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Preface

Proteins are large molecules (from a few hundred to several thousand atoms) that affect

almost all properties of living organisms. Gene expression, catalysis, storage and transport,

transmission of signals, defense against intruders and many other vital functions are all

performed by proteins. Since their functions are largely dependent on their spatial structure,

the study of the 3-D shapes of proteins is central to the field of structural biology. Various

computational methods have been developed to enhance our understanding of proteins,

from molecular simulation techniques, to structure determination tools, to comparison and

classification methods. Their ubiquitous use in research today, along with the rapidly

growing number of proteins of known sequence and structure, create a need for efficient

algorithms that can handle the complexity of proteins. This thesis presents three new

algorithms that address fundamental problems in computational structural biology. The

common thread of these algorithms is their use of concepts and techniques from robotics

and computational geometry to exploit the long chain kinematics of proteins (a protein is

a sequence of amino-acids that form a long flexible backbone with short protruding side-

chains).

The first algorithm is an automatic method for completing partial models of protein

structures resolved using X-ray crystallography. It was developed in collaboration with

the Joint Center for Structural Genomics at SSRL. A protein fragment of known sequence

needs to be optimally fitted into an electron density map between two anchor points. The

generation of the missing fragment is approached as an inverse kinematics problem by

treating the protein backbone as a redundant serial linkage. First, a large set of candidates

is sampled that meet the closure constraint and then the most promising candidates are

refined to improve the fit. The method successfully generates fragments for gaps at high

as well as medium-low resolutions. Preliminary results indicate its usefulness in generating

alternative backbone conformations in ambiguous regions in the density map.
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The second algorithm deals with the computation of structural similarity. It speeds up

this computation at the expense of introducing a small error in the similarity measure. It

exploits the fact that the Cα representation of a protein conformation contains redundant

information, due to the chain topology and limited compactness (caused by van der Waals

forces) of proteins. This redundancy is reduced by approximating sub-chains by their centers

of mass. This method can be used in applications where small errors can be tolerated, or as

a fast filter when exact measures are required. It has been successfully tested for comparing

large collections of conformations of the same protein, as well as for comparing native

structures of different proteins using the program STRUCTAL.

The third algorithm is a method for speeding up Monte Carlo simulation of proteins

without changing its outcome. It exploits the chain kinematics of the protein backbone and

the fact that only a few degrees of freedom are changed at each simulation step to quickly

detect pairs of interacting atoms (i.e., atoms that are within a given cutoff distance of each

other). It is based on a novel data structure, called the ChainTree, that captures both the

kinematics and the shape of a protein at successive levels of detail. The ChainTree also

makes it possible to identify partial energy sums left unchanged at each simulation step.
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Chapter 1

Introduction

A protein is a linear copolymer made up of a concatenation of amino acids. There are

20 naturally occurring amino acids that make up all known proteins. The central dogma

of molecular biology states that the genes found in the DNA are transcribed to mRNA

and then translated by the ribosome into a sequence of amino acids. Each sequence of

three bases codes for one amino acid, thus the translation from mRNA to protein is unique.

Proteins vary by length and sequence. Once synthesized, a protein molecule in physiological

conditions (aqueous solution, 37◦C, pH 7, atmospheric pressure) folds to a unique, compact

and relatively stable 3-D structure, which determines the specific biological function of the

protein. The sequence of the protein is believed to completely determine its folded 3-D

structure, which arguably corresponds to the free energy minimum of the molecule.

All 20 amino acids have similar chemical structure. Each has a bonded sequence of three

atoms, a nitrogen and two carbons, that concatenates with the same atom-triplets in other

amino acids to form the backbone of the protein. Each also has a side-chain stemming out

of the middle carbon (the Cα) that has between 0 and 10 heavy atoms. The amino acids

are linked together by peptide bonds that form between the C′ atom of one amino acid and

the N atom of the following amino acid in the sequence. Due to resonance, this bond has a

partial double-bonded character and the six atoms surrounding it have a strong tendency

to be coplanar (see Figure 1.2(a)). When part of a protein, the amino acids are referred to

as residues. Some examples of amino acid residues can be seen in Figure 1.1.

The rest of this chapter is structured as follows. First, in Section 1.1, the representa-

tions of protein structure used by the algorithms in this thesis are introduced. Then, in

Section 1.2, a number of key computational problems in structural biology are surveyed.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Some examples of amino acid residues (hydrogen atoms not shown).

Finally, in Section 1.3, I explain how the chain structure, implicit in the protein represen-

tations we use, is exploited in the algorithms presented in this thesis. The main terms and

abbreviations used in this thesis can be found in the Glossary.

1.1 Representations of protein structure

When scientists study the properties of proteins in silico they use a wide range of repre-

sentations at various levels of detail. The most detailed is the all-atom model, where all

atoms of the protein are explicitly represented. A small simplification is the united atom

model, where non-polar hydrogen atoms are incorporated into the heavy atoms, to which

they are bonded [207]. The side-chains are sometimes approximated as single spheres with

varying radii and chemical properties in what is called the lollipop model [12, 123]. An even

coarser representation models each residue as a single sphere in what is sometimes called

a bead model [23]. Finally vectors have been used to represent entire secondary structure

elements [180]. Below we discuss in more detail the protein models relevant to this thesis.

1.1.1 Cartesian coordinates representation

The structure of a protein is completely described by the 3-D positions of all of its atoms.

In this representation a protein molecule has three times the number of its atoms’ degrees

of freedom (DOFs), three cartesian coordinates for each atom specifying its position in
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(a) (b)

Figure 1.2: (a) The coplanarity of the atoms around the peptide bond and (b) the internal
coordinates parameters.

space. The protein is regarded as a collection of particles (atoms) without explicit topol-

ogy. Namely, the underlying covalent structure is not specified. Thus when this representa-

tion is used, e.g. in molecular dynamics simulation, the covalent bonds need to be explicitly

maintained by stiff springs that keep bond lengths close to their ideal values. This represen-

tation makes physical sense, since bonds can stretch and even break at high temperatures.

Moreover, interactions between non-bonded atoms such as van der Waals and electrostatic

interactions, depend on the distances between pairs of atoms, which are easily computed

using this representation. However, since proteins are predominantly studied in physiolog-

ical conditions, where bonds are extremely unlikely to break, incorporating the covalent

structure of the protein into the model can be beneficial.

1.1.2 Internal coordinates representation

This representation describes the position of each atom in terms of three other atoms that

are one, two and three covalent bonds away, and three parameters: a bond length, a bond

angle and a dihedral angle. See Figure 1.2(b) for an illustration. The position of atom D

is uniquely specified by its distance from atom C (the length of the B-C bond), the angle

that is formed between bonds BC and CD (the B-C-D bond angle) and by the dihedral

angle between the plane defined by atoms A, B and C and the plane defined by atoms B,

C and D. This representation uses only 3n − 6 parameters, since the position of the first
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Figure 1.3: The DOFs of the protein backbone when bond lengths and angles are kept fixed.
A poly-alanine chain with all hydrogens hidden

atom is arbitrary, only a bond length is specified for the second atom, and no dihedral angle

is specified for the third atom. The 6 DOFs that are saved describe the global position and

orientation of the protein. Imposing constraints on bond lengths is straightforward using

this model, and all the topological information is included in the representation (bonds that

close loops need to be added). However, computing the relative positions of non-bonded

atom pairs requires additional non-trivial calculations.

1.1.3 Torsion angles representation

Analysis of experimentally determined protein structures deposited in the Protein Data

Bank (PDB) [15, 16] has shown that bond lengths and bond angles exhibit small vari-

ance [73]. The flexibility of the protein molecule is thus due almost completely to rotation

around covalent bonds. The backbone of the protein has two bonds and thus two DOFs

per residue (also denoted torsion angles) with an additional DOF for every peptide bond

between two neighboring residues. These are the φ angle which denotes rotations around

the N-Cα bond, the ψ angle rotation around the Cα-C′ bond and the ω angle rotation

around the peptide bond (See Figure 1.3 for illustration). Since the peptide bond has a

partial double-bond character, rotation around it is restricted and to a good approximation

its value can be fixed at 180◦ (the trans conformation is overwhelmingly favored due to the

energetics of the non-bonded interactions). Thus only two DOFs per residue are needed to

closely approximate backbone conformations. In this representation the side-chains have be-

tween 0 (e.g., Glycine and Alanine) and 4 (e.g., Arginine) torsion DOFs, which are denoted

χ1, . . . , χ4 (See some examples in Figure 1.1).
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Using this representation, the conformation of a protein is described by at most seven

parameters per residue: the triplet (φ, ψ, ω) for the backbone segment of the residue and a

subset of the 4-tuple (χ1, . . . , χ4) for the residue’s side-chain.

1.1.4 Cα representation and common metrics in structure space

When comparing two protein structures, one is most interested in determining the similarity

between the backbone geometries. As mentioned above, the backbone is a concatenation of

atom triplets (N, Cα, C′), one for each residue in the protein. Due to the planarity of the

peptide bond and the small variance of bond lengths and angles, the backbone geometry is

completely determined by the positions of the Cα atoms. Therefore the protein structure

can be represented as a sequence of 3-D points, specifying the centers of all Cα atoms.

Connecting these points in order yields a chain, which closely follows the protein backbone.

Given this representation, the similarity between two structures is computed by sum-

ming the deviations between corresponding Cα positions. In order to make the similarity

independent of the position and orientation of each structure, the two compared structures

can be optimally aligned using a rigid-body transform [107]. Two metrics are commonly

used for the comparison. They are described below.

1.1.4.1 Coordinate root mean square deviation

Given two sequences of points in 3-space describing the Cα positions of two protein struc-

tures P = (p1, . . . ,pn) and Q = (q1, . . . ,qn), the root mean square deviation (RMS)

between the coordinates of the corresponding Cα (cRMS) is defined as

cRMS(P,Q) = minT

√√√√ 1
n

n∑
i=1

‖ pi − Tqi ‖2 (1.1)

where ‖ · ‖ is the Euclidean L2-norm and T is a rigid body transform (rotation and trans-

lation). A closed form solution for T yields the optimal transform [87, 97].

1.1.4.2 Distance root mean square deviation

Another common RMS shape similarity measure is based on comparing intra-molecular

distance matrices, i.e., the matrix of distances between all Cα atoms in each structure. For
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a point set P , this matrix is defined as

(
dPij
)

= ‖pi − pj‖ . (1.2)

The distance matrix RMS deviation (dRMS) of P and Q is then defined as

dRMS(P,Q) =

√√√√ 2
n(n− 1)

n∑
i=2

i−1∑
j=1

(dPij − dQij)2. (1.3)

By using internal distance matrices the need to optimally align the two conformations is

removed, however the computation time becomes quadratic in the length of the correspon-

dence between the two proteins.

1.2 Key computational problems in structural biology

1.2.1 Structure determination and prediction

There are a number of experimental methods to determine protein structures, such as X-ray

crystallography and NMR spectroscopy. Considerable attention has also been given to the

development of computational methods to predict the structure of a protein from its amino

acid sequence.

1.2.1.1 Structure determination

X-ray crystallography This is currently the main method of protein structure deter-

mination [48]. An X-ray beam is diffracted by a crystallized protein onto a detector. The

diffraction pattern is then Fourier-transformed into an electron density map. The interpre-

tation of the density map yields the 3-D structure of the protein. The main problem in this

process, besides difficulties in the experimental setup, is the recovery of phase information.

The diffraction pattern that is obtained contains only the intensities of the rays that hit

the detector. The phase of these rays is lost and can be recovered only through an iterative

refinement procedure, coupling the transformation and interpretation stages of the deter-

mination process. The automation of the entire process, going from diffraction pattern to

a final, refined 3-D structure is still a work in progress.
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NMR spectroscopy Nuclear magnetic resonance (NMR) spectroscopy is another exper-

imental method for structure determination [210]. It can be used to obtain both structural

and dynamic information about proteins in solution. The protein is placed inside a strong

magnetic field and irradiated with radio-frequency pulses. The atom nuclei emit radia-

tion whose spectrum depends on their chemical neighborhood. Nuclear Overhauser effects

(NOEs) are used to measure distances between neighboring hydrogen atoms. These dis-

tances are used as restraints, together with constraints such as the primary structure and

reference protein geometry, to calculate the 3-D structure of the protein. The result is an

ensemble of solution structures that are compatible with the NOE data.

1.2.1.2 Structure prediction

Since the native structure of proteins is completely determined by their amino acid sequence,

it should be possible to compute the 3-D structure from the sequence alone (taking into

account the laws of physics and chemistry as well as known protein structures). This

problem has 3 levels of difficulty corresponding to CASP1 categories [143].

New fold prediction This is the most difficult case. The target sequence has no similar-

ity to any protein of known structure and the fold is expected to be novel. Knowledge-based

methods are extensively used in this case to identify structural fragments from the PDB

that can be used to build the new structure. Secondary structure and native contacts pre-

diction tools are often used. Sophisticated search tools such as Monte Carlo, molecular

dynamics and genetic algorithms are used as well. Some of the more successful methods

are ROSETTA [18] and TOUCHSTONE [181].

Fold recognition The fold of the target sequence is expected to be similar to a known

protein structure even though no obvious sequence similarity exists. Here, sophisticated

sequence comparison techniques are used and known structural elements are searched for

compatibility with parts of the target sequence (an approach called threading). Some of the

more successful methods are described in [36, 67, 160].

Homology modeling When the target sequence is similar to proteins whose structure

is already known an approach called homology (comparative) modeling can be used [138].
1Critical Assessment of Techniques for Protein Structure Prediction:

http://predictioncenter.llnl.gov/
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It exploits the fact that, in general, sequence similarity entails structural similarity. The

prediction process then consists of finding the expected fold of the target sequence based

on sequence similarity, aligning the target sequence to a template sequence and using the

alignment to build a model using large pieces of the known related structures. These

models can be as good as medium resolution crystallographic structures. As the number of

structures in the PDB increases so will the usefulness of this approach. Some of the more

successful methods are [166, 197].

1.2.2 Structural similarity and classification

Once the structures of a large number of proteins is known, the next step is to compare

and classify them. Structurally similar proteins are expected to have similar functions, and

structural differences may hint at differential functionality.

