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ABSTRACT

It is shown that structural similarity between proteins can
be decided well with much less information than what is
used in common similarity measures. The full C, represen-
tation contains redundant information because of the inher-
ent chain topology of proteins and a limit on their compact-
ness due to excluded volume. A wavelet analysis on ran-
dom chains and proteins justifies approximating subchains
by their centers of mass. For not too compact chain-like
structures in general, and proteins in particular, similarity
measures that use this approximation are highly correlated
to the exact similarity measures and are therefore useful,
e.g., as fast filters. Experimental results with such simpli-
fied similarity measures in two applications, nearest neigh-
bor search and automatic structural classification show a
significant speed up.
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1. INTRODUCTION

Automatic protein structure comparison is an important
problem in computational structural biology, e.g., in struc-
tural databases and classification [11, 25], structure predic-
tion [7, 8, 20, 27, 31, 32], analysis of trajectories through
conformational space generated by molecular dynamics and
Monte Carlo simulations [23, 30, 37], graph-based methods
for evaluating ensemble properties [2, 3, 34], etc.
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In contrast to sequence matching, structural matching re-
quires a similarity measure that is based on spatial atom
coordinates. Nevertheless, it is still important whether the
structures that are compared have the same amino acid se-
quence or not. For conformational samples from the same
sequence there are no ambiguities about correspondences.
In this case, similarity measures such as cRM S or dRM S
are commonly used [19]. These measures are defined as the
root mean square (RMS) of either distances between corre-
sponding atoms in the two compared structures (cRM S) or
their corresponding intra-molecular distance matrix entries
(dRM S). Comparing protein structures that derive from
different sequences is more difficult because it is generally
not obvious which features (atoms) of one structure should
be matched with which features from the other structure.
Numerous methods for finding a set of correspondences have
been proposed [9, 10, 12, 14, 19, 22, 29, 33, 36]. For example,
a dynamic programming approach from sequence alignment
was used in [10].

Most similarity measures are based on rather fine gran-
ular feature selection. Typically, the coordinates of all Cq,
atom centers are considered, and sometimes even those of
additional atoms. For larger proteins, the number of con-
sidered features greatly affect the efficiency of the structural
comparison. For example, intra-molecular distance matrices
grow quadratically with the number of residues. The com-
plexity of the dynamic programming algorithm in [10] is
quadratic in the number of features. While this is not a real
problem when comparing a single pair of structures (most
proteins have less than 1000 residues), it becomes an impor-
tant issue when querying a database for similar structures,
or when clustering a large set of structures.

In this paper, we show that the complexity of similar-
ity measures can be reduced while introducing only a small
error. We uniformly sub-divide the backbone into a small
number of contiguous subchains and represent each of the
subchains by the average coordinates of its atom centers.
Similarity measures can then be defined on these “aver-
aged conformations”. Although this simplification intro-
duces some error, we provide theoretical and experimental
evidence that enough information about relative similarity
is retained to discriminate structures in practical applica-
tions. In particular, the derived similarity measures using
the averaged protein representation are highly correlated to
their original full-atomic counterparts. If high accuracy is a
concern, approximate similarity measures are still useful as
a fast filter to considerably reduce the number of pairs that



need to be passed to the exact similarity measure. While we
cannot give bounds on the error that is introduced, we show
through wavelet analysis of protein structures and random
chains that averaging is a reasonable method for reducing
the dimensionality of structure descriptors.

Reducing the computational complexity of similarity mea-
sures significantly accelerates many tasks that involve struc-
tural matching. In our experiments we observed decreases
in running times by large factors, typically from days to
hours or even minutes. For very large sets of proteins, both
the efficiency of structure comparison of a single pair and
the number of such pairs that are actually evaluated are
important. Many approaches require evaluation of all pairs
(“brute-force approach”) even if the task is to identify only
a small constant number of nearest neighbors for each con-
formation in the set. Using our averaged representation we
show that we can avoid this quadratic cost of examining all
pairs in a k nearest neighbor application. In another applica-
tion to automatic structural classification, the complexity of
a previous algorithm that matches pairs of structures grows
quadratically with the number of residues. In this case as
well, a small reduction in the number of features results in
substantial savings.

In Section 2, we describe in detail the proposed averag-
ing that takes advantage of the chain and excluded volume
properties of proteins. In Section 3, we demonstrate our ap-
proach in a k nearest-neighbor application on a large set of
different conformations of the same sequence. In Section 4,
we show that our approach can serve as a fast pre-filter to
significantly speed up the STRUCTAL algorithm [10] for
classification of structures with different sequences.

2. SHAPE SIMILARITY AND
APPROXIMA TION OF CHAINS

Given two sequences of points in 3-space P = (p1,...,Pn)
and Q@ = (qi1,...,dn), their coordinate root mean square
deviation (cRMS) is a common measure of similarity. It is
defined as
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where || - || is the Euclidean Ls-norm and T is a rigid
body transform (rotation and translation). A closed form
solution for 1" yields the optimal alignment [15].

Another common RMS shape similarity measure, dRM S,
is based on comparing intra-set point distance matrices, i.e.
the matrix of distances between all points within each struc-
ture. For a point set P, this matrix is defined as

df;) = pi — pill- (2)
(¢5)

The distance matrix RMS deviation (dRMS) of P and Q
is then defined as

n i—1

dRMS(P,Q) = ﬁ Do (@ —ddz (3)
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When applying these similarity measures to proteins, it is
common practice to use the C, atom centers, ordered along

the backbone, as defining points. (Sometimes, additional
atoms are included or Cg atoms are used instead.) The
positions of these atoms are usually considered to determine
the shape of the backbone sufficiently well. However, in
the case of dRM S, the intra-molecular distance matrices
grow quadratically with the length of the protein, which
significantly slows down the dRM S computation for large
proteins.

