit the compactness of the protein structures. Since atoms can overlap only by a little, on

average the positions of atoms, which are far apart along the chain, will also be spatially distant.

Reducing the computational complexity of similarity measures significantly accelerates many tasks that

involve structural matching. In our experiments we observed decreases in running times by large factors,

typically from days to hours or even minutes. For very large sets of proteins, both the efficiency of structure

comparison of a single pair and the number of such pairs that are actually evaluated are important. Many
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approaches require evaluation of all pairs (“brute-force approach”) even if the task is to identify only a small

constant number of nearest neighbors for each conformation in the set. Using our averaged representation

we show that we can avoid this quadratic cost of examining all pairs in ak nearest-neighbor application.

In automatic structural classification, the complexity of a previous algorithm [11, 41] that matches pairs of

structures grows quadratically with the number of residues. In this case as well, a small reduction in the

number of features results in substantial savings.

In Section 2, we describe in detail and analyze the simplified representation of proteins used to approxi-

mate similarity measures. In Section 3, we demonstrate our approach in ak nearest-neighbor application on

a large set of conformations of the same protein. In Section 4, we use our approach to significantly speed up

the STRUCTAL algorithm [11, 41] for classification of structures with different sequences.

2 Shape similarity and approximation of chains

Given two sequences of points in 3-spaceP = (p1, . . . ,pn) andQ = (q1, . . . ,qn), their coordinate root

mean square deviation (cRMS) is a common measure of similarity. It is defined as

cRMS(P, Q) = minT

√√√√ 1
n

n∑

i=1

‖ pi − Tqi ‖2 (1)

where‖ · ‖ is the EuclideanL2-norm andT is a rigid body transform (rotation and translation). A

closed form solution forT yields the optimal transform [17, 19].

Another common RMS shape similarity measure,dRMS, is based on comparing intra-set point distance

matrices, i.e. the matrix of distances between all points within each structure. For a point setP , this matrix

is defined as
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(
dP

ij

)
= ‖pi − pj‖ . (2)

The distance matrix RMS deviation (dRMS) of P andQ is then defined as

dRMS(P,Q) =

√√√√ 2
n(n− 1)

n∑

i=2

i−1∑

j=1

(dP
ij − dQ

ij)2. (3)

When applying these similarity measures to proteins, it is common practice to use the Cα atom centers,

ordered along the backbone, as defining points. (Sometimes, additional atoms are included or Cβ atoms are

used instead.) Due to the special geometry of proteins the positions of these atoms completely determine

the shape of the backbone. However, in the case ofdRMS, the intra-molecular distance matrices grow

quadratically with the length of the protein, which significantly slows down thedRMScomputation for large

proteins.

2.1 Approximate similarity measures

We reduce the numbern of sample points inP andQ as follows. In each sequence, we replace contiguous

subsequences of points by their centroids. That is, we uniformly partition the sequenceP of lengthn into

contiguous subsequences of lengthm each. (Ifn/m is not an integer, some subsequences will be chosen to

be longer by one.) For each subsequence, we then replace its points by their centroid, which we denote by

pj for subsequencej. For example, if subsequencej spans points(pa, . . . ,pb) whereb− a + 1 = m then

pj =
1
m

b∑

i=a

pi. (4)

Based on these averaged subsequences we define them-averaged representationPm of P as the se-

quence ofr = bn/mc points (p1, . . . ,pr). (For Q, we proceed in the same way.) We can now define
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the simplified RMS measures forPm andQm analogously to the above RMS measures on the original se-

quences. That is, in the defining formulas (Equations 1, 2 and 3), we replacepi (qi) by pi (qi) andn by r.

We call these measuresm-averaged measuresand denote them bycmRMS anddmRMS.

Obviously, the error of these simplified similarity measures continuously approaches zero as the two

compared point setsP andQ become more similar, i.e.,limQ→P |cmRMS(P, Q) − cRMS(P, Q)| = 0

and the same holds fordmRMS. For general point sets, the error introduced by this approximation can be

quite substantial. However, for proteins the error is small because of their chain topology and the limited

compactness of their conformations(due to van der Waals forces). In the following section we give an

intuition as to why this is the case using random chains and wavelets analysis.

2.2 Random chains and Haar wavelets

We will use random chains and the Haar wavelet transform to argue that averaging is a reasonable method

for reducing the size of the representation of a protein for computing structural similarities.

A random chainC = (c0, . . . , cn−1) in 3-D is an ordered set of points in space defined as follows:

c0 = 0,

ci+1 = ci + S2 · l i = 0, . . . , n− 2 (5)

whereS2 is a random 3-D vector uniformly distributed on the unit 3-D sphere andl is the fixed Euclidean

distance between two consecutive points of the chain.S2 is sampled as follows:

S2 =




sinφ cos θ

sinφ sin θ

cosφ




(6)

whereθ ∼ U [0, 2π] andcosφ ∼ U [−1, 1].
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Computing the covariance matrix ofS2 reveals that the off-diagonal elements are identically 0, and as a

result the three dimensions of each random step are uncorrelated. Since each step is independent of all other

steps the distributions of the three dimensions of any point on the chain are uncorrelated. Consequently, the

random chain as described above can be approximated well by replacingS2 with a 3-vector sampled from

the normal distributionN (0, 1
3 · I), whereI is the3 × 3 identity matrix, for sufficiently large values of

n (typically greater than 10). Moreover, the fact that the three dimensions are uncorrelated enables us to

perform three independent one-dimensional Haar wavelet transforms as described below instead of the more

complicated three-dimensional transform.