1.2.2.1 Computing structural similarity

In order to compute the structural similarity between two protein structures, it is necessary

to decide which parts of both structures correspond and should be compared. However,

in order to decide correspondence, we need to know which parts are similar. Thus it is

necessary to solve both aspects of the problem simultaneously. For a given superposition

of the two structures the best correspondence can be computed efficiently and for a given

correspondence the optimal superposition can be computed in closed form. Existing algo-

rithms either use heuristic search methods to find a good correspondence and then deduce

the superposition (e.g., DALI [85] and CE [173]), or iterate between computing correspon-

dences and superpositions until convergence (e.g., STRUCTAL [65, 188]). A survey of

existing methods is given in [107] and some of the more popular methods are evaluated

in [150, 177].

1.2.2.2 Classifying protein structures

Based on structural similarity and perhaps other factors such as sequence similarity, evolu-

tionary relation or common function the proteins can be hierarchically classified. Current

classifications span the range from completely manual (e.g. SCOP [146]), through semi-

automatic (e.g. CATH [152]) to completely automatic (e.g. FSSP [86]). A comparison of

some of the more popular classifications can be found here [77].
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1.2.3 Conformational sampling and dynamic simulation

A powerful tool in the study of proteins in silico is computer simulation. The two most

popular methods are Monte Carlo simulation and molecular dynamics simulation. While

the latter generates physically meaningful trajectories, that admit kinetic interpretation,

the former is more efficient at sampling the conformation space.

1.2.3.1 Monte Carlo simulation

This family of simulations is most often used to compute ensemble properties for a given

protein or to find low energy conformations, and in particular its native structure. The

general Monte Carlo framework consists of a random walk in conformation space. At each

step, a new conformation is proposed through some changes to the current conformation,

and it is accepted based on probability that depends on the change in energy. In order for

the sampling to converge to the Boltzmann distribution, the acceptance probability must

obey detailed balance (also called microscopic reversibility):

piΠij = pjΠji, (1.4)

where pi is the probability of being in state i and Πij is the probability of transition from

state i to state j.

Many variants and extensions of the classical Metropolis Monte Carlo [140] have been

developed. Some are mentioned in Section 5.6. See [142, 167] for more examples. These

methods attempt to improve the sampling efficiency of the method by dealing better with

the local minima problem and by using more sophisticated moves. Once the sampling

method is fixed, it is also crucial to compute the simulation steps efficiently, since even

the smallest proteins require very long simulations to adequately sample the conformation

space.

1.2.3.2 Molecular dynamics simulation

This method allows for the detailed and physically accurate simulation of the dynamics

of a single protein molecule in space and time. It affords access to deformations of the

molecule from small time-scale events such as hydrogen bond formation to larger time-scale

phenomena such as folding. It can be used to explore ensemble properties of the studied

protein as well as its folding kinetics. It consists of simulating the motion of the atoms of the
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protein under the influence of a specified force-field, by following the atoms in time according

to the laws of Newtonian mechanics. The equations of motion are integrated using very

small time steps (on the order of a femtosecond) to accurately simulate bond vibrations. As

a result, the folding of most proteins, which occur on the 1 microsecond to 10 second time-

scale, is still out of the reach of even the fastest computers. It is, therefore, crucial to speed

up the simulation. One approach is to use clever integrators that can employ longer time-

steps [167]. Another approach simulates the dynamics in torsion angle space, instead of the

cartesian space, which enables the use of larger time-steps [76, 186]. The efficient calculation

of the energy and forces at each time-step is also instrumental. Detailed description of

different molecular dynamics simulation methods can be found in [63, 119, 167].

1.2.4 Molecular docking

Given the 3-D structures of two molecules, we would like to predict their bound association.

In its most general form, the binding site and the bound conformation of the two molecules

are not known in advance. The simpler problems — assuming known binding sites and

known bound structures — are still challenging. A comprehensive survey can be found

in [80, 208].

1.2.4.1 Protein – protein interactions

Interactions between proteins are computed by docking one molecule onto the other [182].

Most docking methods have two stages. First, the space of orientations is searched for

plausible docked configurations. This is done, for example, using fast Fourier transforms,

geometric hashing or genetic algorithms. Second, a scoring function picks out the correct

orientations. Here one uses measures of shape complementarity, which requires a geometric

description of the molecular surface of both proteins, as well as measures of electrostatic

and desolvation effects. While the conformations of some pairs of proteins change very

little upon docking, the conformations of other pairs may change considerably. Therefore

it may be important to introduce flexibility when searching for the bound complex, in the

side-chains as well as the backbone. Some of the more popular methods are BiGGER [153],

and DOT [133].
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1.2.4.2 Small ligand docking

In this context the second molecule, called the ligand, is much smaller then the first, which

is called the receptor. We want to compute the binding conformation and affinity of the

ligand to the receptor. Docking algorithms need to take the ligand flexibility into account

to find its tightest-binding conformation. Including a limited measure of receptor flexibility

is desirable as well but is often very computationally expensive. Most often we would like

to scan a large database of ligands (potential drugs) and pick those that are most likely to

bind tightly to the target enzyme. The ligands are scored by their geometric and chemical

fit to the binding site. This is known as virtual screening [175]. Some of the more popular

docking algorithms are DOCK [53], FlexX/FlexE [33, 165] and GOLD [93].

1.3 Exploiting the chain-structure of proteins

The problems surveyed above are computationally intensive, often to the point that the

biologist cannot afford to wait for the calculation to end. This is due to a number of

reasons:

• The inherent complexity of the problem. The structure prediction problem, for exam-

ple, is known to be NP-hard for random sequences [148]. A recently developed view of

protein folding claims the biological sequence actually directs the chain to fold along

energetically favorable pathways that greatly reduce the combinatorial search [47].

However, computing these pathways may still prove extremely difficult.

• The number of times the problem needs to be solved (e.g. computing similarity

between each pair in a database of thousands of proteins [86]).

• The lengths of simulations. Monte Carlo and molecular dynamics simulations are

often run for millions of steps, simulating only a few nanoseconds of physical time. In

order to get at slower events such as protein folding, these simulations would need to

be run even longer [119]).

This issue can be addressed along two complementary approaches:

• The development of simplified models of protein molecules, for which the computations

are faster, yet without significant loss of accuracy or biological relevance.
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• The development of algorithms that take advantage of specific properties of a given

model in order to reduce the computation time, without losing any accuracy.

While the first approach has been explored exclusively by biophysicist and biochemists

because of the deep understanding of physics and chemistry that is required, computer

scientists have recently explored to some success the applicability of tools and techniques

from fields such as robotics and geometry for the second approach. These two approaches

should eventually be combined so that simplified protein models are developed together

with the algorithms that take the most advantage of their specific properties.

An example of the first approach is the advent of the so-called minimalist models [23]

for the study of folding kinetics. The simplification of both the chemistry and the physics

of the model results in molecular dynamics simulations that consistently reach the folded

state (e.g., [171, 172, 183]). This is due to the shorter time to compute each simulation step

as well as the longer physical time that can be assigned to it. The resulting trajectories

can thus be used to speculate about the kinetics of the studied protein. Recall that even

the all-atom models and Newtonian mechanics-based molecular dynamics simulations are

in effect simplifications of the much more elaborate quantum mechanics models.

This thesis presents work along the second approach — the development of novel algo-

rithms for existing protein representations using model-specific properties. The algorithms

that are presented take advantage of specific properties of proteins to improve running times

and offer novel solutions for a diverse set of problems. The properties that will be exploited

are all derived from the inherent chain-structure of the protein backbone [42]. The algo-

rithms are largely based on techniques from robotics and computational geometry that were

designed for computations involving physical chains and linkages.

1.3.1 The protein backbone as a kinematic chain

The torsion angles model described in Subsection 1.1.3 makes explicit the protein’s chain-

like structure, built as a concatenation of amino acids. The three parameters used by this

model — the (φ, ψ, ω) triplet — are the predominant sources of backbone conformational

variability in proteins. To simplify matters without compromising much in way of accuracy,

it will be henceforth assumed that the ω angles are kept fixed in their trans position (ω =

180◦). The rotatable bonds, around which the (φ, ψ) angles are defined, cut the protein

backbone into rigid groups of atoms. There are two types of rigid groups. The first, referred



1.3. EXPLOITING THE CHAIN-STRUCTURE OF PROTEINS 13

Figure 1.4: The protein backbone represented as a kinematic chain. The peptide groups
are in green and the side-chain groups are in blue. The links (rigid groups) are separated
by rotatable bonds constituting the joints of the chain

to as the peptide group include the C′
i−1, Oi−1 and Ni atoms. The second, called the side-

chain group includes Cαi and all side-chain heavy atoms attached to it. Although the

second group may not be rigid due to variation of the χ angles, this motion has no direct

effect on the conformation of the backbone. These rigid groups alternate along the chain.

The peptide group is found between the ψi−1 and φi bonds and the side-chain group is

found between the φi and the ψi bonds. See Figure 1.4 for an illustration.

The rigid atom-groups can be thought of as links and the rotatable bonds make up the

joints. Thus the backbone of the protein can be regarded as a long kinematic chain (serial

linkage) with revolute joints between its links. This property will be exploited in this thesis

to achieve significant gains in computational efficiency for a number of diverse applications

in structural biology.

1.3.2 Properties of chains

In the general case, each joint can have up to 6 DOFs. Since the subject of this thesis

is protein chains, only 1-DOF revolute joints corresponding to rotatable bonds will be

considered. The number of DOFs of a kinematic chain can be computed using Grubler’s

formula [41] for manipulators in 3-D:

NDOF ≥ 6(n− 1)− 5Njoint, (1.5)

where l is the number of links and njoint is the number of 1-DOF joints. Thus a chain with

n links and n − 1 joints will have n − 1 internal DOFs. It will also have 6 external DOFs
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that define its position and orientation in space.

1.3.2.1 Properties of an open chain

A chain is called open if at most one of its ends is fixed. A chain that is not fixed (a

free-floating chain) has all its external DOFs as well as all its internal DOFs. A chain that

is fixed at one end has no external DOFs. Some properties of open chains are:

Local changes have global effects: Changing a single DOF causes all links beyond this

DOF, all the way to the end of the chain, to move. Any computation that requires

knowing the absolute position of every link must perform linear work in the length of

the protein after each change to the chain, even when the number of changed DOFs

is a small constant.

Small angular changes may cause large motions: The displacement of a link caused

by a change to a DOF depends not only on the angular variation, but also on the

distance between the DOF axis and the link (radius of rotation). So, after applying a

change, a link with a large radius of rotation undergoes a large displacement, which

cannot be bound as a function of the magnitude of the change alone.

Large sub-chains remain rigid at each step: When only a few DOFs are perturbed,

large contiguous fragments of the chain remain rigid. Consequently, there cannot be

any new self-collisions inside each of these fragments and the distances between all

pairs of atoms inside them remain fixed.

A protein backbone undergoing a Monte Carlo simulation is in fact such an open chain.

It is free-floating in a force-field and deforms through changes applied to a few of its DOFs

at each simulation step. The algorithm described in Chapter 4 for maintenance and self-

collision detection in kinematic chains is designed to take advantage of these properties.

A novel data structure — called ChainTree — is proposed for representing the deforming

chain in a way that makes updates and self-collision queries efficient to compute. This data

structure represents the chain geometry and kinematics at successively decreasing levels

of resolution. In Chapter 5 this method is extended to efficiently update the energy of a

protein during Monte Carlo simulations. The ChainTree is augmented to efficiently find all

pairs of atoms closer than a specified cutoff distance. This is crucial when calculating the

energy of protein conformations, a computation dominated by pairwise atomic interactions.
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A companion data structure — called the EnergyTree — is introduced to efficiently reuse

partial energy sums, exploiting the third property from the list above — that long contiguous

fragments remain rigid between steps.

1.3.2.2 Properties of a closed chain

A closed chain is fixed at both endpoints. In effect the first and last links are identified,

combined to be a single link, so the chain has only n − 1 links. As a result, by applying

Equation 1.5, the closed chain has only n − 7 DOFs. These DOFs define an (n − 7)-

dimensional manifold — the self-motion manifold — embedded in the (n−1)-D configuration

space of the chain. More formally, let x = f(q) be the forward kinematics function of the

chain, where x is the 6-dimensional vector of end-point position and orientation and q is

the vector of joint parameters. The self-motion manifold for a given end-point position and

orientation x̄ is the pre-image of x̄ in f , namely {q̄|f(q̄) = x̄}. The self-motion manifold

may consist of several disconnected components.

Searching for a conformation of a protein fragment that bridges a gap in a protein

structure can be posed as an inverse kinematics problem. As such it becomes a search

through the self-motion manifold of the fragment. A practical method for this search

in the context of X-ray Crystallography is described in Chapter 2. The processing of a

diffraction pattern obtain by shooting X-rays through a protein crystal generates a 3-D

electron density map. The known sequence of the protein is built into the electron density

map in order to determine its structure. Automatic model-builders may leave gaps in

the resolved structure due to localized disorder in the electron density map. The method

described in Chapter 2 automatically builds the missing fragment into the gap despite the

deficient density information by limiting the conformational search to the fragment’s self-

motion manifold. A two-step algorithm is proposed that first rapidly generates a large set of

candidate closed conformations, from which a small subset is chosen for refinement against

the electron density map.

1.3.2.3 Properties of distances between the links of a chain

When computing similarity between protein structures, it is a common to use the Cα model

described in Subsection 1.1.4. Thus, similarity is computed between chains of Cα atoms. In

these chains, the distance between two consecutive Cα atoms is about 3.8Å and the angle

formed by three consecutive Cα atoms is almost always between 90◦ and 130◦ [123].
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Two properties of distances between links in these chains (Cα atoms) can be observed:

Neighboring links along the chain are spatially close Since the distance between two

consecutive atoms in this chain is small and fixed, the distance between two links that

are close along the chain is guaranteed to be small in all possible conformations of the

chain. Another way of stating this is to say that the centroid of a small sub-chain is

guaranteed to be close to all links in the sub-chain

Distant links along the chain are spatially distant (on average) This property is the

complement of the previous one. The mean distance between two links over all con-

formations of the chain will be larger the farther apart these two links are along the

chain. It is also true for sets of protein conformations (not necessarily random) due to

the effect of excluded volume caused by van der Waals repulsion between atoms [74].

These observations motivate the algorithm presented in Chapter 3 that speeds up the

computation of similarity between protein structures. The Cα representation of the back-

bone is compressed by averaging the coordinates of short sub-chains of length m. Thus each

sub-chain is represented by a single 3-D coordinate vector. This shorter representation can

then be used to approximately compute the structural similarity between two proteins. The

choice of m allows a tradeoff between the error that is introduced and the speedup that is

gained. This method is applicable to tasks that require the computation of similarity for

all pairs of structures in a large data set, both sets of conformations of the same protein

and native folds of different proteins.