2.1 Approximate similarity measures

We reduce the number n of sample points in P and Q
as follows. In each sequence, we replace contiguous subse-
quences of points by their centroids. That is, we uniformly
partition the sequence P of length n into m contiguous sub-
sequences of length |n/m] each. (If n/m is not an integer,
some subsequences will be chosen to be longer by one.) For
each subsequence, we then replace its points by their cen-
troid, which we denote by p; for subsequence j. For exam-

ple, if subsequence j spans points (pr,...,Ps) then
1 S
P =—" E ;. 4
P; s_r+1i:TP'b (4)

Based on these averaged subsequences we define the m-
averaged representation P, of P as the sequence of m points
(Pys-+» D). (For Q, we proceed in the same way.) We
can now define the simplified RMS measures for P,, and
Q,,, analogously to the above RMS measures on the original
sequences. That is, in the defining formulas (Equations 1, 2
and 3), we replace p; (q;) by P; (q;) and n by m. We will
call these measures m-averaged measures and denote them
by émRMS and d,, RMS.

Obviously, the error of these simplified similarity measures
continuously approaches zero as the two compared point sets
P and @ become more similar, i.e. limg_.p [ RMS(P, Q)—
cRMS(P,Q)| = 0 and the same holds for d,, RMS. For gen-
eral point sets, the error introduced by this approximation
can be quite substantial. However, for proteins the error
is small because of their chain topology and because van
der Waals forces limit the compactness of possible confor-
mations. In the next section we will try to give an intuition
as to why this is the case using random chains and wavelets
analysis.

2.2 Randomchainsand Haar wavelets

In what follows we will use random chains and the Haar
wavelet transform to argue that averaging is a reasonable
method for reducing the size of the representation of a pro-
tein for computing structure similarities. A random chain
C = (co,...,Cn—1) in 3-D is an ordered set of points in space
defined as follows:

Co = 0,

Cit1 = c; +8So-1 1=0,...,n—2 (5)
where Sz is a random 3-D vector uniformly distributed on
the unit 3-D sphere and [ is the fixed Euclidean distance
between two consecutive points of the chain. Sa is sampled
as follows:

sin ¢ cos 6
Sy = | singsinf (6)
cos ¢
where 0 ~ U|0,27] and cos ¢ ~ U[—1,1]. While it is a well-
known fact that the positions of neighboring C,, atoms along



the backbone of native protein structures are highly corre-
lated (e.g., see [21]), it was shown in [17] that treating the
position of each C, atom as uniformly distributed on a 3-D
sphere centered at the center of the previous C, atom yields
a very good approximation of the average global behavior of
native protein structures.

Computing the covariance matrix of S reveals that the
off-diagonal elements are identically 0, and as a result the
three dimensions of each random step are uncorrelated. Since
each step is independent of all other steps the distributions
of the three dimensions of any point on the chain are uncor-
related. Consequently, the random chain as described above
can be approximated well by replacing S» with a 3-vector
sampled from the normal distribution N'(0, - Z) (where I
is the 3 X 3 identity matrix) when n > 10. Moreover, the
fact that the three dimensions are uncorrelated allows us
to perform three independent one-dimensional Haar wavelet
transforms as described below instead of the more compli-
cated three-dimensional transform.

The Haar wavelet transform of a chain is a recursive av-
eraging and differencing of the coordinates of the points.
The transform recursively smoothes the chain while keeping
the detail coefficients needed to reconstruct the full chain
from the smoothed out version. We define the full resolu-
tion chain to be of level 0: C' = C°. We recursively create
smoothed versions of the chain by averaging pairs of consec-
utive points:

; 1 i - j=1,...,logn
j_ * (.31 j—1 J 5 ,10g
Ci_\/i<c2i +C2¢+1) {iZO,...,%—l' (7)
As each level of resolution is created we also compute the
details that are smoothed out by the averaging:

; 1 i i i=1,...
dl = (e - ofil) { Jzlbe ,’Lijgfl T
Note that the averages and details are multiplied by a scale
factor of v/2 at each level. Given C7, the smoothed chain at
level j, and D7, the detail coefficients of level j, it is possible
to reconstruct exactly C?~' by inverting the formulas of
Equations 7 and 8. The Haar wavelet transform of a chain
C is thus defined as:

é — (Cwlogn’-Dlog'nyDlog'nfl7 . .,Dl) ) (9)

The length of €' is the same as C' and C'*" is the centroid
of the entire chain. Since C' can be exactly reconstructed
from C, no information is lost during the transform. This
representation can then be compressed by removing (setting
to 0) all coeflicients in C smaller than some threshold. Since
the coefficients are scaled, the square of the La error of ap-
proximation in this case would be equal to the sum of the
squares of the removed coefficients [35].