The Haar wavelet transform of a chain is a recursive averaging and differencing of the coordinates of

the points. The transform recursively smoothes the chain while keeping thedetail coefficients needed to

reconstruct the full chain from the smoothed out version. We define the full resolution chain to be of level

0: C = C0. We recursively create smoothed versions of the chain by averaging pairs of consecutive points:

cj
i =

1√
2

(
cj−1
2i + cj−1

2i+1

)




j = 1, . . . , log n

i = 0, . . . , n
2j − 1

. (7)

As each level of resolution is created we also compute thedetailsthat are smoothed out by the averaging:

dj
i =

1√
2

(
cj−1
2i − cj−1

2i+1

)




j = 1, . . . , log n

i = 0, . . . , n
2j − 1

. (8)

Note that the averages and details are multiplied by a scale factor of
√

2 at each level. GivenCj , the

smoothed chain at levelj, andDj , the detail coefficients of levelj, it is possible to reconstructCj−1 exactly

by inverting the formulas of Equations 7 and 8. The Haar wavelet transform of a chainC is thus defined as:

Ĉ =
(
C log n, Dlog n, Dlog n−1, . . . , D1

)
. (9)

The length ofĈ is the same asC andC log n is the centroid of the entire chain. SinceC can be exactly

reconstructed from̂C, no information is lost during the transform. This representation can then be com-
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pressed by setting to 0 all coefficients in̂C smaller than some threshold. Since the coefficients are scaled,

the square of theL2 error of approximation in this case would be equal to the sum of the squares of the

removed coefficients [40].

Given the normal approximation of the random chain construction, we can analytically determine thepdf

(probability density function) of each of the coefficients inĈ by adding, subtracting and scaling independent

normally distributed variables. Thepdf of each detail coefficient in levelj is:

dj ∼ N
(
0,

4j + 2
36

· I · l
)

, (10)

and thepdf of their squaredL2 norm is thus:

‖dj‖2
2 ∼ χ2(3dof) · 4j + 2

36
· l (11)

with a mean of4
j+2
12 · l and variance of(4

j+2)2

216 · l2. Since thepdfs of the detail coefficients are centered

at the origin and their variance is decreasing by a factor of roughly 4, they are expected to be ordered (in

absolute value) in̂C, from largest to smallest. More precisely, the detail coefficients of leveli are expected

to be larger by roughly a factor of 4 than the detail coefficients of leveli−1, and this holds true for all levels

of the transform. Note that the
√

2 scaling during the construction of the coefficients would account for an

average growth of a factor of 2 in their variance from one level to the next. The special geometry of random

chains accounts for the second factor of 2. Hence, as a general policy, it is best to remove coefficients

starting at the lowest level and climbing up. These coefficients have the lowest variance and thus contain the

least information for determining structural similarity. The effect of averaging as described in Section 2.1

for m = 2v is the same as that of removing the lowestv levels of coefficients. Since these are expected to

be the smallest coefficients, we can conclude that using anm-averaged chain will give the smallest expected

error for a representation that uses onlym Haar detail coefficients for each dimension. The wavelet analysis

allows us to estimate the approximation mean squared (MS) error introduced by removing all coefficients of
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level j. It can be computed to bel12

(
2i + 1

2i−1

)
. Therefore for anm-averaged approximation the MS error

is expected to be on the order of(m · l)/6.

As the above analysis shows, we can remove quite a few levels of coefficients without introducing a

large error. This is due to the largeratio of the average variances(henceforth called RAV) between two

successive levels of detail coefficients, which was shown to be approximately 4 for all levels. This behavior

of the Haar detail coefficients is a result of the fact that on the average random chains grow further and

further away from their starting point. The expected distance of thenth point from the origin is on the order

of
√

n · l. We see this behavior in Figure 1 where we compare the average variances of the coefficients

of random chains to those of very compact random chains (chains forced to reside inside small spheres)

and to those of point clouds sampled randomly from inside a sphere of radius
√

n · l. All chains are of

lengthn = 64. The RAV of the unconstrained random chain is significantly larger than that for the compact

random chains, which decreases as the compactness of the chain is increased. The worst case is for a point

cloud, where the average variances of all levels of detail coefficients have the same magnitude making all

levels have the same importance.

2.3 Application to Proteins

While it is a well-known fact that the positions of neighboring Cα atoms along the backbone of native

protein structures are highly correlated (e.g., see [24]), it was shown in [20] that treating the position of each

Cα atom as uniformly distributed on a 3-D sphere centered at the center of the previous Cα atom yields a

very good approximation of the average global behavior of native protein structures.

We performed the same wavelet transform on sets of conformations of actual proteins of length 64

residues (only the Cα atoms coordinates were used to describe the conformations) taken fromdecoy sets

(conformations which are expected to be similar to the native conformation) generated by Park and Levitt [33,
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32], containing 10,000 conformations each. We obtained results similar to those of random chains, namely

the detail coefficients are ordered and have a RAV similar to that of random chains. The results for a few

sets of proteins are presented in Figure 2. One important difference from random chains is that the RAV

for decoy sets decreases considerably for the top levels. We explain this as follows. Small pieces of a pro-

tein cannot be highly packed because of steric clashes, while intermediate size pieces are often elongated

(secondary structure helices and strands) and hence the variance of the coefficients grows considerably from

one level to the next at the low and intermediate levels. The tight packing of the secondary structure of the

native-like conformations makes the high-level coefficients considerably smaller than in the random chain

model. We would have liked to give results for decoy sets of proteins significantly longer than 64 residues,

however, no such sets were available to us.

Random protein conformations (generated as described in Section 2.4), on the other hand, are consider-

ably less compact than the decoy sets, and hence behave much more like random chains atall levels of detail

coefficients. As can be seen in Figure 2 the RAV at the lower levels is even bigger than what is observed

for random chains. This is due to the limit on the packing density as a result of the space taken up by each

residue. In our random chain model the points have no volume and the chain is allowed to cross itself. In the

random protein conformations, however, atoms are not allowed to have any self-overlaps. Their behavior is

actually modelled better by random chains in which the next step is sampled uniformly from ahemisphere

defined by the direction of the previous step.