1.4 Summary of contributions

In this thesis I make the following contributions:

1. Model completion in X-ray crystallography.

(a) A method for sampling gap-closing fragments biased towards the electron density

map.

(b) A refinement method for improving a fragment’s fit to density without breaking

closure.

(c) A fully automatic fragment completion software that can be used as part of an

automatic structure determination pipeline.
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2. Similarity computation for large sets of protein structures.

(a) A uniform simplification scheme of protein structures for similarity computation.

(b) A method based on this scheme that speeds-up existing similarity measures such

as cRMS and dRMS.

(c) The simplification scheme offers a trade-off between speed and precision of sim-

ilarity computation.

(d) A method for efficient computation of nearest neighbors in large sets of protein

conformations.

(e) A method for approximate classification of protein structures based on the pro-

gram STRUCTAL.

3. Energy computation in Monte Carlo simulation of proteins.

(a) An algorithm and data structure for efficient maintenance and self-collision de-

tection for general kinematic chains.

(b) An efficient algorithm for the computation of pair-wise interactions in Monte

Carlo simulation of proteins.

(c) An efficient caching scheme for partial energy sums during Monte Carlo simula-

tion.

(d) A Monte carlo simulation software using the above methods, freely available for

download.
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Chapter 2

An Inverse Kinematics Approach

to Model Completion in X-Ray

Crystallography∗

2.1 Introduction

As outlined in Subsection 1.2.1, X-ray crystallography and nuclear magnetic resonance

(NMR) spectroscopy are two widely used experimental techniques to obtain atomic coor-

dinates of macromolecular structures. NMR spectroscopy enables structural biologists to

observe dynamic properties of proteins, but is limited in protein size. X-ray crystallography

has no such limitation, but has the drawback that it requires crystallizing protein samples.

Once a sequence of X-ray diffraction images is collected from a protein in crystalline form,

a distribution of electronic charge in R3 of the atoms constituting the molecule can be cal-

culated. Coordinates of each atom are obtained by interpreting this 3-D electron density

map [48]. This consists of placing the atoms in 3-D space to best match the electron density.

The process, from synthesizing the protein in the lab to depositing the obtained coordinates

of its folded structure in the Protein Data Bank (PDB) [15] may take several months, and

sometimes years.

The Protein Structure Initiative (PSI), a National Institute of General Medical Sciences

∗This chapter describes work done jointly with Henry van den Bedem and Ashley M. Deacon and pub-
lished in [131, 199]

19
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program in the US, aims to reduce the time and associated costs to determine a three-

dimensional protein structure. Stimulated in part by funding initiatives such as the PSI,

tremendous advances in automated model building have been achieved over just the past

few years. Indeed, various programs are now capable of building a protein model into an

experimental electron density map without human intervention [158, 192, 122, 90].

The degree of completeness of these initial models varies with the quality of the exper-

imental data, yet rarely reaches 100%. Accurately determining the atomic coordinates of

mobile fragments in the molecule, for instance, remains a challenge. Flexible loops may

lead to disorder in the crystal, which, in turn, leads to electron density of locally poorer

quality, rendering interpretation difficult. Manually completing a partial protein model,

i.e. fitting backbone and side-chain atoms to the density to build the missing residues is

generally feasible, but is time-consuming and easily leads to inaccuracies.

In practice, often a large portion of the molecule has been resolved, and the N - and

C-termini of a missing fragment in the initial model are known. The missing main-chain

fragment can be modeled as a kinematic chain, with rigid groups of atoms as links, and

rotatable bonds as joints (see Subsection 1.3.1). Fitting a fragment can thus be cast as an

inverse kinematics problem [136, 137]: Given the position and orientation of the endpoints

of a kinematic chain, the corresponding joint angles need to be determined, which optimize

its fit to the electron density map.

Exploiting this observation, we have combined an inverse kinematics algorithm with real

space, torsion angle refinement in a two stage approach to fit a poly-alanine chain to the

electron density between two anchor points. The first stage aims to sample a large number

of closing conformations, guided by the electron density. These candidate conformations are

ranked according to density fit. Top-ranking conformations are then subjected to torsion

angle, real space sub-chain refinement in the second stage. Optimization steps are projected

onto the null space of the sub-chain, thus preserving rigid geometry and closure.

2.2 Description of problem

Rapid protein structure determination depends critically on the availability of software

that can automatically generate a protein model from an electron density map. At high

resolution, existing programs may build over 90% of the protein backbone [13]. At medium

to low resolution levels (2.3Å ≤ d < 2.9Å), the model resulting from these programs is
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typically a gapped chain, and only about 2/3 completeness is attained.

In a crystallographic experiment, the phase angle of the diffracted beam is lost, and only

the magnitudes are recorded [48]. The phase angle is recovered at a later stage, but may have

a substantial error associated with it, leading to systematic errors in the electron density

map. The resolution at which diffraction data was collected also affects the interpretability

of the map. High-resolution data allow the crystallographer to distinguish detail at the

atomic level, whereas the electron density map appears “blurred” at lower resolution. It is

often difficult or even impossible to obtain high-resolution electron density maps of some

proteins. A protein crystal contains many replicas of the protein, which all contribute to the

resulting electron density map. If the structures of these replicas are not identical, localized

disorder in the electron density map may result. Temperature-dependent atomic vibrations

and the existence of mobile regions in the protein are among the causes of local disorder.

Initial protein models, whether obtained manually or by automated procedures, are

only approximately correct. Their coordinates typically serve as initial values for standard

maximum likelihood algorithms, which improve the model coordinates using appropriate

statistical techniques [145]. Iterating model building and refinement steps to improve the

completeness and quality of atomic models has clear advantages [158, 193]. Phase informa-

tion from the updated model is combined with experimental phases to improve the electron

density map that is used to generate a new model. Missing fragments in a model hinder

the ability of this procedure to converge to the correct phases and model, since significant

parts of the electron density map remain unaccounted for by the model. Thus, filling in the

gaps with fragments whose coordinates are within the radius of convergence of maximum

likelihood algorithms may significantly improve the electron density map at an early stage

in the process.

The input to our algorithm is the electron density map, the partial structure resolved by

the automatic model builder, and the two anchor residues that need to be bridged (denoted

N -anchor and C-anchor). Since in the majority of partially-resolved structures the amino

acid sequence is correctly assigned, we assume the residue sequence of the missing fragment

is known. Our goal is to propose candidate structures for the missing fragment that fall

within the radius of convergence of existing refinement tools (1 - 1.5Å RMSD [145]).

The electron density map is likely to have systematic errors due to erroneous phases.

Consequently the parts that are solved — including the anchor residues of the missing

fragment — may also be misplaced. Moreover, the density in the gap is somewhat disordered
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and thus not entirely reliable. Our protein model assumes idealized geometry, namely all

bond lengths and bond angles are fixed to their idealized values [52]. These parameters vary

very little in proteins [73], and their variance falls within the error margins of our input.

Thus, the only DOFs in our model are the backbone torsional angles denoted the φ and ψ

angles (one pair per residue). To simplify slightly our problem we will not have any side-

chain DOFs and therefore no side-chain atoms in our protein model, with the exception of

the Cβ atom (See Figure 1.3). Side-chains can be built onto the model once the backbone

is fully in place. All Cβ and backbone oxygen atoms are included because they help orient

the backbone while not adding any DOFs.

When computing the missing fragment for a given gap, the two anchor residues will be

incorporated at the ends of the fragment. We denote these copies of the anchors the mobile

anchors. The anchors that are attached to the resolved structure are denoted the stationary

anchors. Having mobile anchors provides us with a measure of closure. Closure is measured

at both ends as the RMS distance of the three backbone atoms of the mobile anchor residue

from their positions on the stationary anchor residue.

2.3 Related Work

2.3.1 Exact inverse kinematics solvers

The problem of fitting a protein backbone fragment between two anchor points is closely

related to the inverse kinematics problem in robotics [41]. It is known that for manipulators

in a 3-D workspace there are a finite number of solutions to the inverse kinematics problem

when the number of DOFs does not exceed six. However, there is no analytical method that

can compute these solutions for all types of manipulators. In the case of a 6-revolute-joint

manipulator, which is the most relevant to this work, an analytic solution can always be

obtained and the number of unique solutions is at most 16 [164]. An efficient algorithm

was derived in [135] which was later applied to the manipulation and conformational anal-

ysis of small molecular chains [136, 137]. For hyper-redundant robots, i.e. robots with a

very large number of regularly distributed joints, methods based on curve approximations

can be used [31]. Biologists have also developed their own specialized inverse kinematics

tools. A method for computing conformations of ring molecules, when rotation is possible

around all backbone bonds, was introduced as early as 1970 [69]. An inverse kinematics

solution for three consecutive residues having ideal geometry was later devised [206]. Most



2.3. RELATED WORK 23

recently, a new formulation was developed that extends the domain to any three residues

(not necessarily consecutive) with arbitrary geometry [39].

2.3.2 inverse kinematics solutions by optimization

Optimization techniques have also been applied to the inverse kinematics problem. A

method for bounding the exact inverse kinematics solutions within small intervals in the

context of drug design was proposed in [216]. When the number of DOFs exceeds six,

no analytical solution is known. Currently, only optimization-based solutions exist. The

random tweak method [60, 170] closes a loop by iteratively changing its DOFs until the

desired distances between its two terminals are reached. It uses the Jacobian matrix of

these distances (with respect to the torsional DOFs) to compute the DOF changes at each

iteration. The cyclic coordinate descent [205] method closes a kinematic chain by iteratively

adjusting its DOFs until a desired closure tolerance is reached. This method has been

applied to protein chains [27].

2.3.3 Motion planning for closed loops

Searching for the fragment that best matches an electron density map has much in common

with techniques used in roadmap-based motion planning for sampling robot configurations

and connecting them. A number of works offer methods for planning the motion of closed

kinematic loops. Common to many of them is the use of the probabilistic roadmaps frame-

work [98]. The work in [212] samples configurations by first ignoring the closure constraint

and then enforcing the constraint through gradient descent. Nearby configurations are con-

nected by the chaining of local steps that are generated in the null space of the Jacobian

matrix. In [81], configurations are sampled by breaking the loop into an active part, for

which forward kinematics sampling techniques are used, and a passive part, for which an

exact inverse kinematics solution is computed. Nearby samples are connected by using a

local planner for the active part and letting the passive part follow the motion. An extension

of this method [38] samples the active part of the chain one DOF at a time, making sure

its endpoints are always reachable by the passive part. This method was recently applied

to sampling conformations of mobile protein regions and to studying their flexibility [37].

Another extension to [81] is proposed in [211]. A roadmap for solving a slightly different

problem, known as point-to-point inverse kinematics for redundant robots, described in [7],
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also takes into account joint constraints and obstacle avoidance. A polynomial-time com-

plete planner for the reconfiguration of closed loops with spherical joints and no obstacles

is proposed in [196].

2.3.4 Methods for redundant manipulators

The refinement method used in this work exploits the redundancy of the protein chain

to minimize a target function without breaking chain closure. It is closely related to the

planning of instantaneous motion of redundant manipulators. Here the redundant DOFs

are used for concurrent optimization of additional criteria beyond the completion of the

main task (e.g., minimizing torque or kinetic energy) or the execution of additional lower

priority tasks. Some examples include [25, 30, 100, 101].

2.3.5 The loop closure problem in biology

Our problem is closely related to the loop closure problem in structural biology, where loops

are predicted based on sequence information alone. The methods proposed for this problem

can be roughly divided into two types: ab initio methods and database search methods.

The ab initio methods search the loop conformation space, while database methods screen

the PDB for known structures that closely meet the requirements of the desired loop.

2.3.5.1 Ab initio methods

For loops that have six DOFs or less, exact methods that enumerate all possible solutions can

be used, e.g. [39, 69, 135, 137, 206]. It is also possible to use the exact solver hierarchically

as in [206] and thus handle longer loops. Examples of search methods include sampling

biased by the database distribution of the φ/ψ angle pairs [144], uniform conformational

search [24], sampling from a small set of φ/ψ pairs [43, 44] or sampling from a small

library of short representative fragments [109]. Other algorithms sample conformations

randomly and then enforce the closure constraints, e.g. the random tweak method [60, 170]

or a method based on the cyclic coordinate descent algorithm [27]. Various methods exist

for optimization of candidate loops, such as molecular dynamics [24, 61, 220] and Monte

Carlo [2, 35] simulations.



2.3. RELATED WORK 25

2.3.5.2 Database search methods

Work on extracting loop candidates from the PDB started with [95]. Loops are chosen that

have the right length and meet the required geometric constraints. The applicability of this

approach was initially limited to loops of length 4 [59], but later work suggested an upper

limit of 9 [202]. A recent study claims the limit should be raised to 15 [49].

2.3.5.3 Crystallography

A variety of techniques have found successful application and widespread use in automated

interpretation of electron density maps. The program ARP/wARP [158], for instance, itera-

tively adds pseudo-atoms to a partial model that it subsequently refines in reciprocal space.

The program TEXTAL [90] employs local pattern recognition techniques to select regions in

a database of previously determined structures similar to those in the unknown structure.

Some automated systems targeting lower resolution levels, notably RESOLVE [192] and

MAID [122], start by identifying larger secondary-structure elements using sophisticated

template matching techniques, and then connect these ’fits’ through loop regions.

Relying on unambiguous experimental data and elementary stereochemical constraints,

areas of poorly defined electron density remain a challenge for these approaches. For in-

stance, exposed, mobile loop regions typically have poorly resolved side chain density, or

show discontinuous main-chain density even at low contour levels. Patterns in the density

may go unnoticed to template matching techniques for a variety of reasons. Nevertheless,

at high resolution, these programs may provide over 90% of the protein main chain of the

final model [13]. At medium to low resolution levels (2.3Å ≤ d < 2.9Å), the initial model

resulting from these programs is typically a gapped polypeptide chain, and only about 2/3

completeness is attained. In the majority of cases, the amino acid sequence is correctly

assigned, so gap lengths and the identity of their residues are known.

In practice, to complete a model, the crystallographer manually builds the missing

residues onto the partially completed structure using an interactive graphics program. These

programs, such as the X-BUILD package in QUANTA, Insight II (both Accelrys, Inc.), and

O [94] provide a variety of semi-automated tools and techniques to assist the model building

and refinement steps. In O, database fragments straddling a gap can be refined against

the density using torsion angle refinement based on grid summation [96]. Oldfield [151]

developed a method combining a random search of conformation space with grid- and
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gradient-based refinement techniques to close loops. Insight II employs the random tweak

algorithm [60, 170] to build fragments.