Given the normal approximation of the random chain con-
struction, we can analytically determine the pdf of each of
the coefficients in ¢ by adding, subtracting and scaling in-
dependent normally distributed variables. The pdf of each
detail coefficient in level j can be derived as:

. 49 42
d~N(0,——-T-1), 10
(0552 7 1) (10)
and the pdf of their squared L2 norm is thus:
; 49 42
[d7[|3 ~ x*(3dof) - -l (11)
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with a mean of ££2 . and variance of % - 12, Since
the pdfs of the detail coefficients are centered at the ori-
gin and their variance is decreasing by a factor of roughly
4, they are expected to be ordered (in absolute value) in
C’, from largest to smallest. Note that the v/2 scaling dur-
ing the construction of the coefficients would account for an
average growth of a factor of 2 in their variance from one
level to the next. The special structure of random chains ac-
counts for the second factor of 2. Hence, as a general policy,
it is best to remove coefficients starting at the lowest level
and climbing up. These coefficients have the lowest vari-
ance and thus contain the least information for determining
structural similarity. The effect of averaging as described in
Section 2.1 for m = 2% is the same as that of removing the
lowest (logn) — v levels of coefficients. Since these are ex-
pected to be the smallest coefficients, we can conclude that
using an m-averaged chain will give the smallest expected
error for a representation that uses only m Haar detail co-
efficients for each dimension. The wavelet analysis allows
us to estimate the approximation mean squared (MS) error
introduced by removing all coefficients of level j. It can be
computed to be &5 (2° + 517 ). Therefore for an m-averaged
approximation the MS error is expected to be on the order
of (n-1)/(6m).

As the above analysis shows, we can remove quite a few
levels of coefficients without introducing a large error. This
is due to the large ratio of the average variances (hence-
forth called RAV) between two successive levels of detail
coefficients, which was shoen to be approximately 4 for all
levels. This behavior of the Haar detail coefficients is a re-
sult of the fact that we are dealing with chains that on the
average grow further and further away from their starting
point. The expected distance of the nth point from the ori-
gin is on the order of v/n-1. We see this behavior in Figure 1
where we compare the average variances of the coefficients
of random chains to those of very compact random chains
(chains forced to reside inside small spheres) and to those
of point clouds sampled randomly from inside a sphere of
radius v/n - . All chains are of length n = 64. The RAV of
the unconstrained random chain is significantly larger than
that for the compact random chains, which decreases as the
compactness of the chain is increased. The worst case is for
a point cloud, where the average variances of all levels of de-
tail coefficients have the same magnitude making all levels
have the same importance.

We performed the same wavelet transform on sets of con-
formations of actual proteins of length 64 residues (only the
C. atoms) taken from decoy sets (conformations which are
expected to be similar to the native conformation) gener-
ated by Park and Levitt [27], containing 10,000 conforma-
tions each. We obtained results similar to those of random
chains, namely the detail coefficients are ordered and have
a RAV similar to that of random chains. The results for
a few sets of proteins are presented in Figure 2. One im-
portant difference from random chains is that the RAV for
decoy sets decreases considerably for the top levels. We ex-
plain this as follows. Small pieces of a protein cannot be
highly packed because of steric clashes, while intermediate
size pieces are often elongated (secondary structure helices
and strands) and hence the variance of the coefficients grows
considerably from one level to the next at the low and inter-
mediate levels. The tight packing of the secondary structure
of the native-like conformations makes the high-level coeffi-
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Figure 1: Comparison of the average variance of
Haar coefficients of random chains, compact random
chains and random point clouds.

cients considerably smaller than in the random chain model.
We would have liked to give results for decoy sets of proteins
longer than 64 residues, however, no such sets were available
to us.

Random protein conformations (generated as described
in Section 2.3), on the other hand, are considerably less
compact than the decoy sets, and hence behave much more
like random chains at all levels of detail coefficients. As
can be seen in Figure 2 the RAV at the lower levels is even
bigger than what is observed for random chains. This is
due to the limit on the packing density as a result of the
space taken up by each residue. In our random chain model
the points have no volume and the chain is allowed to cross
itself. In the random protein conformations, however, atoms
are not allowed to have any self-overlaps. Their behavior is
actually modelled better by random chains in which the next
step is sampled uniformly from a hemisphere defined by the
direction of the previous step.

We thus conclude that, while decoy sets cannot be com-
pressed as much as random sets, it is possible to remove the
first few levels and still get a very good approximation.

2.3 Correlation of approximate and exact
similarity measures

When using the cRM S measure to compute similarity be-
tween random chains of length 64 we find that the approx-
imate m-averaged versions yield very good results for m as
small as 8. For m = 4, 8,12 and 20, Pearson’s correlation of
the approximate measure to the true one is 0.59, 0.92, 0.97
and 0.99, respectively. When using the dRM S measure to
compute similarity between random chains the approximate
m-averaged versions is highly correlated for m as small as
12. The correlation values obtained are 0.45, 0.78, 0.88 and
0.94, respectively.

In order to verify that the analogous behavior of the detail
coefficients of protein sets and random chains carries over to
approximate similarity measures we chose 9 structurally di-
verse proteins used by Park and Levitt in [27] (1CTF, 1ERP,
1R69, 1SN3, 1UBQ, 2CRO, 3ICB, 4PTI, 4RXN) having be-

Hl Random chain
[ 1CTF decoys

Fie [ 1SN3 decoys

2r [ 1UBQ decoys ||
[ 1SN3 random
[ 3ICB random
M [ ] 1HTB random ||

5 4 3 2 1
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Figure 2: Comparison of the Haar coefficients of
decoy sets of protein and randomly generated con-
formations of proteins to the coefficients of a set of
random chains.

tween 38 and 76 residues. For these proteins we obtained (1)
decoy sets generated by Park and Levitt, containing 10,000
conformations each and (2) randomly generated conforma-
tion sets using the program FOLDTRAJ' [8], containing
5000 structures each.