We thus conclude that, while decoy sets cannot be compressed as much as random sets, it is possible to

remove the first few levels and still get a very good approximation.
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2.4 Correlation of approximate and exact similarity measures

When using thecRMSmeasure to compute similarity between random chains of length 64 we find that the

approximatem-averaged versions yield very good results form as large as 9. Form = 4, 6, 9, 12 and16,

the correlation of the approximate measure to the true one is 0.99, 0.95, 0.89, 0.76 and 0.60, respectively.

When using thedRMSmeasure to compute similarity between random chains the approximatem-averaged

versions is highly correlated form as large as 6. The correlation values obtained are 0.94, 0.81, 0.67, 0.55

and 0.46, respectively.

In order to verify that the analogous behavior of the detail coefficients of protein sets and random chains

carries over to approximate similarity measures we chose 8 structurally diverse proteins used by Park and

Levitt in [32, 33] (1CTF, 1R69, 1SN3, 1UBQ, 2CRO, 3ICB, 4PTI, 4RXN) having between 54 (4RXN) and

76 (1UBQ) residues. For these proteins we obtained (1) decoy sets generated by Park and Levitt [32, 33],

containing 10,000 conformations each and (2) randomly generated conformation sets using the program

FOLDTRAJ1 [9], containing 5000 structures each. A decoy set is a collection of conformations, which are

native-like in structure. As a result they span only a small portion of the entire conformation space and are

thus expected to have significant pairwise similarity. On the other hand, the conformations in the random

sets sample a much larger space and as a result have on average lower pairwise similarity.

For each set, we randomly chose between 1000 and 4000 pairs whose truedRMSdistance was less

than 5̊A (10Å for the random sets, which have larger structural diversity) and computed theirm-averaged

distances for different values ofm. The correlation of them-averagedcRMSanddRMSmeasures to the

true cRMSanddRMSmeasures for the different decoy sets can be found in Table 1a. Form as large as

9, the approximatecRMSmeasure is still highly correlated with the truecRMSmeasure, which means that

a reduction factor of 9 still yields a very good approximation for proteins of this size. FordRMS, high

1http://bioinfo.mshri.on.ca/trades/
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correlation is still achieved whenm = 6, which means a reduction factor of 6 (since the complexity of

dRMSis quadratic, the actual gain is by a factor of 36). We note that the correlation values obtained are

quite similar to those computed for random chains.

The correlation of them-averagedcRMSand dRMSmeasures to the true measures for the different

random sets can be found in Table 1b. Here too, a reduction factor of 9 still yields a highly correlated

approximation of thecRMSmeasure. FordRMS, high correlation is still achieved whenm = 9, which

means a reduction factor of 9 and an actual gain of 81. Here the correlation values are in fact better than

those computed for random chains as would be anticipated from the higher growth ratio of the variance of

the detail coefficients of random protein sets in comparison to those of random chains (see Figure 2). When

examining all pairs and not only those whosedRMSdistance is smaller than 5Å (10Å for the random sets),

the computed correlation is even larger.

The analysis of random chains in the previous section entails that the approximation error caused by

averaging depends only on the averaging factorm. The better correlation we get for the random sets over

the decoy sets thus requires some explanation. First, the larger RAV of the random sets means that the

low-level coefficients are less important than those in decoy sets. Second the distance between a pair of

random conformations is larger than the distance between a pair of decoy conformations and as a result the

approximation errors have a smaller effect on the computation of similarity.

We wanted to see how well averaging scales up as we increase the size of the protein. As we did not

have access to decoy sets of larger proteins we examined only random conformation sets. We generated

1000 random conformations for the two proteins 1LE2 (144 residues) and 1HTB (374 residues). We chose

1100 pairs of 1LE2 conformation with adRMSless than 18̊A, and 1100 pairs of 1HTB conformations with

dRMSless than 24̊A. For 1LE2 the correlation ofcRMSwas above 0.9 form as large as 27, and fordRMS

it was above 0.9 form as large as 15. For 1HTB the correlation ofcRMSwas above 0.9 form as large as

11



40, and fordRMSit was above 0.9 form as large as 30. Because the pairwise distances for these larger

proteins were significantly larger than the distances of the smaller proteins, a larger approximation error can

be tolerated without compromising performance. Thus larger values ofm could generally be used for larger

proteins, making the speedups that can be achieved larger when they are most needed.

3 Application 1: Nearest-neighbor search

Simulations and other conformational sampling methods generate large sets of conformations of a partic-

ular protein. For example, the project Folding@Home2 runs parallel molecular dynamics simulations on

thousands of computers across the Internet and then centrally analyzes the obtained data. An important step

in evaluating such data, e.g. for clustering and related tasks, is the following: given a set of conformations

of the same protein, find thek nearest neighbors (NNs) for each sample in the set. Typically,k is a small

constant while the size of the set can be very large.

The straightforward (“brute-force”) approach is to evaluate the similarity measure (cRMSor dRMS)

for all pairs and then report thek NNs for each sample. However, the quadratic complexity makes this

approach scale poorly. Spatial data structures such as thekd-tree[4] can avoid this complexity under certain

circumstances [1, 7, 18, 21, 28, 34]. Note that these data structures allow for exact search, i.e., they return

the same NNs as would the brute-force search. However, most of them require a Euclidean metric space of

rather small dimensionality. Unfortunately,cRMSis not a Euclidean metric. AlthoughdRMSis a Euclidean

metric, the dimensionality of the space of intra-molecular distance matrices is far too high, since typically,

for dimensions higher than a few tens, none of the nearest-neighbor data structures performs better than

brute-force search. Therefore, if we hope to use a spatial data structure to speed up NNs search, we must

use thedRMSmeasure, but find a way to significantly reduce the dimensionality of the structure descriptors

2http://folding.stanford.edu
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below the averaged conformations we presented in Section 2.