2.4 Methods

The algorithm proceeds in two stages: candidate generation and refinement. In the first

stage, candidate loops are built using the cyclic coordinate descent algorithm, while putting

additional constraints on the DOFs to take the electron density and collision avoidance into

account. Next, initial conformations are ranked according to density fit. Top-ranking

initial conformations are refined by minimizing a standard real-space target function [45,

29, 111]. An optimization protocol based on simulated annealing and Monte Carlo +

minimization [125] searches for the global minimum of the target function while maintaining

loop closure. Each candidate is optimized 6 times and the best scoring loops are returned.

Deficient density information is compensated for by taking advantage of the loop closure

constraint to guide the loop to its correct positioning in space. In the first stage, the closure

constraint enables the generation of loops that lie within 2Å RMSD of the true solution.

The approximate enforcement of the closure constraint during loop refinement prevents the

search from diverging and limits the searched space to motions that preserve loop closure.

The implementation of the algorithm uses the following software packages: Clipper [40],

the CCP4 Coordinate Library [112] and the exact inverse kinematics solver of [39].

2.4.1 Stage 1: Generating loop candidates

We start by constructing a protein fragment C of length L in a random conformation, where

residue 0 is a copy of the N -anchor (the residue preceding the gap), and residue L− 1 is a

copy of the C-anchor (the residue after the gap). This fragment is attached to either the

N - or C-anchor, thus determining the closing direction.

Upon starting the procedure, the position of the mobile anchor will not coincide with

the stationary anchor. The algorithm adjusts each backbone dihedral angle in turn such

that the distances between the backbone atoms of the mobile anchor and the corresponding

atoms of the stationary anchor are minimized. A total of 2000 iterations are allowed for

closure up to a preset tolerance distance dclosed. Chains that do not close are discarded. A

cross-correlation density score is calculated for all conformations, and the 99-th percentile is
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passed on to stage two. Longer loops (9 or more residues) are split in the middle. Each half-

chain is attached to its corresponding stationary anchor, and its terminal residue alternates

between acting as stationary and mobile anchor in subsequent iterations.

2.4.1.1 Random Initial Conformations

A total of 1000 starting conformations are calculated to start the procedure. For each

starting configuration, ωi is considered to be a fixed, N(180, 5.8) random variable for all

i. Half of the starting configurations are obtained by adjusting each (φ, ψ)i in turn to

optimize agreement with the electron density while stereochemical constraints are observed.

The remaining five hundred starting conformations are purely random, and obtained from

sampling (φ, ψ)i, i = 0 . . . L−1 angle pairs from PDB-derived distributions. A finite mixture

of bivariate normal distributions was thereto fitted to frequencies calculated from the Top500

database [132] of non-redundant protein structures using the program EMMIX [139]. We

obtained distributions for each of the 20 amino acids, and an additional distribution for

residues immediately preceding proline in the amino acid sequence. The angles φ0 and

ψL−1 remain fixed at their initial values.

2.4.1.2 Electron Density Constraints

A change to the DOFs of a residue is calculated as follows: A distance minimizing value

is proposed for dihedral angle φi of residue i by the cyclic coordinate descent method, and

based on φi, a minimizing ψi is proposed. (In our implementation, we change each DOF

in turn, although this is not strictly necessary.) Thus, a proposed angle pair (φ, ψ)pi is

obtained. To guide the loop, a heuristic electron density constraint has been added to the

cyclic coordinate descent algorithm. For each pair i, consider the set of atoms Ai that is

subject to change by angle pair i, and not affected by changes in angle pair i+1. Hence, Ai =

{Cβi, Ci, Oi, Ni+1, Cαi+1}, where Cβi is excluded whenever residue i is a Glycine. Electron

density scores corresponding to trial positions in a square neighborhood U(φ,ψ)p about (φ, ψ)p

in conformation space are calculated. A simple local scoring function is adopted; the sum

of the electron density values at atom center positions of Ai. The angle pair (φ, ψ)i is set

to the trial position with maximum density score, i.e (φ, ψ)i = arg max(φ,ψ)∈U
(φ,ψ)

p
i

S(φ, ψ),

where S(φ, ψ) =
∑

Aj∈Ai ρ(Aj(c)), and Aj(c) denotes the center of atom Aj . At this point,

overlaps of van der Waals surfaces of atoms in Ai and the rest of the protein structure are

determined. If no overlaps occur, the new (φ, ψ)i pair is accepted, otherwise the pair is
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accepted with a probability inversely related to the amount of overlap. The size of U(φ,ψ)p

is reduced linearly in the number of cyclic coordinate descent iterations to allow closure of

the chain.

2.4.2 Stage 2: Refining loop candidates

A candidate fragment is refined by minimizing the least squares residuals between the

electron density map ρo and the density calculated from the model ρc. This is a standard

procedure used in crystallography for refinement of protein models [29, 45]. The target

function sums the squared differences between the observed density and the calculated

density at each grid point in some volume V around the fragment:

T (q) =
∑
gi∈V

[Sρo(gi) + k − ρc(gi)]
2 . (2.1)

The calculated density at each grid point is a sum of contributions of all atoms whose

center lies within a cutoff distance from this point. The calculated density contribution of

an atom is a sum of isotropic 3-D Gaussians [204]. The factors S and k scale ρo to ρc and

are computed once at initialization using the partial model.

2.4.2.1 Optimization with closure constraints

Our method is based on the approach described in [25, 100] for optimizing an objective

function while performing a task by taking advantage of robot manipulator redundancy. The

redundant DOFs define a subspace of configuration space termed the self-motion manifold.

Motions on this manifold do not influence the main task and thus can be used to move

the manipulator configuration towards a minimum of the objective function. Since this

manifold may be very complex, these motions are in general difficult to compute. It is

therefore common to locally approximate the self-motion manifold by its linear tangent

space. This space is defined as the null-space of the linearized instantaneous kinematic

relation between the linear and angular velocities of the end-effector (a frame attached to

the end of the chain) and the joint velocities, also known as the chain’s Jacobian matrix [41].

For an n-DOF chain in R3 at configuration q, the Jacobian J(q) is a 6×n matrix satisfying

the equation:

ẋ = J(q)q̇. (2.2)
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Thus, J(q) = df(q)/d(q) where f(q) is the chain’s forward kinematics function mapping

joint coordinates to end-effector position and orientation. The rank of the Jacobian in R3

is at most 6 and thus the dimensionality of its null space is at least n− 6.

In general, an instantaneous change in the configuration corresponding to a desired small

change in end-effector position is computed by inverting Equation 2.2. We get:

q̇ = J†(q)ẋ+N(q)NT (q)y, (2.3)

where J† is the pseudo-inverse of the Jacobian and N(q) is an orthonormal basis for the

null-space. The null space can now be used to optimize some objective function without

affecting the motion of the end effector. When optimizing an objective function for a closed

loop, the instantaneous change in position and orientation of the end, ẋ, is set to zero and

y is taken to be the gradient vector of the objective function. Projecting y onto the null

space of the Jacobian produces a motion that minimizes the objective function while not

disturbing the chain closure. In general, the step size of the motions (the magnitude of the

vector q̇) needs to be small since the Jacobian approximation of the self-motion manifold is

valid only in a small neighborhood about the current point in configuration space.

2.4.2.2 Implementation details

Computing the null space: We use the atom group local frames method [217] to rep-

resent the protein as a kinematic chain and the method prescribed in [28] to efficiently

compute the Jacobian. The null space is computed by applying the Singular Value Decom-

position [71] to the Jacobian matrix giving the decomposition J(q) = UΣV T , where V is an

orthonormal basis for the row-space of J(q). The null-space basis N(q) is simply the set of

vectors of V that correspond to singular values (the diagonal elements of Σ) that are equal

to zero.

Target function gradient: We derive an analytical expression for the gradient of the

target function with respect to the torsional DOFs of the fragment. The gradient is com-

puted using a recursive method [4], which is linear in the number of DOFs of the chain.

The näıve approach in this case has quadratic complexity.

Minimization protocol: A gradient descent search for the minimum of the target func-

tion is prone to get stuck in local minima. To increase the radius of convergence, we use the
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Monte Carlo + minimization approach [125]. At each step, a large random move in con-

formation space is proposed, the new conformation is then minimized by gradient descent

and the resulting local minimum is accepted or rejected using the Metropolis criterion [140].

The effect of minimization is to increase the acceptance probability of a trial move, enabling

the search to make more progress. This comes at the cost of increasing the time of each

simulation step. To further improve the ability to escape from local minima, we envelop the

Monte Carlo + minimization method with a simulated annealing (SA) protocol [104], which

controls the probability of acceptance of uphill moves by varying the pseudo-temperature

of the search.

Random moves: Two methods are used for generating large random closure-preserving

moves for the Monte Carlo + minimization method. The first is to choose a random direction

in the null-space of a randomly chosen sub-chain, and taking a step whose magnitude

depends on the current temperature of the SA protocol. A similar method for motion

on the self-motion manifold was described in [212]. Before performing minimization, we

make sure the closure tolerance has not been exceeded. A second method for generating

random steps is the use of an exact inverse kinematics solver [39]. One of the solutions is

chosen at random as the proposed move. The use of an exact solver allows jumping between

unconnected parts of the self-motion manifold, which the Jacobian-based moves are unable

to do.

Approximate closure: The closure constraint is relaxed during this stage. A maximum

RMSD of 0.5Å is allowed at both ends of the fragment. Since there are errors in the

positions of the anchor residues, and because the resulting fragment will be subsequently

refined together with the rest of the protein, this tolerance is acceptable. By allowing

approximate closure, larger steps can be taken in the null space of the Jacobian.

Refinement search protocol: The refinement protocol is composed of three nested

loops (see Figure 2.1). The inner loop performs Monte Carlo + minimization using the

two methods described above for generating trial moves. The middle loop performs the

SA protocol by gradually reducing the pseudo-temperature of the Monte Carlo + mini-

mization. The outer loop enhances the SA protocol by restarting the search at decreasing

pseudo-temperatures. Decreasing levels of smoothing are applied to the density after each
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for start_temp = high_start_TEMP downto low_start_TEMP {
temp = start_temp;
SmoothDensity(start_temp);
for SA_steps = 1 to 8 {

for MCM_steps = 1 to NUM_ITERS {
M = ProposeRandomMove(temp);
MinimizeMove(M);
AcceptMove(M);

}
temp *= TEMP_dec_factor;

}
}

Figure 2.1: Pseudo-code for refinement search protocol

restart. The magnitude of attempted null-space moves is reduced together with the pseudo-

temperature of the simulation to increase the chance that these moves will be accepted.

Density smoothing: The density map is smoothed by convolving it with an isotropic

3-D Gaussian kernel. The convolution is done using three 1-D kernels exploiting the sepa-

rability of the Gaussian kernel. Since the convolution of a Gaussian with a Gaussian can

be computed analytically by summing the means and variances of the two functions, com-

puting ρc does not require any convolution. The variance of the summed Gaussians in ρc is

simply augmented by the variance of the desired kernel.

2.5 Experimental results

The performance of the algorithm was evaluated at three different scenarios. In the first

scenario, described in Subsection 2.5.1, fragments of varying lengths are removed from two

resolved structures and completed using the final refined electron density map deposited in

the PDB. The gaps in this scenario are artificial and are meant to test the performance of

the method under ideal conditions. In a second scenario, described in Subsection 2.5.2, the

method’s ability to close gaps at various lengths using the experimental electron density

map and initial models was tested. This scenario represents well the conditions under

which the method would be used in practice. The experimental data was provided by

the Joint Center for Structural Genomics (JCSG). Finally, in a third scenario, described in
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Subsection 2.5.3, the algorithm’s ability to identify alternative conformations in a disordered

region was evaluated.

In all the tests that are described below, the missing fragments were built in the following

way:

1. 1000 candidate fragment conformations are generated in the first stage of the method.

2. The 6 top-ranking candidates are selected for further refinement.

3. Each top-ranking candidate is refined 6 times.

4. The 2 top-scoring fragments of each refinement set are saved.

This gives a total of 12 fragments. The program also writes a log file containing the full

cross-correlation electron density score for each fragment.

Fragments are evaluated using all-atom cRMS, which is the RMSD between all atoms

of the generated poly-alanine fragment and their corresponding atoms in the known PDB

structure of this fragment, after the fragments have been optimally aligned in space.

2.5.1 Completing artificial gaps

Artificial gaps were generated in two protein structures taken from the PDB: TM1621

(PDB code 1O1Z, SCOP classification a/b), a 234-residue protein structure resolved at a

resolution of 1.6Å, and TM0423 (PDB code 1KQ3, SCOP classification multi-domain a/b)

a 376 residue protein. The results for TM1621 are described below in detail. A summary

of the results for TM0423 is also given.

2.5.1.1 Tests on TM1621.

A set of 103 structurally diverse fragments was obtained by creating gaps of length 4, 8, 12,

and 15 at each even numbered residue of the protein. This protein consists of one chain,

with 34% of the residues in 10 alpha helices, and 19% in 9 beta sheets. To evaluate the

performance at various resolution levels, three 2mFo − DFc
1 electron density maps were

calculated at 2.0, 2.5, and 2.8Å, using structure factors obtained from the PDB. Since the

low resolution electron density was obtained by truncating a high resolution data set, the

RMSDs in this section are not typical for their resolution levels.
1A standard formula for computing the final refined EDM, where Fo is the observed structure factors

and Fc is the structure factors computed from the model.
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Figure 2.2: The all-atom cRMS-distribution of 103 fragments with lengths 4, 8, 12, and 15
residues of TM1621 at a resolution of 2.0Å. A total of 9% of 12-residue and 9% of 15-residue
fragments have an all-atom cRMS > 1.0Å.

At a resolution of 2.0Å, the algorithm successfully closed all 103 gaps of length 4 to

within 1.0Å, and all length 8 gaps to within 0.85Å, as shown in Figure 2.2. Wider gaps are

more difficult to close; a total of nine 12-residue and nine 15-residue fragments were found

to have an all-atom cRMS greater than 1.0Å.