For each set, we randomly chose between 1000 and 4000
pairs whose true dRM S distance was less than 5A and com-
puted their m-averaged distances for different values of m.
The correlation of the m-averaged cRM S and dRM S mea-
sures to the true cRM S and dRM S measures for the dif-
ferent decoy sets can be found in Table 1(a). For m = 8§,
the approximate cRM S measure is already highly correlated
with the true cRM .S measure, which means that a reduction
factor between 5 and 8 still yields a very good approxima-
tion. For dRM S, high correlation is achieved for m = 12,
which means a reduction factor of between 3 and 6 (since
the complexity of dRM S is quadratic, the actual gain is by
a factor of between 9 and 36). We note that the correla-
tion values obtained are quite similar to those computed for
random chains.

The correlation of the m-averaged cRMS and dRMS
measures to the true measures for the different random sets
can be found in Table 1(b). Here too, a reduction factor
between 5 and 8 yields a highly correlated approximation of
the cRM S measure. For dRM S, high correlation is achieved
for m = 8, which means a reduction factor between 5 and 8
(i.e., an actual gain between 25 and 64). Here the correlation
values are in fact better than those computed for random
chains as would be anticipated from the higher growth ratio
of the variance of the detail coefficients of random protein
sets in comparison to those of random chains (see Figure 2).
By examining all pairs (not only those whose dRM S dis-
tance is smaller than 5A ), the Pearson’s correlation is even
larger.

http://bioinfo.mshri.on.ca/trades/



1CTF 1ERP 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN
m|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS
4] 038 042 | 0.88 0.86 | 0.64 047 | 0.54 045 | 0.37 0.47 | 0.73 0.52 | 0.57 0.40 | 0.42 0.46 | 0.49 049
81 090 0.77 | 0.97 094 | 097 087 | 0.94 0.78 | 0.84 0.70 | 0.97 0.89 | 0.98 0.86 | 0.95 0.83 | 0.93 0.79
12) 0.98 093 | 0.98 096 | 099 092 | 0.98 094 | 098 0.92 | 099 095 | 0.99 092 | 0.98 0.92 | 0.98 0.94
16| 0.99 095 | 0,99 098 | 0.98 092 | 099 097 | 098 095 | 0.99 097 | 098 0.92 | 0.98 094 | 0.98 0.97
201 099 0.96 | 0.98 096 | 099 0.96 [ 099 097 | 0.99 096 | 099 0.97 | 098 0.93 | 0.99 0.95 | 0.98 0.95
(a)
1CTF 1ERP 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN
m|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS|cRMS dRMS
41 069 059 | 0.85 092 | 068 0.65 | 0.68 063 | 0.65 0.53 | 0.70 0.64 | 0.65 0.55 | 0.72 0.71 0.73 0.74
81 096 090 | 0.99 099 | 097 093 | 0.97 092 | 096 0.84 | 0.97 0.91 096 086 | 0.97 095 | 0.97 0.96
12| 0.99 097 | 099 098 | 0.99 097 | 099 097 [ 099 095 | 0.99 097 | 099 0.95 | 0.99 098 | 0.99 0.98
16| 0.99 098 | 0,99 0.99 | 0.99 099 | 099 099 [ 099 097 | 0.99 099 | 099 0.97 | 0.99 098 | 0.99 0.98
200 0.99 0.98 | 097 096 | 0.99 0.98 [ 099 098 | 0.99 097 | 099 0.98 | 099 0.97 | 0.99 0.98 | 0.99 0.97
(b)

Table 1: Pearson’s correlation coefficient for different m values evaluated for cRMS and dRMS of (a) decoy
sets and (b) randomly sampled conformations of various proteins.

3. APPLICATION 1: NEARESTNEIGHBOR
SEARCH

Simulations and other conformational sampling methods
generate large sets of conformations of a particular pro-
tein. For example, the project Folding@Home? runs par-
allel molecular dynamics simulations on several thousands
of computers across the Internet and then centrally evalu-
ates the obtained data. An important step in evaluating
such data, e.g. for clustering and related tasks, is the fol-
lowing: given a set of conformations of the same protein,
find the k nearest neighbors (NNs) for each sample in the
set. Typically, k is a small constant while the size of the set
can be very large.

The straightforward (“brute-force”) approach is to evalu-
ate the similarity measure (cRMS or dRMS) for all pairs
and then report the k& NNs for each sample. However, the
quadratic complexity makes this approach scale badly. Spa-
tial data structures such as the kd-tree [4] can avoid this
complexity under certain circumstances [1, 6, 16, 18, 24, 28].
Note that these data structures allow for exact search, i.e.,
they return the same NNs as would the brute-force search.
However, most of them require a Euclidean metric space of
rather small dimensionality. Unfortunately, cRM S is not a
Euclidean metric. Although dRM S is a Euclidean metric,
the dimensionality of the space of intra-molecular distance
matrices is far too high. (Typically, for dimensions higher
than a few tens, none of the nearest-neighbor data struc-
tures performs better than brute-force search.) Therefore,
if we hope to use a spatial data structure to speed up NNs
search, we must use the dRM S measure, but find a way to
significantly reduce the dimensionality of the structure de-
scriptors below the averaged conformations we presented in
Section 2.

3.1 Further reduction of distancematrices

We use singular value decomposition (SVD) [13] to further
compress the intra-molecular distance matrices of averaged
proteins, that is to further reduce the number of parame-

ters involved in computing d.,, RMS. SVD is a standard
tool for principal components analysis (PCA) and computes

*http://folding.stanford.edu

directions of greatest variance (and thus distance informa-
tion) in a given set of high-dimensional points. These di-
rections are called principal components (PCs). The SVD
can be used to linearly map a set of high-dimensional input
vectors (data points), stored in a matrix A, into a lower-
dimensional subspace while preserving most of the variance.
Such a transform can be found by decomposing the matrix
A of the input vectors into A = USVT, the SVD of A, where
U and V are orthogonal matrices and S is diagonal with the
singular values of A along the diagonal.