3.1 Further reduction of distance matrices

We use the singular value decomposition (SVD) [14] to further compress the intra-molecular distance matri-

ces of averaged proteins, that is to further reduce the number of parameters involved in computingdmRMS.

SVD is a standard tool for principal components analysis (PCA) and computes directions of greatest vari-

ance in a given set of high-dimensional points. When considering the set of intra-molecular distance matrices

these directions correspond to directions that contain the most dissimilarity information. These directions

are called principal components (PCs). The SVD can be used to linearly map a set of high-dimensional

input vectors (data points), stored in a matrixA, into a lower-dimensional subspace while preserving most

of the variance. Such a transform can be found by decomposing the matrixA of the input vectors into

A = USV T , the SVD ofA, whereU andV are orthogonal matrices andS is diagonal with the singular

values ofA along the diagonal.

Our reduction algorithm has two steps:

1. Compute anm-averaged representation of each conformation in the set.

2. Use the SVD of the entire set to further reduce the description length of each conformation.

Efficient algorithms exist that compute the SVD in timeO(s2t) wheres is the smaller andt the larger

dimension ofA (rows or columns). Note that while in principle, SVD could be applied to intra-molecular

distance matrices without first averaging sub-chains, the quadratic dependency on the smaller dimension

of A shows the important advantage of averaging: usually, the larger dimensiont will reflect the size of

the conformational sample set while the smaller dimensions will correspond to the size of a single intra-

molecular distance matrix. Reducing the distance matrix size by using averaged conformations, as described

in Section 2, is therefore key to performing SVD in practice.
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To perform SVD on a set of intra-molecular distance matrices derived fromm-averaged conformations,

each of these distance matrices is rewritten as anr(r−1)/2 dimensional vector (wherer = bn/mc) and then

SVD is applied to the matrix that contains all these vectors. Taking the resultingU matrix and removing

all columns that correspond to small singular values (the directions of little variance), we have the linear

map that takes the set of distance matrices into a lower-dimensional Euclidean space while preserving a

high percentage of the variance and thus distance information. We found that in practice, a relatively small

output dimensionality between 12 and 20 is sufficient to maintain about90% of the variance of the distance

matrices. In what follows, we will denote thedRMSmeasure obtained from an SVD compressed set of

m-averaged distance matrices byd
PC
m RMS. (PC stands for the number of principal components that are

used after compression.)

Since the cost of the SVD is quadratic in the length of the protein (assuming a very large set of confor-

mations), its dependence onm, the averaging factor, is quartic. Therefore, one would like to use a largem

when averaging. On the other hand, averaging is lossy, and thus it would be best to apply SVD to a repre-

sentation that has the least amount of averaging possible. Figure 3 shows the effectiveness of the SVD for

reducing the description length of protein conformations. Figure 3a presents the correlation betweendRMS

andd
PC
4 RMS on some of the decoy sets as the number of PCs that is used increases. With as little as 16

PCs a correlation of 0.9 is achieved. Figure 3b presents the correlation on some of the random sets as the

number of PCs that is used increases. Here as little as 12 PCs suffice to get a correlation of 0.9. For com-

parison we present in Figure 4 the correlation when SVD is applied after averaging with a factor ofm = 9.

Here the same number of PCs yields lower correlation than was achieved form = 4. The computation time

would be more than 16 times faster though.
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3.2 Evaluation of approximation errors for nearest-neighbor search

Using an approximate measure to find thek NNs of a conformation entails that some true NNs will be

missed while other conformations would be chosen instead, which are not true NNs. As described above

the approximate measure we propose to use isd
PC
m RMS. We tested the usefulness of this measure on both

the decoy sets and the random sets used in Subsection 2.4.

Given a set of conformationsS and a query conformationq from that set, we define two orderings of the

elements inS: S1 andS2. S1 is the ordering of the conformations inS by their exactdRMSdistance from

q. S2 is ordered by thed
PC
m RMS distance of the conformations inS from q. Thus,S2 is the approximation

of S1 using our reduced similarity measure. In our test we usedm = 4 for both random and decoy sets. We

used 16 PCs for the decoy sets but only 12 for the random sets. Based on these two sets we compute two

error measures and two parameters to help evaluate the performance of the approximate similarity measure

for thek NNs application.

The two error measures we use are:

err1 Given thedRMSdistance of thekth conformation inS2 (the approximatekth NN) and thedRMS

distance of thekth conformation inS1 (the truekth NN), how much is the former larger than the

latter. This error is reported as percentage of thedRMSdistance of thekth conformation inS1.

err2 Given the averagedRMSdistance of the firstk conformations inS2 (the average distance of an ap-

proximate NN) and the averagedRMSdistance of the firstk conformations inS1 (the average distance

of a true NN), how much is the former larger than the latter. This error is reported as percentage of

the averagedRMSdistance of the topk conformations inS1

We also computed two other parameters that are indicative of how well the approximate measure finds

true NNs:
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NN1 The number of elements among the topk of S1 found in the topk of S2. In other words, the number

of true NNs found by the approximate measure.

NN2 The maximal index inS2 of an element from the topk in S1. In other words, how many approximate

NNs do we need to find in order to have all the true NNs.