To evaluate the effect of secondary structure on RMSD, all 12- and 15-residue fragments

were classified as helix, strand or ‘other.’ A fragment is considered a helix or strand only if

at least 2/3 of its residues are classified as such. A total of fourteen 12-residue fragments

and eight 15-residue fragments met our criteria for helices. Three 12-residue fragments

and no 15-residue fragments were classified as strands. The maximum all-atom cRMS

for the 12-residue strands over all resolutions was 0.3Å. Four percent of non-helical, 12-

residue fragments were found to have an all-atom cRMS > 1.0Å, compared to 36% of

helical fragments. For 15-residue fragments, these numbers are 4% and 63% respectively.

At a resolution of 2.5Å, all gaps of length 4 and 8 were closed to within 1.0Å all-atom
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Figure 2.3: The all-atom cRMS-distribution of 103 fragments with lengths 4, 8, 12, and 15
residues of TM1621 at a resolution of 2.5Å. A total of 4% of fragments of length 12, and
12% of fragments of length 15 have an all-atom cRMS > 1.0Å.

cRMS and 0.85Å all-atom cRMS respectively, whereas four 12-residue fragments and twelve

15-residue fragments deviated by more than 1.0Å all-atom cRMS. The results are depicted

in Figure 2.3. One percent of non-helical, 12-residue fragments were found to have an all-

atom cRMS > 1.0Å, compared to 21% of helical fragments. For 15-residue fragments, these

numbers are 7% and 63% respectively.

At a resolution of 2.8Å, all gaps of length 4 and 8 closed to within 1.05Å all-atom

cRMS and 0.75Å all-atom cRMS respectively. Four 12-residue fragments and eighteen 15-

residue fragments deviated by more than 1.0Å all-atom cRMS. The results are depicted in

Figure 2.4. Two percent of non-helical, 12-residue fragments were found to have an all-

atom cRMS > 1.0Å, compared to 14% of helical fragments. For 15-residue fragments, these

numbers are 12% and 88% respectively.

Table 2.1 summarizes the performance at three resolution levels.
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Figure 2.4: The all-atom cRMS-distribution of 103 fragments at lengths 4, 8, 12, and 15
residues of TM1621 at a resolution of 2.8Å. A total of 4% of fragments of length 12, and
17% of fragments of length 15 have an all-atom cRMS > 1.0Å.

2.5.1.2 Tests on TM0423.

An equivalent analysis on TM0423, a protein with a helical domain, gives similar results,

see Table 2.2. TM0423 consists of one chain, with 46% of the residues in 16 helices, and

11% in 8 beta-sheets. The longest helix has length 17, and, if a single Glycine classified as

a hydrogen bonded turn is included, its length is 26.

2.5.1.3 Discussion of results

Clearly, the algorithm performs more modestly when fitting longer fragments. In addition

to an increasing median all-atom cRMS, a larger proportion of fragments deviates by more

than 1.0Å as fragment length increases, particularly when a large number of residues are in

alpha-helical conformation. It has been observed in previous studies that accurately mod-

eling secondary-structure elements may require specialized sampling algorithms [91]. Our
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2.0Å 2.5Å 2.8Å
length x̃ x̄ p x̃ x̄ p x̃ x̄ p

4 0.13 0.14 0 0.18 0.19 0 0.31 0.32 0
8 0.16 0.18 0 0.23 0.23 0 0.33 0.36 0

12 0.28 0.51 9 0.34 0.41 4 0.41 0.52 4
15 0.33 0.53 9 0.43 0.63 12 0.49 0.76 17

Table 2.1: Median (x̃) and mean (x̄) all-atom cRMS of fitted fragments to corresponding
regions in TM1621 at resolutions 2.0, 2.5, and 2.8Å, and percentage of fragments deviating
by more than 1.0Å (p).

2.0Å 2.5Å 2.8Å
length x̃ x̄ p x̃ x̄ p x̃ x̄ p

4 0.18 0.19 0 0.24 0.25 0 0.32 0.32 0
8 0.20 0.22 0 0.28 0.29 0 0.35 0.38 0

12 0.29 0.55 26 0.33 0.50 19 0.40 0.56 19
15 0.34 0.96 38 0.43 0.92 29 0.52 1.19 29

Table 2.2: Median (x̃) and mean (x̄) all-atom cRMS of 174 fitted fragments to corresponding
regions in TM0423 at resolutions 2.0, 2.5, and 2.8Å, and percentage of fragments deviating
by more than 1.0Å (p).

current implementation lacks such targeted approaches, yet gives acceptable performance

for fragments up to length 12 across all resolutions.

Interestingly, lowering the resolution of the data only mildly affects performance. We

believe that this is the true strength of the algorithm; lack of structured, well-defined

electron density information is compensated by maintaining a closed conformation.

2.5.1.4 Run times

The run time of the algorithm depends on the length of the fragment to be fitted, as well as

on the resolution of the diffraction data. Run times vary from about 30 minutes for short

fragments to just under 3 hours for the longest fragments at high resolution. Table 2.3

summarizes average run times calculated while generating the 103 fragments of TM1621

used in this section. All tests were performed on a 2.66GHz Intel P4 Xeon running RedHat

9. The source code was compiled using gcc 3.2.
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length 2.0Å 2.5Å 2.8Å
4 40 29 28
8 92 63 58

12 134 82 73
15 178 105 95

Table 2.3: Average run times (in minutes) on a 2.66GHz Intel P4 Xeon at various fragment
lengths and resolution levels. The average is calculated over 103 fragments.

2.5.2 Completing true gaps

In this section, we present three examples of protein model completion by inserting poly-

alanine fragments into a gapped, initial model at high and medium-to-low resolution. Rather

than closing a few selected gaps, we aim to fully complete each model. Thus, we calculate

all missing fragments less than 16 residues in length. In one instance, the protein TM1586,

the algorithm was actively used to complete the model, and detailed results will appear in

a separate publication. The remaining two structures had been completed and refined prior

to testing the algorithm and we use their PDB structure to verify our results. All initial

models were obtained from common crystallographic model building programs.

It was found that residues anchoring a gap in partial models do not always fit the density

correctly. In these cases, the gap was widened at its N and/or C end until the new anchors

fit the density satisfactorily. Furthermore, missing fragments of length < 4 are extended to

length 4 in this section, again by widening the gaps at both ends.

The electron density score of generated fragments and RMSD to the final, refined struc-

ture cannot be expected to perfectly correlate in areas of poor density. In an extreme case,

it may happen that conformations attain a higher score by jumping over to a neighboring,

empty stretch of density (a beta-sheet, for instance) for a few residues. In this section, in

addition to the all-atom cRMS of the best scoring fragment, we therefore report the lowest

achieved all-atom cRMS.

2.5.2.1 Completing TM1586 at 2.0Å

An initial model for the 206-residue hypothetical protein TM1586 was obtained from Xsolve,

a fully automated crystallographic data processing and structure solution software suite

under development at the JCSG [209]. At the time of processing this data, Xsolve only

supported RESOLVE v2.06 for model building.
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Gap Length Secondary all-atom cRMS (Å) all-atom cRMS (Å)
Structure (Top Score) (Lowest)

19-29 9 · 2.43 0.95
53-58 4 · 2.06 0.49
95-105 9 S··STTTTS 0.95 0.79
113-123 9 · · · · · · · · · 0.49 0.38
147-157 9 HT·GGGGG· 0.47 0.45

Table 2.4: RMSD of fitted fragments in TM1586 and corresponding regions in the final,
refined structure.

The model was obtained from MAD data collected at 2.0Å, and showed gaps in between

residues 92-104, 113-123, and 148-156. Furthermore, 66 residues were missing at the N

terminus of the molecule. Overall completeness was reported to be 51%. After widening

the gap 148-156 by one residue at each end, this gap and gap 113-123 were easily closed

to within 0.5Å all-atom cRMS using the experimental map from RESOLVE. The gap in

between residues 92-104 proved to be more difficult. After combining the RESOLVE model

and our fragments with an ARP/wARP model, a more complete model was obtained after

various rounds of phase improvements. The N terminus was now largely complete, with

gaps remaining in between residues 19-29, 55-58, and 95-105. The gap in between residues

19-29 was widened to span residues 19-32. Once fragments for these final gaps were gen-

erated and inserted, the complete model was refined using a maximum likelihood, torsion

angle dynamics protocol in CNS. Table 2.4 summarizes the all-atom cRMS of top-scoring

fragments to this CNS-refined structure.

The best scoring fragments for the gaps 19-29 and 53-58 are likely not within the radius

of convergence of standard refinement programs. In both cases, a different fragment was

manually selected from the 12 candidates and inserted into the model prior to refinement.

Figure 2.5 shows residues 19-32 of the CNS-refined structure, together with the fragment

that was inserted into the model. Note that the main-chain density is discontinuous at the

displayed contour level of 0.8 σ, and that side-chain density is poorly defined.

2.5.2.2 Completing TM1742 at 2.4Å.

MAD data for the 271-residue, putative Nagd protein TM1742 (PDB code 1VJR) was col-

lected at a resolution of 2.4Å. An initial electron density map of good quality was obtained

using the program SOLVE v2.03 [194] at a resolution of 2.5Å. Iterative model building
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Figure 2.5: Residues 19-32 of TM1586. The fragment inserted into the model is shown in
cyan, and the corresponding CNS-refined fragment in green. The all-atom cRMS between
the two fragments is 0.95Å. The electron density map is shown contoured at 0.8 σ, and is
discontinuous around the Arginine 25.



40 CHAPTER 2. MODEL COMPLETION IN X-RAY CRYSTALLOGRAPHY

Gap Length Secondary all-atom cRMS (Å) all-atom cRMS (Å)
Structure (Top Score) (Lowest)

17-25 7 ETTEE·T 0.72 0.66
56-62 5 HHHHT 0.78 0.78

126-132 5 HHHHH 0.36 0.36
146-148 1 · 0.44 0.40
191-202 10 HHHHHT··GG 0.43 0.43
228-233 4 SSS· 0.22 0.22

Table 2.5: RMSD of fitted fragments in TM1742 and corresponding regions in the final,
refined structure obtained from the PDB.

using Terwilliger’s resolve build script resulted in an 88% complete model, with gaps in

between residues 17-25, 56-62, 129-132, 146-148, 229-231. Furthermore, the region in be-

tween residues 191-202 had been built incorrectly. The RESOLVE model was independently

completed and refined. Table 2.5 summarizes the all-atom cRMS of top-scoring fragments

built with our algorithm to the final, refined structure.

2.5.2.3 Completing TM0542 at 2.6Å.

MAD data for the 376-residue protein TM0542 (Malate Oxidoreductase) was collected at a

resolution of 3.0Å, and a native data set was obtained at 2.6Å. An electron density map was

calculated with phase extension using the program SOLVE. Iterative model building using

RESOLVE revealed that the unit cell contains four NCS related molecules. Molecule A

was the most complete of this set of four with 56% of residues placed, and gaps in between

residues 12-89, 134-142, 212-227, 256-266, 272-285, and 318-324. This RESOLVE starting

model was independently completed and refined. The refined model was used to calculate

RMSDs for our automatically generated fragments.

The algorithm successfully closed all gaps, but for the first 76-residue one. Table 2.6

summarizes the results.

Fitting a poly-alanine fragment into the density is rather sensitive to residues being

flipped along the chain. This problem is exacerbated by the fact that exposed loop regions

typically have poorly resolved side chains in the electron density. Figure 2.6 shows an

example of a fragment where two consecutive residues are flipped. While the all-atom

cRMS is relatively high at 0.9Å for this fragment, the Cα-trace is in excellent agreement

with the manually built fragment. The flipped residues are easy to identify and correct for
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Gap Length Secondary all-atom cRMS (Å) all-atom cRMS (Å)
Structure (Top Score) (Lowest)

134-142 7 HHHHHHH 0.93 0.78
212-227 14 BS··SSGGGGG·HH 0.91 0.90
256-266 9 ES·SS·SHH 0.87 0.87
272-285 12 ·SSEEEEEE·SS 1.15 1.15
318-324 5 HHHHH 0.72 0.72

Table 2.6: RMSD of fitted fragments in molecule A of TM0542 and corresponding regions
in the manually built structure.

a trained crystallographer.

2.5.3 Identifying alternative main-chain conformations

Binding of ligands to a protein or protein-protein interactions are typically facilitated by

mobile regions in the macromolecule. Such flexible loops are often poorly resolved in the

electron density due to disorder in the crystal, making it difficult for the crystallographer

to identify multiple conformations. Our methods in principle support identification and

refinement of multiple conformations, even at sub-atomic resolution.

A model for the 398-residue hypothetical protein TM0755 was determined from a 1.8Å

MAD data set using ARP/wARP. The structure was completed manually, apart from a short

fragment around residue A320. The electron density from residue A317 to A323 suggested

that this fragment crystallized in two distinct conformations. Furthermore, a structurally

similar dioxygen reduction enzyme, Rubredoxin Oxygen: Oxidoreductase (PDB code 1e5d),

binds a Flavin Mononucleotide at the corresponding residues, providing additional evidence

for the presence of multiple conformations at this site.

While one conformation was clearly visible in the electron density, the main-chain trace

of the alternative conformation was much less obvious. From residue A320 to A323 the

density was particularly ambiguous; the alternative conformation was difficult to identify

and initially not modeled. To complete the model, it was decided to build two conformations

at half occupancy each. The algorithm was slightly modified; half occupancy was hard-

coded, and density-smoothing was disabled to narrow the radius of convergence of the

refinement stage. Runs at four different lengths were attempted. The N -anchor was kept

fixed at Serine A316, and the C-anchor ranged from Alanine A320 to Histidine A323. In
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Figure 2.6: Residues A256-A267 of TM0542. The top-scoring fragment is shown in cyan,
and the corresponding manually completed and refined fragment in green. The all-atom
cRMS between the two fragments is 0.87Å. The fragment is largely correct, apart from
residues A259 (Serine) and A260 (Arginine) being flipped. The electron density map is
shown contoured at 1.0 σ.

the final run, four out of the final twelve fragments assumed configuration ’A’, another

three assumed conformation ’B’, and the remaining five fragments did not fit the density

meaningfully. Figure 2.7(a) shows the two alternative conformations for residues A316-

A323. Side chains were added manually to the poly-alanine chains. Figure 2.7(b) and

(c) show residues A316 to A320 of both conformations in the electron density. The fit of

Tyrosine A318 is particularly telling in each case.
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(a)

(b) (c)

Figure 2.7: (a) The two alternative conformations for residues A316-A323 in the hypothet-
ical protein TM0755. A total of 33% of fragments output by the algorithm converged to
conformation ’A’ (in green), while another 25% assumed conformation ’B’ (in cyan). Side
chains were added manually. (b) Residues A316-A320 of conformation ’A’. (c) Residues
A316-A320 of conformation ’B’. For clarity, residues A321-A323 are omitted in figures (b)
and (c).