Efficient algorithms exist that compute the SVD in time
O(s%t) where s is the smaller and ¢ the larger dimension of
A (rows or columns). Note that while in principle, SVD
could be applied to intra-molecular distance matrices with-
out first averaging protein pieces, the quadratic dependency
on the smaller dimension of A shows the important advan-
tage of averaging: usually, the larger dimension t will reflect
the size of the conformational sample set while the smaller
dimension s will correspond to the size of a single intra-
molecular distance matrix. Reducing the distance matrix
size by using averaged conformations, as described in Sec-
tion 2, is therefore key to performing SVD in practice.

To perform SVD on a set of intra-molecular distance ma-
trices derived from m-averaged conformations, each of these
distance matrices is rewritten as an m(m—1)/2 dimensional
vector and then SVD is applied to the matrix that contains
all these vectors. Taking the resulting U matrix and remov-
ing all columns that correspond to small singular values (the
directions of little variance), we have the linear map that
takes the set of distance matrices into a lower-dimensional
Euclidean space while preserving a high percentage of the
variance and thus distance information. We found that in
practice, a relatively small output dimensionality between
10 and 20 is sufficient to maintain about 90% of the vari-
ance of the distance matrices.

In the following, we will denote the dRM S measure ob-
tained from an SVD compressed set of m-averaged distance

matrices by QQCRM S. (PC stands for the number of prin-
cipal components that are used after compression.)

3.2 Evaluation of approximation errors

Of course, by reducing the dimensionality of distance ma-



k=10 k=25 k =100
Eq Es Eq B, Ey B,
1CTF 1.1 1.04 | 1.116 1.036 | 1.104 1.023
1ERP 1.3 1.158 | 1.292 1.124 | 1.246 1.083
1R69 | 1.201 1.093 | 1.192 1.074 | 1.165 1.048
1SN3 | 1.161 1.086 | 1.155 1.063 | 1.136 1.04
1UBQ | 1.199 1.105 | 1.184 1.08 | 1.162 1.045
2CRO | 1.118 1.061 | 1.155 1.056 | 1.141 1.041
3ICB | 1.152 1.054 | 1.154 1.048 | 1.129 1.033
4PTT | 1.186 1.099 | 1.188 1.079 | 1.17 1.055
4RXN | 1.179 1.079 | 1.186 1.072 | 1.163 1.046

Table 2: Mean errors E; = E(err;) for 100 queries of
k nearest neighbors. Park-Levitt decoys, 20 PCs.

k=10 k=25 k=100
E, B, By E, E,y B,
decoys | 1.337 1.248 | 1.34 1.196 | 1.347 1.141
decoys2 | 1.136 1.052 | 1.171 1.049 | 1.158 1.036
uniform | 1.101 1.035 | 1.107 1.029 | 1.113 1.02

Table 3: 1CTF: Mean errors E; = E(err;) for 100
queries of k nearest neighbors. Decoys, decoys2:
100,000 decoys from Park-Levitt set (m = 16 and
20 PCs). Decoys2: excluding 8 outliers. Uniform:
100,000 uniformly sampled conformations (m = 16
and 16 PCs).

trix space from dRMS over d,m, RMS to finally EQCRM S,
we lose some information. However, we observed that in
general, the introduced errors are small enough to allow for
good results in finding most of the true k nearest neigh-
bors. In what follows, we illustrate this with different error
measures.

For a set of conformations S and a given query conforma-
tion @ from that set, we define two subsets S1 and Sz of size
k each. S is the set of k nearest neighbors of @ in S using
exact dRMS. S> is the set of k nearest neighbors of Q in §

using EZCRM S. Thus, S> is the approximation of S; using
our reduced similarity measure.

In a first experiment, we evaluated how many of the exact
k nearest-neighbor conformations in S; are be contained in
S2 as well. To this end, we looked at the £k = 100 nearest
neighbors for each of 100 query conformations and computed
the average number of such matches over the 100 queries.

Using diaRMS on sets S of 10,000 decoys of 1R69, 4PTI,
2CRO, 1SN3 and 3ICB, these averages ranged from 74.8 to

83.3 (roughly 80 on average). Using EigRMS on sets S of
5,000 uniform samples of the same proteins, corresponding
averages were between 86.1 and 94.2 (about 90 on average).
These results show that, using our approximations, not too
many extra samples would have to be drawn in order to
obtain sufficiently many exact nearest neighbors.

However, in cases in which significantly more than & con-
formations are clustered around the query conformation, the
number of identical matches may not be a good quality mea-
sure. In such cases, it may even be possible to obtain a
very different candidate set with almost the same distribu-
tion of distances from the query conformation. We therefore
used the two following error measures to further evaluate the
quality of our approximations.

err; The ratio of the exact dRM S of the furthest confor-
mation in Ss to the exact dRM S of the furthest con-
formation in S;.

errs The ratio of the average exact dRM S of all conforma-
tions in Sy to the average exact dRM S of all confor-
mations in S7.

We first looked at the decoy sets of size 10,000 for each
of the nine Park-Levitt proteins. We used m = 16 and
20 PCs. For each set, we randomly chose 100 query con-
formations and evaluated err; and errs for each of them.
Table 2 shows the means F; = E(err;) of both errors over
the 100 queries (standard deviations were generally small).
The mean error E; is usually noticeably smaller than 1.2
which means that the worst-case error by our reduction is
smaller than 20%. The mean error E> is almost always no-
ticeably smaller than 1.1 indicating an average error of less
than 10%. Note that these percentages correspond to small
absolute values of about 1.5A and 0.7A, respectively.