We first looked at the decoy sets of size 10,000 for each of the eight proteins. We usedm = 4 and 16 PCs

(d
16
4 RMS measure)to find approximate NNs. For each set, we randomly chose 250 query conformations

and evaluatederr1, err2, NN1andNN2for each of them. Table 2 shows the mean values of these parameters

over the 250 queries (standard deviations were generally small).

Theerr1 error was about 15% for all proteins, which translates to an error of no more than 1.5Å in the

furthest NN that is returned. Theerr2 error is always smaller than 7%, which means that on average theith

approximate nearest neighbor is no more than 0.7Å further away than theith true NN. TheNN1parameter

reveals that at least 70% of the true NNs are returned by the approximate measure, and theNN2parameter

indicates that almost always it is enough to find3k approximate NNs in order to guarantee that all truek

NNs are found.

Next we looked at the random sets, each containing 5000 conformations and performed the exact same

calculations as we did for the decoys. However, here we usedm = 4 and 12 PCs (d
12
4 RMS measure) to find

approximate NNs. The results are shown in Table 3. Here theerr1 error was less than 10%, which means the

approximate furthest NN was less than 1.5Å further away than the true furthest NN. Note that the random

sets cover a larger part of the conformation space and thus the distance between a pair of conformations

would be larger than what we find for decoy sets, which span only a small portion of conformation space.

The err2 error is in general smaller than 3% which translates to about 0.5Å. While here the approximate

method found somewhat less true nearest neighbors whenk = 10 than for the decoy sets (NN1≥ 6.5) its

performance was equivalent to the decoy sets fork = 25 and superior (NN1≥ 81) for k = 100. In general,
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about2.5k approximate NNs were enough to ensure that all truek NNs are found.

Finally, we looked at some larger sets of 100,000 conformations each. We ran the same test as we did for

the smaller conformation sets. Approximate nearest neighbors were computed using thed
16
4 RMS measure

for the decoy sets and thed
12
4 RMS measure for the random set. The results are displayed in Table 4.

In general the results are slightly worse than what we observed for the smaller sets in terms of the error

percentages and the number of true NNs found by the approximate measure. This is due to the fact that the

SVD is less effective for the larger sets. Namely, more PCs are needed to capture well enough the variance

of all the conformations. Indeed when we usedd
20
4 RMS instead ofd

16
4 RMS for the 1CTF decoys, the

results were comparable to what we saw with the smaller decoy set (10,000 conformations). Still theNN2

statistic is very promising, requiring only about6k approximate NNs to capture all truek NNs.

3.3 Running time

We now consider the running times in a concrete nearest-neighbor task: given a set ofN = 100, 000 random

conformations of protein 1CTF, findk = 100 nearest neighbors for each sample in the set. The reported

times in this section refer to a sequential implementation in C running on a single 1GHz Pentium processor

on a standard desktop PC.

We first compare the running times for a brute-force (all-pairs) implementation using bothcRMSand

dRMS, and their corresponding averaged similarity measurescmRMS anddmRMS. All measures were

used to find thek = 100 nearest neighbors for each of theN samples. Table 5 shows that the latter

measures already result in a notable speed-up. Ford4RMS, a significant speed-up overdRMSis obtained

due to the quadratic down-scaling of intra-molecular distance matrices by averaging proteins. Forc4RMS,

the improvement overcRMSis smaller. This is because the reduction by averaging affects the number

of involved points only linearly, and the main effort in computingcRMScomes from finding an optimal
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rigid-body alignment of two point sets.

Note that the increase in running times agrees quite well with the expected quadratic scaling of the

brute-force nearest neighbor approach. The times forN = 100, 000 samples were therefore extrapolated

from the actual running times measured for the smaller values ofN . In fact, fordRMSusing all Cα atom

coordinates, we could not store all intra-molecular distance matrices. This problems does not occur with

averaged proteins anddmRMS.

We next address the quadratic scaling problem of the brute-force approach. To be able to apply a kd-

tree, we first further reduced the 120-dimensional space ofd4RMS for 1CTF using SVD and retained 16

principal components. This further compression took about one minute for the complete set of 100,000

samples. Building the kd-tree for the resulting 16-dimensional data took only about 4 seconds.

We then ran both the brute-force and the kd-tree approach usingd
16
4 RMS as similarity measure. Table 6

shows the running times for findingk = 1 andk = 100 nearest neighbors for each sample in the full set

of 100,000 samples. The obtained total speed-up of our NN search (approximate similarity measures and

a kd-tree) over the current best approach (brute-force search using all Cα coordinates) is several orders of

magnitude (∼84 hours down to 19 minutes).

In general, the speed-up obtained by using a kd-tree can be expected to increase with increasing sample

set sizeN . Due to its quadratic scaling, brute-force search will become very slow for larger sample sets.

On the other hand, the sub-quadratically scaling kd-tree approach should allow to process even much larger

sample sets within a few hours without parallelization on a standard desktop PC.
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4 Application 2: structural classification

Given a set of native protein structures each having a different amino-acid sequence, such as the Protein

Data Bank (PDB)3 [5, 6], we would like to classify the structures into groups according to their struc-

tural similarity. This task has been performed manually in the SCOP (structural classification of proteins)

database4 [29], where protein structures are hierarchically classified intoclasses, folds, superfamiliesand

families. It has also been done semi-automatically in the CATH5 [31] database, where protein structures are

hierarchically classified intoclasses, architectures, topologiesandhomologous superfamilies. An automatic

classification can be found in the FSSP (Fold classification based on Structure-Structure alignment of Pro-

teins) database6 [16], where the DALI program is used to classify all structures in the PDB into families of

similar structures.