44 CHAPTER 2. MODEL COMPLETION IN X-RAY CRYSTALLOGRAPHY



Chapter 3

Approximation of Protein

Structure for Fast Similarity

Measures∗

3.1 Introduction

Automatic protein structure comparison is an important problem in computational struc-

tural biology, e.g., in structural databases and classification [66, 86, 146, 152], structure

prediction [54, 57, 108, 156, 176, 178], analysis of trajectories through conformational space

generated by molecular dynamics and Monte Carlo simulations [116, 174, 214], graph-based

methods for evaluating ensemble properties [8, 9, 10, 11], etc.

In contrast to sequence matching, structural matching requires a similarity measure

that is based on spatial atom coordinates. Nevertheless, it is still important whether the

structures that are compared have the same amino acid sequence, or not. For conformational

samples from the same sequence there are no ambiguities about correspondences. In this

case, similarity measures such as cRMS or dRMS are commonly used [107]. These measures

are defined as the root mean square (RMS) of either distances between corresponding atoms

in the two compared structures (cRMS) or their corresponding intra-molecular distance

matrix entries (dRMS). Comparing protein structures that derive from different sequences

is more difficult because it is generally not obvious which features (atoms) of one structure

∗This chapter describes work done jointly with Fabian Schwarzer and published in [127, 168]

45
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correspond to which features from the other structure. Moreover there is a tradeoff between

the length of the correspondence that is chosen and the quality of the similarity that results.

Numerous methods for finding a set of correspondences have been proposed, e.g., [58, 65,

70, 85, 107, 114, 173, 191].

Many similarity measures are based on a rather fine granularity feature selection. Typi-

cally, the coordinates of all Cα atoms and sometimes even those of additional atom centers

are considered. For large proteins, the number of considered features greatly affects the effi-

ciency of the comparison. For example, the size of the intra-molecular distance matrices and

the complexity of the dynamic programming algorithm in [65] are quadratic in the number

of residues. While this is not a real problem when comparing a single pair of structures

(many proteins have less than 1000 residues), it becomes an important issue when querying

a large database for similar structures or clustering a large set of conformations.

In this chapter, it is shown that the description length of a protein conformation can

be reduced while introducing only a small error in the computed similarity measure. The

backbone is uniformly sub-divided into contiguous sub-chains of fixed length and represent

each of the sub-chains by the average coordinates of its atom centers. Similarity measures

can then be computed on these “averaged conformations.” Although this simplification

introduces some error, theoretical and experimental evidence is provided, demonstrating

that enough information about relative similarity is retained to discriminate structures in

practical applications. In particular, the derived similarity measures using the averaged

protein representation are highly correlated to their original full-atomic counterparts. If

high accuracy is a concern, approximate similarity measures are still useful as a fast filter

to considerably reduce the number of pairs that need to be passed to the exact similarity

measure.

While we cannot give bounds on the error that is introduced, it is shown through

wavelet analysis of protein structures and random chains that averaging is a reasonable

method for reducing the dimensionality of structure descriptors. Our analysis reveals two

properties of proteins, which make averaging work. The first property is the chain topology

of proteins, which forces atoms that are nearby along the chain to also be spatially close in

any conformation the protein chain assumes. The second property is the fact that van der

Waals forces limit the compactness of the protein structures. Since atoms can only have

small overlap, on average the positions of atoms, which are far apart along the chain, are

also spatially distant.
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Reducing the computational complexity of similarity measures significantly accelerates

many tasks that involve structural matching. In our experiments, we observed decreases

in running times by large factors, typically from days to hours or even minutes. For very

large sets of proteins, both the efficiency of structure comparison of a single pair and the

number of such pairs that are actually evaluated are important. Many approaches require

evaluation of all pairs (“brute-force approach”) even if the task is to identify only a small

constant number of nearest neighbors for each conformation in the set. Using our averaged

representation, we show that we can avoid this quadratic cost of examining all pairs in a

k nearest-neighbor application. In automatic structural classification, the complexity of a

previous algorithm [65, 188] that matches pairs of structures grows quadratically with the

number of residues. In this case as well, a small reduction in the number of features results

in substantial savings.

3.2 Shape similarity and approximation of chains

Given two sequences of points in 3-space P = (p1, . . . ,pn) and Q = (q1, . . . ,qn), there

are two RMS measures that can be used to compute the similarity between them: cRMS

and dRMS. They were both defined in Subsection 1.1.4. When applying these similarity

measures to proteins, it is common practice to use the Cα atom centers, ordered along

the backbone, as defining points. (Sometimes, additional atoms are included or Cβ atoms

are used instead.) Due to the special geometry of proteins the positions of these atoms

completely determine the shape of the backbone. However, in the case of dRMS, the

intra-molecular distance matrices grow quadratically with the length of the protein, which

significantly slows down the dRMS computation for large proteins.

3.2.1 Approximate similarity measures

We reduce the number n of sample points in P andQ as follows. In each sequence, we replace

contiguous subsequences of points by their centroids. That is, we uniformly partition the

sequence P of length n into contiguous subsequences of length m each. (If n/m is not an

integer, some subsequences will be chosen to be longer by one.) For each subsequence, we

then replace its points by their centroid, which we denote by pj for subsequence j. For

example, if subsequence j spans points (pa, . . . ,pb) where b− a+ 1 = m then
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pj =
1
m

b∑
i=a

pi. (3.1)

Based on these averaged subsequences we define the m-averaged representation Pm of

P as the sequence of r = bn/mc points (p1, . . . ,pr). (For Q, we proceed in the same way.)

We can now define the simplified RMS measures for Pm and Qm analogously to the above

RMS measures on the original sequences. That is, in the defining formulas (Equations 1.1,

1.2 and 1.3), we replace pi (qi) by pi (qi) and n by r. We call these measures m-averaged

measures and denote them by cmRMS and dmRMS.

Obviously, the error of these simplified similarity measures continuously approaches zero

as the two compared point sets P and Q become more similar, i.e., limQ→P |cmRMS(P,Q)−
cRMS(P,Q)| = 0 and the same holds for dmRMS. For general point sets, the error

introduced by this approximation can be quite substantial. However, for proteins the error

is small because of their chain topology and the limited compactness of their conformations

(due to van der Waals forces). In the following section, we explain why this is the case using

random chains and wavelets analysis.

3.2.2 Random chains and Haar wavelets

We use random chains and the Haar wavelet transform to argue that averaging is a reason-

able method for reducing the size of the representation of a protein for computing structural

similarities.

A random chain C = (c0, . . . , cn−1) in 3-D is an ordered set of points in space defined

as follows:

c0 = 0,

ci+1 = ci + S2 · l i = 0, . . . , n− 2 (3.2)

where 0 is the origin, S2 is a random 3-D vector uniformly distributed on the unit 3-D

sphere, and l is the fixed Euclidean distance between two consecutive points of the chain.

S2 is sampled as follows:

S2 =


sinφ cos θ

sinφ sin θ

cosφ

 (3.3)
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where θ ∼ U [0, 2π] and cosφ ∼ U [−1, 1].

Computing the covariance matrix of S2 reveals that the off-diagonal elements are iden-

tically 0, and, as a result, the three dimensions of each random step are uncorrelated. Since

each step is independent of all other steps, the distributions of the three dimensions of any

point on the chain are uncorrelated. Consequently, the random chain described above can

be approximated well by replacing S2 with a 3-vector sampled from the normal distribution

N (0, 1
3 · I), where I is the 3× 3 identity matrix, for sufficiently large values of n (typically

greater than 10). Moreover, the fact that the three dimensions are uncorrelated enables us

to perform three independent one-dimensional Haar wavelet transforms as described below,

instead of the more complicated three-dimensional transform.

The Haar wavelet transform of a chain is a recursive averaging and differencing of the

coordinates of the points. The transform recursively smoothes the chain while keeping the

detail coefficients needed to reconstruct the full chain from the smoothed out version. We

define the full resolution chain to be of level 0: C = C0. We recursively create smoothed

versions of the chain by averaging pairs of consecutive points:

cji =
1√
2

(
cj−1
2i + cj−1

2i+1

) {
j = 1, . . . , log n

i = 0, . . . , n
2j
− 1

. (3.4)

As each level of resolution is created, we also compute the details that are smoothed out

by the averaging:

dji =
1√
2

(
cj−1
2i − cj−1

2i+1

) {
j = 1, . . . , log n

i = 0, . . . , n
2j
− 1

}
(3.5)

Note that the averages and details are multiplied by a scale factor of
√

2 at each level. Given

Cj , the smoothed chain at level j, and Dj , the detail coefficients of level j, it is possible

to reconstruct Cj−1 exactly by inverting the formulas of Equations 3.4 and 3.5. The Haar

wavelet transform of a chain C is thus defined as:

Ĉ =
(
C logn, Dlogn, Dlogn−1, . . . , D1

)
. (3.6)

The length of Ĉ is the same as C and C logn is the centroid of the entire chain. Since C can be

exactly reconstructed from Ĉ, no information is lost in the transform. This representation

can then be compressed by setting to 0 all coefficients in Ĉ smaller than some threshold.
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Since the coefficients are scaled, the square of the L2 error of approximation in this case

would be equal to the sum of the squares of the removed coefficients [187].

Given the normal approximation of the random chain construction, we can analytically

determine the pdf (probability density function) of each of the coefficients in Ĉ by adding,

subtracting and scaling independent normally distributed variables. The pdf of each detail

coefficient in level j is:

dj ∼ N
(
0,

4j + 2
36

· I · l
)
, (3.7)

and the pdf of their squared L2 norm is thus:

‖dj‖2
2 ∼ χ2(3dof) · 4j + 2

36
· l (3.8)

with a mean of 4j+2
12 · l and variance of (4j+2)2

216 · l2. Since the pdfs of the detail coefficients

are centered at the origin and their variance is decreasing by a factor of roughly 4, they are

expected to be ordered (in absolute value) in Ĉ, from largest to smallest. More precisely,

the detail coefficients of level i are expected to be larger by roughly a factor of 4 than the

detail coefficients of level i − 1, and this holds true for all levels of the transform. Note

that the
√

2 scaling during the construction of the coefficients would account for an average

growth of a factor of 2 in their variance from one level to the next. The special geometry of

random chains accounts for the second factor of 2. Hence, as a general policy, it is best to

remove coefficients starting at the lowest level and climbing up. These coefficients have the

lowest variance and thus contain the least information for determining structural similarity.

The effect of averaging as described in Section 3.2.1 for m = 2v is the same as that of

removing the lowest v levels of coefficients. Since these are expected to be the smallest

coefficients, we can conclude that using an m-averaged chain will give the smallest expected

error for a representation that uses only m Haar detail coefficients for each dimension. The

wavelet analysis allows us to estimate the approximation mean squared error introduced

by removing all coefficients of level j. It can be computed to be l
12

(
2i + 1

2i−1

)
. Therefore

for an m-averaged approximation the mean squared error is expected to be on the order of

(m · l)/6.

As the above analysis shows, we can remove quite a few levels of coefficients without

introducing a large error. This is due to the large ratio of the average variances (henceforth

called RAV) between two successive levels of detail coefficients, which was shown to be
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Figure 3.1: Average variance of the Haar detail coefficients for random chains, compact
random chains and random point clouds.

approximately 4 for all levels. This behavior of the Haar detail coefficients is a result of the

fact that on the average random chains grow further and further away from their starting

point. The expected distance of the nth point from the origin is on the order of
√
n · l. We

see this behavior in Figure 3.1 where we compare the average variances of the coefficients of

random chains to those of very compact random chains (chains forced to reside inside small

spheres) and to those of point clouds sampled randomly from inside a sphere of radius
√
n·l.

All chains are of length n = 64. The RAV of the unconstrained random chain is significantly

larger than that for the compact random chains, which decreases as the compactness of the

chain is increased. The worst case is for a point cloud, where the average variances of

all levels of detail coefficients have the same magnitude making all levels have the same

importance.
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3.2.3 Application to proteins

While it is a well-known fact that the positions of neighboring Cα atoms along the backbone

of native protein structures are highly correlated (e.g., see [110]), it was shown in [99] that

treating the position of each Cα atom as uniformly distributed on a 3-D sphere centered at

the center of the previous Cα atom yields a very good approximation of the average global

behavior of native protein structures.

We performed the same wavelet transform on sets of conformations of actual proteins

of length 64 residues (only the Cα atoms coordinates were used to describe the conforma-

tions) taken from decoy sets (conformations which are expected to be similar to the native

conformation) generated by Park and Levitt [155, 156], containing 10,000 conformations

each. We obtained results similar to those of random chains, namely the detail coefficients

are ordered and have a RAV similar to that of random chains. The results for a few sets

of proteins are presented in Figure 3.2. One important difference from random chains is

that the RAV for decoy sets decreases considerably for the top levels. We explain this as

follows. Small pieces of a protein cannot be highly packed because of steric clashes, while

intermediate size pieces are often elongated (secondary structure helices and strands) and

hence the variance of the coefficients grows considerably from one level to the next at the

low and intermediate levels. The tight packing of the secondary structure of the native-like

conformations makes the high-level coefficients considerably smaller than in the random

chain model. We would have liked to give results for decoy sets of proteins significantly

longer than 64 residues, however, no such sets were available to us.

Random protein conformations (generated as described in Section 3.2.4), on the other

hand, are considerably less compact than the decoy sets, and hence behave much more

like random chains at all levels of detail coefficients. As can be seen in Figure 3.2 the

RAV at the lower levels is even bigger than what is observed for random chains. This is

due to the limit on the packing density as a result of the space taken up by each residue.

In our random chain model the points have no volume and the chain is allowed to cross

itself. In the random protein conformations, however, atoms are not allowed to have any

overlaps. Their behavior is actually modeled better by random chains in which the next

step is sampled uniformly from a hemisphere defined by the direction of the previous step.

We thus conclude that, while decoy sets cannot be compressed as much as random sets,

it is possible to remove the first few levels and still get a very good approximation.
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Figure 3.2: Average variance of the Haar detail coefficients for random chains, decoy sets
and randomly generated conformations.