We also evaluated the error measures for two large sets of
100,000 conformations of 1CTF, a decoy set and a uniformly
sampled set. Here, we used m = 16 and 20 PCs for the
decoys and m = 16 and 16 PCs for the uniform samples.
The results are presented in Table 3. For the decoys we
noticed both errors to be slightly higher than for the smaller
data set above. However, when we ignore 8 out of the 100
query conformations, which were obvious outliers, we got
comparable results (row labelled decoys2). For the uniform
samples, both relative errors were significantly smaller than
for the decoy set.

3.3 Running time

We now consider the running times in a concrete nearest-
neighbor task: given a set of 100,000 random conformations
of protein 1CTF, find k¥ = 100 nearest neighbors for each
sample in the set. The reported times in this section refer
to a sequential implementation in C running on a single
1GHz Pentium processor on a standard desktop PC.

We first compare the running times for a brute-force (all-
pairs) implementation using both ¢cRM S and dRM S, and
their corresponding averaged similarity measures ¢,, RM S
and d, RMS. Table 4 shows that the latter measures al-
ready result in a notable speed-up. For digRMS, a signifi-
cant speed-up over dRM S is obtained due to the quadratic
down-scaling of intra-molecular distance matrices by aver-
aging proteins. For ¢ RM S, the improvement over cRM S
is smaller. This is because the reduction by averaging affects
the number of involved points only linearly, and the main
effort in computing cRM.S comes from finding an optimal
rigid-body alignment of two point sets.

Note that the increase in running times agrees quite well
with the expected quadratic scaling of the brute-force near-
est neighbor approach. The times for N = 100, 000 samples
were therefore extrapolated from the actual running times
measured for the smaller values of N. In fact, for dRM S
using all C, atom coordinates, we had problems storing all
intra-molecular distance matrices (however, these problems
do not occur with averaged proteins and d,, RM S).

We next address the quadratic scaling problem of the
brute-force approach. To be able to apply a kd-tree, we
first further reduced the 120-dimensional space of digRM S
using SVD and retained 16 principal components. This fur-
ther compression took about one minute for the complete



N ¢cRMS ©sRMS | dRMS digRMS
1,000 18.6s 12.4s 31.0s 2.2s
2,000 74.4s 50.0s 137.5s 8.0s
5,000 | 464.8s 312.0s | 759.8s 43.4s

100,000 | ~52h ~35h ~8&4h ~4.8h

Table 4: Brutg-force search using cRM S vs ¢igRMS
and dRM S vs digRM S for finding the k& = 100 nearest
neighbors for each of N samples.

k Brute-force kd-tree
1 30min 4min10sec
100 41min 19min

Table 5: Brute-force vs kd-tree search for k& nearest
neighbors for each of 100,000 samples. Used simi-

larity measure: E}gRM S.

set of 100,000 samples. Building the kd-tree for the result-
ing 16-dimensional data took only about 4 seconds. The

correlation coefficient of the resulting E}gRM S and dRM S

was found to be still about 0.94. As reported in the previous

section, the approximation errors are also low (Table 3).
We then ran both the brute-force and the kd-tree ap-

proach using aigRM S as similarity measure. Table 5 shows
the running times for finding ¥ = 1 and & = 100 nearest
neighbors for each sample in the full set of 100,000 sam-
ples. The obtained total speed-up of our nearest-neighbor
search (approximate similarity measures and a kd-tree) over
the current best approach (brute-force search using all Co
coordinates) is several orders of magnitude.

In general, the speed-up obtained by using a kd-tree can
be expected to increase with increasing sample set size .
Due to its quadratic scaling, brute-force search will become
very slow for larger sample sets. On the other hand, the
sub-quadratically scaling kd-tree approach should allow to
process even much larger sample sets within a few hours
without parallelization on a standard desktop PC.

4. APPLICATION 2: STRUCTURAL
CLASSIFICATION

Given a set of native protein structures each having a dif-
ferent amino-acid sequence, such as the Protein Data Bank
(PDB)3, we would like to automatically classify the struc-
tures into groups according to their structural similarity.
This task has been performed manually in the SCOP (struc-
tural classification of proteins) database® [25], where protein
structures are hierarchically classified into classes, folds, su-
perfamilies and families. The major difficulty in performing
this classification automatically lies in the need to decide,
given two protein structures, which parts of both structures
should be compared, before it can be determined how similar
these parts are. This correspondence problem does not arise
when different conformations of the same protein are com-
pared because in that case the correspondence is trivially
determined. For this reason, computing the similarity be-
tween structures of different proteins requires considerably
more computation than the methods described in Section 2.

Several algorithms have been proposed for structural clas-

*http://wuw.rcsb.org/pdb/
“http://scop.mrc-1lmb.cam.ac.uk/scop/

sification. The DALI® method [14] starts with the distance
matrices of both proteins. It finds all pairs of similar sub-
matrices of small fixed size (one from each protein distance
matrix) and then uses a Monte Carlo algorithm to assemble
the pairs into larger consistent alignments. The PROSUP®
method [22] initially identifies similar fragments in both pro-
teins and iteratively expands them to create alignments. A
dynamic algorithm is then used to iteratively refine each
alignment and finally insignificant alignments are removed.
The CE” algorithm [29] cuts each structure into small frag-
ments and creates a matrix of all possible aligned fragment
pairs (AFPs). Combinations of AFPs are selectively ex-
tended and discarded leading to a single optimal alignment.
The STRUCTAL® method [10] directly matches the back-
bones of the two protein structures by iteratively cycling be-
tween a dynamic programming algorithm and least-square
fitting to come up with an alignment that minimizes coor-
dinate difference. For other methods see [19].