The major difficulty in automatically classifying protein structures lies in the need to decide, given two

protein structures, which parts of both structures should be compared, before it can be determined how

similar these parts are. There is an inherent trade-off between the length of the compared parts and the level

of similarity that is found. The longer the compared parts the less similar the two structures will be, and

vice-versa. Thiscorrespondence problemdoes not arise when different conformations of the same protein

are compared because in that case the correspondence is trivially determined. For this reason, computing the

similarity between structures of different proteins requires considerably more computation than the methods

described in Section 2.

Several algorithms have been proposed for structural classification. Some of the more popular ones are

briefly described here, for a survey of other methods see [22].

3http://www.rcsb.org/pdb/
4http://scop.mrc-lmb.cam.ac.uk/scop/
5http://www.biochem.ucl.ac.uk/bsm/cath/
6http://www.ebi.ac.uk/dali/fssp/
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DALI 7 The internal distances matrices of both proteins are computed. Then all pairs of similar sub-

matrices of small fixed size (one from each protein distance matrix) are found and a Monte Carlo algorithm

is used to assemble the pairs into larger consistent alignments. For more details see [15].

PROSUP 8 Similar fragments are identified in both proteins. They are iteratively expanded to create

alignments. A dynamic programming algorithm is then used to iteratively refine each alignment and finally

insignificant alignments are removed. For more details see [25].

CE 9 Each structure is cut into small fragments and a matrix of all possible aligned fragment pairs (AFPs)

is created. Combinations of AFPs are selectively extended or discarded leading to a single optimal align-

ment. For more details see [35].

STRUCTAL 10 The backbones of the two protein structures are directly matched by iteratively cycling

between a dynamic programming algorithm that computes optimal correspondence given the current ori-

entation of the two structures, and a least-square fitting that optimally orients the structures to minimize

coordinate difference between the corresponding parts. For more details see [11, 41].

4.1 STRUCTAL and m-averaging

All the above methods stand to gain in performance by using our averaging scheme. In order to verify this

claim, we tested the speedup and accuracy obtained by using the STRUCTAL method on averaged protein

structures. We could not test our approach on PROSUP, DALI and CE because these servers did not accept

7http://www2.ebi.ac.uk/dali
8http://lore.came.sbg.ac.at/CAME/CAME EXTERN/PROSUP
9http://cl.sdsc.edu/ce.html

10http://bioinfo.mbb.yale.edu/align
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our averaged structures since they are not valid protein structures. These algorithms were too involved for

us to implement ourselves reliably.

The STRUCTAL algorithm starts with an initial alignment of the backbone Cα atoms of the two struc-

tures according to one of a number of possible heuristics (aligning the beginnings, the ends, random seg-

ments, by sequence similarity, etc). Then a two step process is repeated until convergence. First a dynamic

programming algorithm analogous to the Needleman and Wunsch sequence alignment algorithm [30] finds

the correspondence between the two structures that yields the highest score. Scoring is based on assigning

a cost to each possible corresponding pair, which is inversely proportional to the distance between Cα po-

sitions, and a gap penalty for every gap in the alignment (for more details see [11]). Computing the best

correspondence thus requiresO(n1n
2
2+n2n

2
1) time (n1 andn2 are the number of residues in each structure).

Second, an optimal relative orientation is computed for the two structures, based on the previously computed

correspondence, by using the method in [17, 19]. The score of the final correspondence is returned together

with thecRMSdistance of the corresponding parts and the length of the correspondence. Since the result is

sensitive to the initial alignment, the algorithm is usually run a number of times for each pair of structures,

each time using a different initial alignment. The results of the highest scoring run is kept.

STRUCTAL also computes aP value for the final score, which can be used to determine the statistical

significance of the similarity that was computed. It gives the probability that a similarity of a given score and

length could occur at random. As described in [27], this value is a function of the STRUCTAL alignment

score and the length of the correspondence. It was computed based on structural comparison of the entire

SCOP database. In what follows we will call a statistically significant alignment (P < 0.005) agoodmatch

and all other alignmentsbadmatches.

We investigate the performance of STRUCTAL when used together withm-averaging to compute struc-

tural similarity among the native structure of different proteins in terms of the tradeoff between the gain
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in speed and the amount of error that results. We use STRUCTAL as a black box and inputm-averaged

structures as if they were true protein structures. Anm-averaged structure is created by cutting the protein

into sub-chains of lengthm starting at its N-terminal and computing the average of all Cα atoms in each

fragment. The sub-chain at the C-terminal could have between 1 andm Cα atoms. It is possible to shift

the sub-chains byt residues, where1 ≤ t ≤ (N mod m), and get a differentm-averaged structure. The

choice oft1 andt2 for a pair ofm-averaged structures could affect the computed similarity score, however

we expect this effect to be small. In what follows we uset = 0 (no shift) when computing allm-averaged

structures. Since bothn1 andn2 are reduced by a factor ofm, the complexity of the dynamic programming,

which is the main part of the STRUCTAL, is reduced by a factor ofm2. The complexity of the optimal

orientation procedure is reduced by a factor ofm.

4.2 Experimental results

In this section we evaluate our method based on how well it is able to pick out the good matches from the bad

matches (as defined in the previous subsection). We cannot testm-averaging in this context by evaluating its

performance in finding NNs since it is difficult to impose a strict ordering on a set of proteins, by measuring

their similarity to one structure in the set. This is due to the aforementioned inherent tradeoff between the

length of the correspondence and the quality of the similarity that is achieved for a given pair.

For our tests we used the latest version of STRUCTAL (courtesy of Michael Levitt). This program inputs

two protein structures in the form of PDB files, and outputs their alignment and its score.