3.2.4 Correlation of approximate and exact similarity measures

When using the cRMS measure to compute similarity between random chains of length 64

we find that the approximate m-averaged versions yield very good results for m as large as

9. For m = 4, 6, 9, 12 and 16, the correlation of the approximate measure to the true one

is 0.99, 0.95, 0.89, 0.76 and 0.60, respectively. When using the dRMS measure to compute

similarity between random chains the approximate m-averaged versions is highly correlated

for m as large as 6. The correlation values obtained are 0.94, 0.81, 0.67, 0.55 and 0.46,

respectively.

In order to verify that the analogous behavior of the detail coefficients of protein sets

and random chains carries over to approximate similarity measures we chose 8 structurally

diverse proteins used by Park and Levitt in [155, 156] (1CTF, 1R69, 1SN3, 1UBQ, 2CRO,
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3ICB, 4PTI, 4RXN) having between 54 (4RXN) and 76 (1UBQ) residues. For these proteins

we obtained (1) decoy sets generated by Park and Levitt [155, 156], containing 10,000 con-

formations each and (2) randomly generated conformation sets using the program FOLD-

TRAJ1 [57], containing 5000 structures each. A decoy set is a collection of conformations,

which are native-like in structure. As a result they span only a small portion of the entire

conformation space and are thus expected to have significant pairwise similarity. On the

other hand, the conformations in the random sets sample a much larger space and as a

result have on average lower pairwise similarity.

For each set, we randomly chose between 1000 and 4000 pairs whose true dRMS distance

was less than 5Å (10Å for the random sets which have larger structural diversity) and

computed their m-averaged distances for different values of m. The correlation of the

m-averaged cRMS and dRMS measures to the true cRMS and dRMS measures for the

different decoy sets can be found in Table 3.1(a). For m as large as 9, the approximate

cRMS measure is still highly correlated with the true cRMS measure, which means that a

reduction factor of 9 still yields a very good approximation for proteins of this size. For

dRMS, high correlation is still achieved when m = 6, which means a reduction factor of 6

(since the complexity of dRMS is quadratic, the actual gain is by a factor of 36). We note

that the correlation values obtained are quite similar to those computed for random chains.

The correlation of the m-averaged cRMS and dRMS measures to the true measures for

the different random sets can be found in Table 3.1(b). Here too, a reduction factor of 9 still

yields a highly correlated approximation of the cRMS measure. For dRMS, high correlation

is still achieved when m = 9, which means a reduction factor of 9 and an actual gain of 81.

Here the correlation values are in fact better than those computed for random chains as

would be anticipated from the higher growth ratio of the variance of the detail coefficients

of random protein sets in comparison to those of random chains (see Figure 3.2). When

examining all pairs and not only those whose dRMS distance is smaller than 5Å (10Å for

the random sets), the computed correlation is even larger.

The analysis of random chains in the previous section entails that the approximation

error caused by averaging depends only on the averaging factor m. The better correlation

we get for the random sets over the decoy sets thus requires some explanation. First, the

larger RAV of the random sets means that the low-level coefficients are less important than

those in decoy sets. Second, the distance between a pair of random conformations is larger

1http://bioinfo.mshri.on.ca/trades/
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1CTF 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN
m cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS

3 0.99 0.97 0.99 0.96 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.97 0.99 0.98
4 0.99 0.95 0.99 0.95 0.99 0.97 0.99 0.97 0.99 0.97 0.99 0.95 0.98 0.94 0.99 0.96
6 0.98 0.91 0.98 0.91 0.97 0.90 0.98 0.91 0.99 0.93 0.99 0.91 0.96 0.87 0.92 0.78
9 0.86 0.71 0.96 0.82 0.89 0.73 0.83 0.71 0.95 0.87 0.98 0.96 0.90 0.72 0.81 0.65
12 0.81 0.67 0.84 0.64 0.71 0.54 0.75 0.52 0.86 0.66 0.92 0.69 0.74 0.59 0.54 0.57
16 0.39 0.46 0.66 0.47 0.55 0.44 0.58 0.48 0.75 0.53 0.81 0.54 0.42 0.46 0.49 0.49

(a)

1CTF 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN
m cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS

3 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99
4 0.99 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.98
6 0.99 0.96 0.98 0.96 0.98 0.95 0.99 0.95 0.98 0.95 0.99 0.95 0.98 0.96 0.99 0.97
9 0.94 0.87 0.95 0.89 0.95 0.88 0.95 0.85 0.95 0.87 0.96 0.86 0.92 0.88 0.93 0.90
12 0.91 0.81 0.84 0.76 0.84 0.75 0.90 0.73 0.84 0.74 0.90 0.73 0.86 0.81 0.87 0.84
16 0.70 0.62 0.69 0.64 0.68 0.61 0.82 0.61 0.71 0.62 0.83 0.64 0.73 0.70 0.73 0.74

(b)

Table 3.1: The correlation coefficient for different m values evaluated for cRMS and dRMS
of (a) decoy sets and (b) randomly sampled conformations of various proteins.

than the distance between a pair of decoy conformations and, as a result, the approximation

errors have a smaller effect on the computation of similarity.

We wanted to see how well averaging scales up as we increase the size of the protein.

As we did not have access to decoy sets of larger proteins we examined only random con-

formation sets. We generated 1000 random conformations for the two proteins 1LE2 (144

residues) and 1HTB (374 residues). We chose 1100 pairs of 1LE2 conformation with a

dRMS less than 18Å, and 1100 pairs of 1HTB conformations with dRMS less than 24Å.

For 1LE2 the correlation of cRMS was above 0.9 for m as large as 27, and for dRMS it was

above 0.9 for m as large as 15. For 1HTB the correlation of cRMS was above 0.9 for m

as large as 40, and for dRMS it was above 0.9 for m as large as 30. Because the pairwise

distances for these larger proteins were significantly larger than the distances of the smaller

proteins, a larger approximation error can be tolerated without compromising performance.

Thus larger values of m could generally be used for larger proteins, making the speed-ups

that can be achieved larger when they are most needed.
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3.3 Application 1: Nearest-neighbor search

Simulations and other conformational sampling methods generate large sets of conforma-

tions of a particular protein. For example, the project Folding@Home2 runs parallel molec-

ular dynamics simulations on thousands of computers across the Internet and then centrally

analyzes the obtained data. An important step in evaluating such data, e.g. for clustering

and related tasks, is the following: given a set of conformations of the same protein, find

the k nearest neighbors (NNs) for each sample in the set. Typically, k is a small constant

while the size of the set can be very large.

The straightforward (“brute-force”) approach is to evaluate the similarity measure

(cRMS or dRMS) for all pairs and then report the k NNs for each sample. However, the

quadratic complexity makes this approach scale poorly. Spatial data structures such as the

kd-tree [14] can avoid this complexity under certain circumstances [5, 32, 89, 105, 134, 161].

Note that these data structures allow for exact search, i.e., they return the same NNs as

would the brute-force search. However, most of them require a Minkowski metric space of

rather small dimensionality. Unfortunately, cRMS is not a minkowski metric. Although

dRMS is a Minkowski metric, the dimensionality of the space of intra-molecular distance

matrices is far too high, since typically, for dimensions higher than a few tens, none of

the nearest-neighbor data structures performs better than brute-force search. Therefore, in

order to use a spatial data structure to speed up NNs search, we chose to use the dRMS mea-

sure, but find a way to significantly reduce the dimensionality of the structure descriptors

below the averaged conformations we presented in Section 3.2.

3.3.1 Further reduction of distance matrices

We use the singular value decomposition (SVD) [71] to further compress the intra-molecular

distance matrices of averaged proteins, that is to further reduce the number of parameters

involved in computing dmRMS. SVD is a standard tool for principal components analy-

sis (PCA) and computes directions of greatest variance in a given set of high-dimensional

points. When considering the set of intra-molecular distance matrices these directions cor-

respond to directions that contain the most dissimilarity information. These directions are

called principal components (PCs). The SVD can be used to linearly map a set of high-

dimensional input vectors (data points), stored in a matrix A, into a lower-dimensional

2http://folding.stanford.edu
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subspace while preserving most of the variance. Such a transform can be found by decom-

posing the matrix A of the input vectors into A = USV T , the SVD of A, where U and V

are orthogonal matrices and S is diagonal with the singular values of A along the diagonal.

Our reduction algorithm has two steps:

1. Compute an m-averaged representation of each conformation in the set.

2. Use the SVD of the entire set to further reduce the description length of each confor-

mation.

Efficient algorithms exist that compute the SVD in time O(s2t) where s is the smaller

and t the larger dimension of A (rows or columns). Note that while in principle, SVD

could be applied to intra-molecular distance matrices without first averaging sub-chains,

the quadratic dependency on the smaller dimension of A shows the important advantage of

averaging: usually, the larger dimension t will reflect the size of the conformational sample

set while the smaller dimension s will correspond to the size of a single intra-molecular

distance matrix. Reducing the distance matrix size by using averaged conformations, as

described in Section 3.2, is therefore key to performing SVD in practice.

To perform SVD on a set of intra-molecular distance matrices derived from m-averaged

conformations, each of these distance matrices is rewritten as an r(r − 1)/2 dimensional

vector (where r = bn/mc) and then SVD is applied to the matrix that contains all these

vectors. Taking the resulting U matrix and removing all columns that correspond to small

singular values (the directions of little variance), we have the linear map that takes the

set of distance matrices into a lower-dimensional Euclidean space while preserving a high

percentage of the variance and thus distance information. We found that in practice, a

relatively small output dimensionality between 12 and 20 is sufficient to maintain about 90%

of the variance of the distance matrices. In what follows, we will denote the dRMS measure

obtained from an SVD compressed set of m-averaged distance matrices by dPCm RMS. (PC

stands for the number of principal components that are used after compression.)

Since the cost of the SVD is quadratic in the length of the protein (assuming a very large

set of conformations), its dependence on m, the averaging factor, is quartic. Therefore, one

would like to use a large m when averaging. On the other hand, averaging is lossy, and thus

it would be best to apply SVD to a representation that has the least amount of averaging

possible. Figure 3.3 shows the effectiveness of the SVD for reducing the description length of

protein conformations. Figure 3.3(a) presents the correlation between dRMS and dPC4 RMS
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Figure 3.3: Correlation between dRMS and d
PC
4 RMS for different number of PCs on (a)

decoy sets and (b) random sets of some proteins.

on some of the decoy sets as the number of PCs that is used increases. With as little as 16

PCs a correlation of 0.9 is achieved. Figure 3.3(b) presents the correlation on some of the

random sets as the number of PCs that is used increases. Here as little as 12 PCs suffice

to get a correlation of 0.9. For comparison, we present in Figure 3.4 the correlation when

SVD is applied after averaging with a factor of m = 9. Here the same number of PCs yields

lower correlation than was achieved for m = 4. The computation time would be more than

16 times faster though.

3.3.2 Evaluation of approximation errors for nearest-neighbor search

Using an approximate measure to find the k NNs of a conformation entails that some true

NNs will be missed while other conformations would be chosen instead, which are not true

NNs. As described above, the approximate measure we propose to use is dPCm RMS. We

tested the usefulness of this measure on both the decoy sets and the random sets used in

Subsection 3.2.4.

Given a set of conformations S and a query conformation q from that set, we define

two orderings of the elements in S: S1 and S2. S1 is the ordering of the conformations in

S by their exact dRMS distance from q. S2 is ordered by the dPCm RMS distance of the

conformations in S from q. Thus, S2 is the approximation of S1 using our reduced similarity
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Figure 3.4: Correlation between dRMS and d
PC
9 RMS for different number of PCs on (a)

decoy sets and (b) random sets of some proteins.

measure. In our test we used m = 4 for both random and decoy sets. We used 16 PCs for

the decoy sets but only 12 for the random sets. Based on these two sets we compute two

error measures and two parameters to help evaluate the performance of the approximate

similarity measure for the k NNs application.

The two error measures we use are:

err1 Given the dRMS distance of the kth conformation in S2 (the approximate kth NN)

and the dRMS distance of the kth conformation in S1 (the true kth NN), how much

is the former larger than the latter. This error is reported as percentage of the dRMS

distance of the kth conformation in S1.

err2 Given the average dRMS distance of the first k conformations in S2 (the average

distance of an approximate NN) and the average dRMS distance of the first k con-

formations in S1 (the average distance of a true NN), how much is the former larger

than the latter. This error is reported as percentage of the average dRMS distance of

the top k conformations in S1

We also computed two other parameters that are indicative of how well the approximate

measure finds true NNs:

NN1 The number of elements among the top k of S1 found in the top k of S2. In other

words, the number of true NNs found by the approximate measure.
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k = 10 k = 25 k = 100
err1 err2 NN1 NN2 err1 err2 NN1 NN2 err1 err2 NN1 NN2

1CTF 11% 3% 7.8 20 12% 3% 19 67 10% 2% 81 260
1SN3 14% 5% 7.5 23 15% 4% 18 69 12% 2% 76 301
1UBQ 15% 7% 7.0 38 14% 5% 18 102 13% 3% 77 332
2CRO 12% 4% 8.3 15 13% 3% 20 48 11% 2% 82 212
3ICB 13% 5% 7.8 23 13% 4% 19 68 12% 2% 78 292
4PTI 15% 6% 7.5 24 17% 5% 18 80 14% 3% 73 343
4RXN 13% 5% 7.9 19 16% 4% 19 62 16% 3% 78 295

Table 3.2: Mean values of err1, err2, NN1 and NN2 for 250 queries of k nearest neighbors
using the decoy sets.

NN2 The maximal index in S2 of an element from the top k in S1. In other words, how

many approximate NNs do we need to find in order to have all the true NNs.

We first looked at the decoy sets of size 10,000 for each of the eight proteins. We

used m = 4 and 16 PCs (d16
4 RMS measure) to find approximate NNs. For each set, we

randomly chose 250 query conformations and evaluated err1, err2, NN1 and NN2 for each of

them. Table 3.2 shows the mean values of these parameters over the 250 queries (standard

deviations were generally small).

The err1 error was about 15% for all proteins, which translates to an error of no more

than 1.5Å in the furthest NN that is returned. The err2 error is always smaller than

7%, which means that on average the ith approximate nearest neighbor is no more than

0.7Å further away than the ith true NN. The NN1 parameter reveals that at least 70% of

the true NNs are returned by the approximate measure, and the NN2 parameter indicates

that almost always it is enough to find 3k approximate NNs in order to guarantee that all

true k NNs are found.