4.1 The modified STRUCTAL algorithm

All the above methods stand to gain in performance by
using our averaging scheme. In order to verify this claim,
we tested the speedup and accuracy obtained by using the
STRUCTAL method on averaged protein structures. We
could not test our approach on PROSUP, DALI and CE be-
cause both servers did not accept our averaged structures
because they are not valid protein structures, and the al-
gorithms were too involved for us to implement ourselves
reliably.

The STRUCTAL algorithm starts with an initial align-
ment of the backbone C, atoms of the two structures accord-
ing to one of a number of possible heuristics (aligning the
beginnings, the ends, random segments, by sequence simi-
larity, etc). Then a two step process is repeated until conver-
gence. First a dynamic programming algorithm based on the
Needleman and Wunsch sequence alignment algorithm [26]
finds the correspondence between the two structures that
yields the highest score. Scoring is based on assigning a cost
to each possible corresponding pair, which is inversely pro-
portional to the distance between C, positions, and a gap
penalty for every gap in the alignment. Computing the best
correspondence thus requires O(nlng + ngn%) time (n1 and
ng2 are the number of residues in each structure). Second, an
optimal alignment is computed based on the best correspon-
dence using the method in [15]. The cRM.S distance of the
final alignment and the number of corresponding residues
is returned as a measure of the similarity of the two struc-
tures. Since the result is sensitive to the initial alignment,
the algorithm is usually run a number of times for each pair
of structures, each time using a different initial alignment.
The best (smallest) result of all the runs is kept.

By combining averaging with this algorithm, we add an-
other degree of freedom to the computation. If we average
each r successive C, atom positions, we have a choice of
a = mod(ni,r) positions to start the averaging process for
one structure and b = mod(nz,r) for the other. As a result,
there are a x b possible pairs of averaged structures that
could possibly result in different alignment scores. There-
fore, more runs per pair of structures would be necessary

*http://www2.ebi.ac.uk/dali

6ht'l:p ://lore.came.sbg.ac.at/CAME/CAME_EXTERN/PROSUP
"http://cl.sdsc.edu/ce.html
8http://bioinfo.mbb.yale.edu/align



when using our averaging scheme. However, the gain from
averaging stands to be very large. Since both n; and ns
are reduced by a factor of r, the complexity of the dynamic
programming, which is the main part of the algorithm, is
reduced by a factor of 2.

4.2 Experimental results

We implemented the STRUCTAL algorithm as described
in [10]. Our implementation initially aligns the two struc-
tures by choosing a random correspondence. Therefore, we
ran the algorithm 12 times for every pair of structures and
kept the smallest result as the similarity score. In [10] they
run the algorithm a few times as well, using a number of
different initial alignment heuristics.

We used two data sets to test the modified STRUCTAL.
We queried the ASTRAL database® [5] for all protein do-
mains which have less than 40% sequence similarity. This
yielded 4772 structures. We then took (from this large set)
all superfamilies (as defined by SCOP), which had more than
40 structures, and with sequence length between 100 and 400
residues. We got 5 superfamilies having between 40 and 104
structures each. We will refer to this set as set A and use it
to test the performance of modified STRUCTAL within su-
perfamilies. We also randomly chose 25 superfamilies from
the large set and from each took 12 structures at random to
create set B, which has 300 structures altogether. All mem-
bers of this set have sequence length between 100 and 300
residues. This second set will be used to test the modified
STRUCTAL on a random set of structures.

We computed the similarity between all pairs of struc-
tures inside each of the five superfamilies in set A. We com-
puted the similarity using the STRUCTAL algorithm and
then computed approximate similarity using the modified
STRUCTAL with r = 3,5 and 8. Modified STRUCTAL
was run 18 times for r = 3, 24 times for r = 5 and 40 times
for r = 8. We then counted how many out of the 7 real
nearest-neighbors of a structure (as computed by STRUC-
TAL) are present in the set of ¢ nearest neighbors computed
by the modified STRUCTAL. This would tell us how good
the modified STRUCTAL is as a pre-filter for finding real
nearest-neighbors. The results for ¢ = 7,14 and 21 are found
in Table 6. The results for the first two superfamilies C.1.8
and C.3.1 are good. When ¢ = 14 more than 3/4 of the real
nearest-neighbors are found for » = 3, and more than 2/3
are found for » = 5. For the other three superfamilies the
results are not as good. For B.1.1 and C.2.1, when q = 14,
about 2/3 of the real nearest-neighbors are found for r = 3,
and less than 3/5 are found for r = 5. For C.37.1 the results
are even worse. The speedup of the modified STRUCTAL
over STRUCTAL is a factor of 7 for » = 3, a factor of 19 for
r =5 and 46 for R = 8.

For set B we computed the similarity between all pairs of
structures in the set using STRUCTAL and using the mod-
ified STRUCTAL with r = 3,5 and 8 (in the same manner
as for set A). The results for ¢ = 7,14 and 21 are found
in Table 7. Using the modified STRUCTAL with (¢ = 14),
less than half of the 7 true nearest-neighbors were found
when 7 = 3 and about a third were found when r = 5.
The results improve when we restrict the analysis to pairs
of structures where the correspondence of the similarity (the
number of corresponding atoms for the two compared struc-
tures) is above some threshold. In Table 7 this threshold

http://astral.stanford.edu

was set to 100, 150 and 200 residues. Clearly as the size of
the correspondence increases so does the ability of modified
STRUCTAL to pick out the true nearest-neighbors.