The set of structure pairs on which we tested our method was constructed as follows. We examined the

clustering results based on STRUCTAL comparisons presented by Erik Sandelin on his PROTOFARM web

site11 and picked out 3,691 pairs of structures, most of which were found to be good matches. These pairs all

11http://csb.stanford.edu/sandelin/protofarm/html/
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have a match correspondence of at least 150 Cα atom pairs and are taken from a set of 256 different protein

structures of length between 180 and 420 residues each. We then randomly picked 6,375 more pairs from

our set of 256 structures. Altogether we examined 10,066 pairs of structures, of which 4052 where found

by STRUCTAL to be good matches and 6,014 were found to be bad matches. For each of the structures we

generated anm-averaged approximation form = 3, 4 and 5. Finally we ran STRUCTAL on the set of pairs

using the 3 sets of averaged structures and recorded the results.

We restrict our analysis to the STRUCTAL score that is computed for each pair, since we do not have

a method for computingP values for evaluating the statistical significance of a match between twom-

averaged structures. Developing such a method would require in depth analysis of the distribution of scores

of m-averaged pairs (see [27]), which is beyond the scope of this work.

In Figure 5 we show the structural comparison results in four graphs. Each depicts two histograms,

one for the score distribution of the good matches and one for score distribution of the bad ones. The

results are binned by the score of each aligned pair. Since theP value is based on both the score and the

length of the correspondence (see [27] for details), the score alone is not enough to completely separate

the two histograms even when using the full structures (Figure 5a). Thus some matches will inevitably

be misclassified. Figures 5b, 5c and 5d show the histograms obtained for them-averaged structures with

m = 3, 4 and 5 respectively. One can still see that the bulk of the matches are classified well by the

STRUCTAL score, with the amount of overlap between the histograms increasing asm grows larger.

for the full structures (m = 1) and them-averaged structures (m = 3, 4, 5).

The exact numbers of misclassified pairs can be found in Table 7. The numbers are given for both the

STRUCTAL P value cutoff ofP ≤ 0.005 and a more stringent cutoff ofP ≤ 0.001. These numbers are

computed by finding the value of the STRUCTAL score that minimizes the amount of total misclassifications

for each value ofm. Less than 7% of the pairs are misclassified when we usem-averaging withm = 3, less
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than 10% of the pairs are misclassified whenm = 4 and about about 15% misclassified whenm = 5. The

number of false negatives clearly increases withm, since averaging may obfuscate the similarity. Moreover,

the scoring function that was optimized for protein structures becomes less and less effective as them-

averaged structures grow less and less protein-like asm increases, and as a result matching parts can be

missed. For the more stringent cutoff ofP ≤ 0.001 we observe in Table 7 that there is a considerable drop

in the number of misclassified pairs compared to the firstP value used. This indicates that a large number

of misclassifications are borderline matches.

When precision is important,m-averaged structures can be used as a fast filter to quickly separate a

small set of potentially good matches from the significantly larger amount of bad matches. Then the full

structures can be used to weed out the false positives that snuck in. In this scenario the false negatives

are the only true errors since the false positives can be removed in the second stage. Their number can be

significantly reduced by shifting the cutoff score down. Thus the number of false negatives will be reduced

at the cost of allowing more false positives. For example, whenm = 3, it is possible to reduce the number

of false negatives by 40% while increasing the total number of misclassified pairs by less than 40%.

Another indication thatm-averaging introduces only a small error is the correlation between the STRUC-

TAL score using the full structures and the score using them-averaged structures. It is 0.924 whenm = 3,

0.908 whenm = 4 and 0.85 whenm = 5. This entails that them-averaged scores are a good predictor of

the true score and could also be used for classification into more than just 2 classes (good or bad matches).

4.3 Discussion

The test results presented in the previous subsection show the effectiveness ofm-averaging for speeding up

structural comparison using the STRUCTAL algorithm. It can be used both as a fast method for structural

classification with a small amount of error, or as a fast filter that is able to remove most bad matches, leaving
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only a small subset of pairs to be evaluated using full protein structures.

In this work we treated STRUCTAL as a black box. however, a scoring function that is better suited for

m-averaged structures can be devised for STRUCTAL. Such a function would take into account the fact that

the distance between neighboring points along the backbone chain in anm-averaged structure is different

— in fact, larger — than the fixed 3.8Å between Cα atoms in real proteins.

We propose a hierarchical use of STRUCTAL withm-averaging, in which the value ofm is decreased

gradually. At first a high value is used to quickly remove the very bad matches. Then asm is decreased

more and more bad matches are discovered and removed. In this scheme, the alignment that is computed for

a pair of structures, for some value ofm, could serve as an initial alignment for aligning the two structures

at subsequent iterations with smaller values ofm, in addition to the other heuristics that are used. Indeed, in

most good matches that were detected using them-averaged structures, the rotation and translation that was

used for the alignment (the transformation that superimposes the two structures) was very similar to the one

computed using the full structures.

Another good measure for structural alignment that can be used instead of the STRUCTAL score, is the

ratio of thecRMSdistance between the corresponding Cα atoms of the two structures to the length of the

correspondence. This ratio is highly correlated with the STRUCTAL score and yields only a small increase

in the number of misclassifications. It is also independent of the comparison algorithm that is used, and can

be obtained from other alignment algorithms such as DALI or CE.

5 Conclusion

Two general properties of proteins, their chain topology and limited compactness, are exploited to uniformly

reduce the number of features for structural similarity computations. Substantial savings in terms of storage

and running time are attained with small errors.
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In applications in which no approximation error is tolerable, our approach can be used as a first step

to filter a small subset of pairs that are within some tolerance band around the desired similarity. More

expensive exact similarity measures can then be used on the reduced set of pairs.

Two possible applications were presented: findingk nearest neighbors in large sets of conformations

of the same protein and classification of different proteins using the STRUCTAL algorithm. For the first

application the introduced error was low and the correlation to the true similarity measure was very high. For

the second application the number of misclassified matches increased only slightly when usingm-averaged

structures. In both applications, the running times were reduced from days to hours or even minutes.

In general, applications that input very large sets of proteins or that employ computationally intensive

algorithms on large proteins stand to benefit from approximation of structures as suggested in this paper.
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Figure 4: Correlation betweendRMSandd
PC
9 RMS for different number of PCs on (a) decoy sets and (b)

random sets of some proteins.
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Figure 5: Histogram of scores obtained for both the good and the bad matches using STRUCTAL on (a)

the full structures, (b)m-averaged structures withm = 3, (c) m-averaged structures withm = 4 and (d)

m-averaged structures withm = 5.
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1CTF 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN

m cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS

3 0.99 0.97 0.99 0.96 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.99 0.98

4 0.99 0.95 0.99 0.95 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.95 0.98 0.94 0.99 0.96

6 0.98 0.91 0.98 0.91 0.97 0.90 0.98 0.91 0.99 0.93 0.99 0.91 0.96 0.87 0.92 0.78

9 0.86 0.71 0.96 0.82 0.89 0.73 0.83 0.71 0.95 0.87 0.98 0.96 0.90 0.72 0.81 0.65

12 0.81 0.67 0.84 0.64 0.71 0.54 0.75 0.52 0.86 0.66 0.92 0.69 0.74 0.59 0.54 0.57

16 0.39 0.46 0.66 0.47 0.55 0.44 0.58 0.48 0.75 0.53 0.81 0.54 0.42 0.46 0.49 0.49

(a)

1CTF 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN

m cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS

3 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99

4 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98

6 0.99 0.96 0.98 0.96 0.98 0.95 0.99 0.95 0.98 0.95 0.99 0.95 0.98 0.96 0.99 0.97

9 0.94 0.87 0.95 0.89 0.95 0.88 0.95 0.85 0.95 0.87 0.96 0.86 0.92 0.88 0.93 0.90

12 0.91 0.81 0.84 0.76 0.84 0.75 0.90 0.73 0.84 0.74 0.90 0.73 0.86 0.81 0.87 0.84

16 0.70 0.62 0.69 0.64 0.68 0.61 0.82 0.61 0.71 0.62 0.83 0.64 0.73 0.70 0.73 0.74

(b)

Table 1: The correlation coefficient for differentm values evaluated forcRMSanddRMSof (a) decoy sets

and (b) randomly sampled conformations of various proteins.
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k = 10 k = 25 k = 100

err1 err2 NN1 NN2 err1 err2 NN1 NN2 err1 err2 NN1 NN2

1CTF 11% 3% 7.8 20 12% 3% 19 67 10% 2% 81 260

1SN3 14% 5% 7.5 23 15% 4% 18 69 12% 2% 76 301

1UBQ 15% 7% 7.0 38 14% 5% 18 102 13% 3% 77 332

2CRO 12% 4% 8.3 15 13% 3% 20 48 11% 2% 82 212

3ICB 13% 5% 7.8 23 13% 4% 19 68 12% 2% 78 292

4PTI 15% 6% 7.5 24 17% 5% 18 80 14% 3% 73 343

4RXN 13% 5% 7.9 19 16% 4% 19 62 16% 3% 78 295

Table 2: Mean values oferr1, err2, NN1andNN2for 250 queries ofk nearest neighbors.

38



k = 10 k = 25 k = 100

err1 err2 NN1 NN2 err1 err2 NN1 NN2 err1 err2 NN1 NN2

1CTF 8% 3% 6.8 20 8% 2% 18 61 9% 1% 82 203

1SN3 8% 3% 6.8 23 9% 2% 18 62 9% 1% 82 197

1UBQ 8% 3% 6.9 38 9% 2% 18 60 9% <1% 83 190

2CRO 6% 2% 7.8 15 6% 1% 21 41 5% 1% 91 134

3ICB 9% 3% 6.6 23 10% 2% 18 67 9% 1% 81 217

4PTI 8% 3% 6.9 24 9% 2% 19 58 8% 1% 83 194

4RXN 8% 3% 6.9 19 9% 2% 19 58 9% 1% 82 198

Table 3: Mean values oferr1, err2, NN1andNN2for 250 queries ofk nearest neighbors.
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k = 10 k = 25 k = 100

err1 err2 NN1 NN2 err1 err2 NN1 NN2 err1 err2 NN1 NN2

1CTF decoys 20% 9% 7.1 39 22% 8% 17 132 20% 5% 67 571

2CRO decoys 22% 10% 7.1 43 24% 9% 17 156 21% 6% 65 656

1CTF random 15% 7% 4.6 85 16% 6% 12 192 17% 4% 60 615

Table 4: Mean values oferr1, err2, NN1andNN2for 250 queries ofk nearest neighbors.
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N cRMS c4RMS dRMS d4RMS

1,000 18.6s 12.4s 31.0s 2.2s

2,000 74.4s 50.0s 137.5s 8.0s

5,000 464.8s 312.0s 759.8s 43.4s

100,000 ∼52h ∼35h ∼84h ∼4.8h

Table 5: Brute-force search usingcRMSvs c4RMS anddRMSvsd4RMS
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k Brute-force kd-tree

1 30min 4min 10sec

100 41min 19min

Table 6: Brute-force vs kd-tree search fork nearest neighbors.
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P ≤ 0.005 P ≤ 0.001

m Total FP FN Total FP FN

1 157 (1.6%) 48 109 130 (1.3%) 39 91

3 765 (7.6%) 331 434 646 (6.6%) 199 447

4 966 (9.6%) 205 761 782 (7.8%) 238 544

5 1572 (15.6%) 87 1485 1107 (11%) 136 971

Table 7: The total number of misclassified pairs, false positives (FP) and false negatives (FN).

.
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