The Pearson correlation between the similarity score com-
puted by STRUCTAL and the score computed by the mod-
ified STRUCTAL, for both data sets is reported in Table 8.
The correlation for the 5 superfamilies of set A is in part
(a). These correlation values are low compared to the cor-
relations reported in Section 2.3, which explains why the
performance of the modified STRUCTAL in picking out
nearest-neighbors is not as good as that of the averaging
scheme reported in Section 3.2. Part (b) of Table 8 reports
the correlation for set B using a number of thresholds on
the size of the correspondence. Although the correlation
is pretty high, these results are misleading. They contain
many pairs of structures which are very dissimilar and thus
their similarity score is meaningless (see [10]). These large
scores bias the correlation upward, and hide the fact that
the correlation is poorer when the score is low.

superfamily | r=3 | r=5 | r=28

C.1.8 0.60 | 0.44 | 0.35
C.3.1 0.62 | 0.56 | 0.56
B.1.1 0.55 | 0.52 | 0.54
C.2.1 0.66 | 0.58 | 0.56

C.37.1 0.61 | 0.57 | 0.57

(a)

CRSP | r=3 | r= r=
>0 0.85 0.75 0.66
> 100 | 0.86 0.76 0.66
> 150 | 0.84 0.71 0.60
>200 | 0.54 0.30 0.17

(b)

Table 8: The correlation of the similarity measure
computed by STRUCTAL and these computed by
the modified STRUCTAL. In (a) are the results for
the 5 superfamilies of set A, and in (b) the results for
set B using different correspondence size thresholds.

In summary, although the modified STRUCTAL is signif-
icantly faster than STRUCTAL, the results it generates are
disappointing and not reliable enough to warrant using it
as a pre-filter for classifying a heterogenous set of protein
structures, unless only a small number of nearest-neighbors
are required. It is more reliable for structures that belong to
the same superfamily, or that are expected to have a large
correspondence size.

5. CONCLUSION

Two general properties of proteins, their chain topology
and limited compactness, are exploited to uniformly reduce
the number of features for structural similarity computa-
tions. Substantial savings in terms of storage and running
time are attained with small errors.

In applications in which no approximation error is tolera-
ble, our approach can be used as a first step to filter a small
subset of pairs that are within some tolerance band around
the desired similarity. More expensive exact similarity mea-
sures can then be used on the reduced set of pairs.



#ANN

C.1.8 (40)
r=>5

C.31 (41)

r=3 r=8 | r=3 r=5 r=8|r=3

B.1.1(79)
r=>5

C.2.1 (89)
r=2>5

C.37.1 (104)

r=8 | r=3 r=8 | r=3 r=5 r=28

q=7 4.05 3.33 2.88 3.66 3.32 3.00 2.68

2.43 2.42 3.33 2.98 2.78 2.93 2.34 2.37

q=14 5.43 4.55 4.10 5.24 4.76 4.90 3.86

3.88 3.52 4.56 4.08 4.07 3.92 3.56 3.38

q=21 5.87 5.20 5.10 6.15 5.73 5.88 4.66

4.71 4.47 5.29 4.80 4.74 4.61 4.15 4.09

Table 6: The results for the 5 superfamilies in set A. The size of each superfamily is in parenthesis next to
its name. This table presents the average number of real nearest-neighbors (the 7 most similar structures) of
each of the structures in each superfamily that appear in the list of approximate nearest-neighbors of length
q found by the modified STRUCTAL. #ANN stands for number of approximate nearest-neighbors

CRSP > 0 (300)

#ANN | r=3 r=5 r=8|r=3 r=5

CRSP > 100 (252)
r=28

CRSP > 150 (59) CRSP > 200 (7)
r=3 r=5 r=8|r=3 r=5 r=38

q=7 2.47 1.99 1.84 3.12 2.66 2.35

3.40 3.05 2.93 2.86 3.14 3.14

q=14 3.19 2.60 2.51 4.01 3.58 3.23

4.73 4.41 4.36 5.57 5.42 5.42

q=21 3.53 3.04 2.93 4.56 4.08 3.87

5.54 5.32 5.19 6.43 5.86 5.71

Table 7: The results for the structures in set B, where the size of the correspondence was taken into account.
Only structures that have at least 35 nearest-neighbors of the required correspondence size or larger are
considered. Their number appears in parenthesis at the head of the column. For each correspondence size,
we report the average number of real nearest-neighbors (the 7 most similar structures) that appear in the list
of approximate nearest-neighbors of length ¢ found by the modified STRUCTAL. #ANN stands for number
of approximate nearest-neighbors and CRSP is the size of the correspondence in each alignment of a pair of
structures.

Two possible applications were presented: finding k near-
est neighbors in large sets of conformations of the same pro-
tein and classification of different proteins using the STRUC-
TAL algorithm. For the first application the introduced er-
ror was low and the correlation to the true similarity mea-
sure was very high. For the second application the correla-
tion to the true similarity measure was considerably lower
and the error introduced by the reduction was quite high.
Thus the usefulness of the reduction is limited in this case.
In both applications, the running times were reduced from
days to hours or even minutes.

In general, applications that input very large sets of pro-
teins or that employ computationally intensive algorithms
on large proteins stand to benefit from approximation of
structures as suggested in this paper.
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