Next we looked at the random sets, each containing 5000 conformations and performed

the exact same calculations as we did for the decoys. However, here we used m = 4 and 12

PCs (d12
4 RMS measure) to find approximate NNs. The results are shown in Table 3.3. Here

the err1 error was less than 10%, which means the approximate furthest NN was less than

1.5Å further away than the true furthest NN. Note that the random sets cover a larger part

of the conformation space and thus the distance between a pair of conformations would be

larger than what we find for decoy sets, which span only a small portion of conformation

space. The err2 error is in general smaller than 3% which translates to about 0.5Å. While

here the approximate method found somewhat fewer true nearest neighbors when k = 10

than for the decoy sets (NN1 ≥ 6.5) its performance was equivalent to the decoy sets for
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k = 10 k = 25 k = 100
err1 err2 NN1 NN2 err1 err2 NN1 NN2 err1 err2 NN1 NN2

1CTF 8% 3% 6.8 20 8% 2% 18 61 9% 1% 82 203
1SN3 8% 3% 6.8 23 9% 2% 18 62 9% 1% 82 197
1UBQ 8% 3% 6.9 38 9% 2% 18 60 9% <1% 83 190
2CRO 6% 2% 7.8 15 6% 1% 21 41 5% 1% 91 134
3ICB 9% 3% 6.6 23 10% 2% 18 67 9% 1% 81 217
4PTI 8% 3% 6.9 24 9% 2% 19 58 8% 1% 83 194
4RXN 8% 3% 6.9 19 9% 2% 19 58 9% 1% 82 198

Table 3.3: Mean values of err1, err2, NN1 and NN2 for 250 queries of k nearest neighbors.

k = 10 k = 25 k = 100
err1 err2 NN1 NN2 err1 err2 NN1 NN2 err1 err2 NN1 NN2

1CTF decoys 20% 9% 7.1 39 22% 8% 17 132 20% 5% 67 571
2CRO decoys 22% 10% 7.1 43 24% 9% 17 156 21% 6% 65 656
1CTF random 15% 7% 4.6 85 16% 6% 12 192 17% 4% 60 615

Table 3.4: Mean values of err1, err2, NN1 and NN2 for 250 queries of k nearest neighbors.

k = 25 and superior (NN1 ≥ 81) for k = 100. In general, about 2.5k approximate NNs were

enough to ensure that all true k NNs are found.

Finally, we looked at some larger sets of 100,000 conformations each. We ran the same

test as we did for the smaller conformation sets. Approximate nearest neighbors were

computed using the d16
4 RMS measure for the decoy sets and the d12

4 RMS measure for the

random set. The results are displayed in Table 3.4. In general the results are slightly worse

than what we observed for the smaller sets in terms of the error percentages and the number

of true NNs found by the approximate measure. This is due to the fact that the SVD is

less effective for the larger sets. Namely, more PCs are needed to capture well enough the

variance of all the conformations. Indeed when we used d
20
4 RMS instead of d16

4 RMS for

the 1CTF decoys, the results were comparable to what we saw with the smaller decoy set

(10,000 conformations). Still the NN2 statistic is very promising, requiring only about 6k

approximate NNs to capture all true k NNs.

3.3.3 Running time

We now consider the running times in a concrete nearest-neighbor task: given a set of N =

100, 000 random conformations of protein 1CTF, find k = 100 nearest neighbors for each

sample in the set. The reported times in this section refer to a sequential implementation

in C running on a single 1GHz Pentium processor on a standard desktop PC.

We first compare the running times for a brute-force (all-pairs) implementation using
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N cRMS c4RMS dRMS d4RMS

1,000 18.6s 12.4s 31.0s 2.2s
2,000 74.4s 50.0s 137.5s 8.0s
5,000 464.8s 312.0s 759.8s 43.4s

100,000 ∼52h ∼35h ∼84h ∼4.8h

Table 3.5: Brute-force search using cRMS vs c4RMS and dRMS vs d4RMS

both cRMS and dRMS, and their corresponding averaged similarity measures cmRMS and

dmRMS. All measures were used to find the k = 100 nearest neighbors for each of the N

samples. Table 3.5 shows that the latter measures already result in a notable speed-up. For

d4RMS, a significant speed-up over dRMS is obtained due to the quadratic down-scaling

of intra-molecular distance matrices by averaging proteins. For c4RMS, the improvement

over cRMS is smaller. This is because the reduction by averaging affects the number of

involved points only linearly, and the main effort in computing cRMS comes from finding

an optimal rigid-body alignment of two point sets.

Note that the increase in running times agrees quite well with the expected quadratic

scaling of the brute-force nearest neighbor approach. The times for N = 100, 000 samples

were therefore extrapolated from the actual running times measured for the smaller values of

N . In fact, for dRMS using all Cα atom coordinates, we could not store all intra-molecular

distance matrices. This problems does not occur with averaged proteins and dmRMS.

We next address the quadratic scaling problem of the brute-force approach. To be able

to apply a kd-tree, we first further reduced the 120-dimensional space of d4RMS for 1CTF

using SVD and retained 16 principal components. This further compression took about

one minute for the complete set of 100,000 samples. Building the kd-tree for the resulting

16-dimensional data took only about 4 seconds.

We then ran both the brute-force and the kd-tree approach using d16
4 RMS as the sim-

ilarity measure. Table 3.6 shows the running times for finding k = 1 and k = 100 nearest

neighbors for each sample in the full set of 100,000 samples. The obtained total speed-up

of our NN search (approximate similarity measures and a kd-tree) over the current best

approach (brute-force search using all Cα coordinates) is several orders of magnitude (∼84

hours down to 19 minutes).

In general, the speed-up obtained by using a kd-tree can be expected to increase with

increasing sample set size N . Due to its quadratic scaling, brute-force search will become
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k Brute-force kd-tree

1 30min 4min 10sec
100 41min 19min

Table 3.6: Brute-force vs kd-tree search for k nearest neighbors.

very slow for larger sample sets. On the other hand, the sub-quadratically scaling kd-

tree approach should allow to process much larger sample sets within a few hours without

parallelization on a standard desktop PC.

3.4 Application 2: structural classification

Given a set of native protein structures each having a different amino acid sequence, such

as the Protein Data Bank (PDB)3 [15, 16], we would like to classify the structures into

groups according to their structural similarity. This task has been performed manually in

the SCOP (structural classification of proteins) database4 [146], where protein structures

are hierarchically classified into classes, folds, superfamilies and families. It has also been

done semi-automatically in the CATH5 [152] database, where protein structures are hierar-

chically classified into classes, architectures, topologies and homologous superfamilies. An

automatic classification can be found in the FSSP (Fold classification based on Structure-

Structure alignment of Proteins) database6 [86], where the DALI program is used to classify

all structures in the PDB into families of similar structures.

The major difficulty in automatically classifying protein structures lies in the need to

decide, given two protein structures, which parts of both structures should be compared,

before it can be determined how similar these parts are. There is an inherent trade-off

between the length of the compared parts and the level of similarity that is found. The

longer the compared parts the less similar the two structures will be, and vice-versa. This

correspondence problem does not arise when different conformations of the same protein are

compared because in that case the correspondence is trivially determined. For this reason,

computing the similarity between structures of different proteins requires considerably more

computation than the methods described in Section 3.2.

Several algorithms have been proposed for structural classification. Some of the more

3http://www.rcsb.org/pdb/
4http://scop.mrc-lmb.cam.ac.uk/scop/
5http://www.biochem.ucl.ac.uk/bsm/cath/
6http://www.ebi.ac.uk/dali/fssp/
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popular ones are briefly described here. For a survey of other methods see [107].

DALI 7 The internal distances matrices of both proteins are computed. Then all pairs of

similar sub-matrices of small fixed size (one from each protein distance matrix) are found

and a Monte Carlo algorithm is used to assemble the pairs into larger consistent alignments.

For more details see [85].

PROSUP 8 Similar fragments are identified in both proteins. They are iteratively ex-

panded to create alignments. A dynamic programming algorithm is then used to iteratively

refine each alignment and finally insignificant alignments are removed. For more details

see [114].

CE 9 Each structure is cut into small fragments and a matrix of all possible aligned frag-

ment pairs (AFPs) is created. Combinations of AFPs are selectively extended or discarded

leading to a single optimal alignment. For more details see [173].

STRUCTAL 10 The backbones of the two protein structures are directly matched by

iteratively cycling between a dynamic programming algorithm that computes optimal cor-

respondence given the current orientation of the two structures, and a least-square fitting

that optimally orients the structures to minimize coordinate difference between the corre-

sponding parts. For more details see [65, 188].

3.4.1 STRUCTAL and m-averaging

All the above methods stand to gain in performance by using our averaging scheme. In order

to verify this claim, we tested the speed-up and accuracy obtained by using the STRUCTAL

method on averaged protein structures. We could not test our approach on PROSUP, DALI

and CE because these servers did not accept our averaged structures since they are not

valid protein structures. These algorithms were too involved for us to implement ourselves

reliably.

7http://www2.ebi.ac.uk/dali
8http://lore.came.sbg.ac.at/CAME/CAME EXTERN/PROSUP
9http://cl.sdsc.edu/ce.html

10http://bioinfo.mbb.yale.edu/align
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The STRUCTAL algorithm starts with an initial alignment of the backbone Cα atoms

of the two structures according to one of a number of possible heuristics (aligning the

beginnings, the ends, random segments, by sequence similarity, etc). Then a two step

process is repeated until convergence. First, a dynamic programming algorithm analogous

to the Needleman and Wunsch sequence alignment algorithm [147] finds the correspondence

between the two structures that yields the highest score. Scoring is based on assigning a

cost to each possible corresponding pair, which is inversely proportional to the distance

between Cα positions, and a gap penalty for every gap in the alignment (for more details

see [65]). Computing the best correspondence thus requires O(n1n
2
2 + n2n

2
1) time (n1 and

n2 are the number of residues in each structure). Second, an optimal relative orientation

is computed for the two structures, based on the previously computed correspondence, by

using the method in [87, 97]. The score of the final correspondence is returned together

with the cRMS distance of the corresponding parts and the length of the correspondence.

Since the result is sensitive to the initial alignment, the algorithm is usually run a number

of times for each pair of structures, each time using a different initial alignment. The results

of the highest scoring run is kept.

STRUCTAL also computes a p-value for the final score, which can be used to determine

the statistical significance of the similarity that was computed. It gives the probability that

a similarity of a given score and length could occur at random. As described in [124], this

value is a function of the STRUCTAL alignment score and the length of the correspondence.

It was computed based on structural comparison of the entire SCOP database. In what

follows we will call a statistically significant alignment (p < 0.005) a good match and all

other alignments bad matches.

We investigate the performance of STRUCTAL when used together with m-averaging

to compute structural similarity among the native structure of different proteins in terms

of the tradeoff between the gain in speed and the amount of error that results. We use

STRUCTAL as a black box and input m-averaged structures as if they were true protein

structures. An m-averaged structure is created by cutting the protein into sub-chains of

length m starting at its N-terminal and computing the average of all Cα atoms in each

fragment. The sub-chain at the C-terminal could have between 1 and m Cα atoms. It is

possible to shift the sub-chains by t residues, where 1 ≤ t ≤ (N mod m), and get a different

m-averaged structure. The choice of t1 and t2 for a pair of m-averaged structures could

affect the computed similarity score, however we expect this effect to be small. In what
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follows we use t = 0 (no shift) when computing all m-averaged structures. Since both n1

and n2 are reduced by a factor of m, the complexity of the dynamic programming, which

is the main part of the STRUCTAL, is reduced by a factor of m2. The complexity of the

optimal orientation procedure is reduced by a factor of m.

3.4.2 Experimental results

In this section we evaluate our method based on how well it is able to pick out the good

matches from the bad matches (as defined in the previous subsection). We cannot test m-

averaging in this context by evaluating its performance in finding NNs since it is difficult to

impose a strict ordering on a set of proteins, by measuring their similarity to one structure

in the set. This is due to the aforementioned inherent tradeoff between the length of the

correspondence and the quality of the similarity that is achieved for a given pair.

For our tests we used the latest version of STRUCTAL (courtesy of Michael Levitt).

This program inputs two protein structures in the form of PDB files, and outputs their

alignment and its score.

The set of structure pairs on which we tested our method was constructed as follows.

We examined the clustering results based on STRUCTAL comparisons presented by Erik

Sandelin on his PROTOFARM web site11 and picked out 3,691 pairs of structures, most

of which were found to be good matches. These pairs all have a match correspondence of

at least 150 Cα atom pairs and are taken from a set of 256 different protein structures of

length between 180 and 420 residues each. We then randomly picked 6,375 more pairs from

our set of 256 structures. Altogether we examined 10,066 pairs of structures, of which 4052

where found by STRUCTAL to be good matches and 6,014 were found to be bad matches.

For each of the structures we generated an m-averaged approximation for m = 3, 4 and 5.

Finally we ran STRUCTAL on the set of pairs using the 3 sets of averaged structures and

recorded the results.

We restrict our analysis to the STRUCTAL score that is computed for each pair, since

we do not have a method for computing p-values for evaluating the statistical significance

of a match between two m-averaged structures. Developing such a method would require in

depth analysis of the distribution of scores of m-averaged pairs (see [124]), which is beyond

the scope of this work.

In Figure 3.5 we show the structural comparison results in four graphs. Each depicts two
11http://csb.stanford.edu/sandelin/protofarm/html/
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Figure 3.5: Histogram of scores obtained for both the good and the bad matches using
STRUCTAL on (a) the full structures, (b) m-averaged structures with m = 3, (c) m-
averaged structures with m = 4 and (d) m-averaged structures with m = 5.

histograms, one for the score distribution of the good matches and one for score distribution

of the bad ones. The results are binned by the score of each aligned pair. Since the p-value

is based on both the score and the length of the correspondence (see [124] for details), the

score alone is not enough to completely separate the two histograms even when using the

full structures (Figure 3.5(a)). Thus some matches will inevitably be misclassified. Figures

3.5(b), 3.5(c) and 3.5(d) show the histograms obtained for the m-averaged structures with

m = 3, 4 and 5 respectively. One can still see that the bulk of the matches are classified well

by the STRUCTAL score, with the amount of overlap between the histograms increasing

as m grows larger.

The exact numbers of misclassified pairs can be found in Table 3.7. The numbers are
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p ≤ 0.005 p ≤ 0.001
m Total FP FN Total FP FN
1 157 (1.6%) 48 109 130 (1.3%) 39 91
3 765 (7.6%) 331 434 646 (6.6%) 199 447
4 966 (9.6%) 205 761 782 (7.8%) 238 544
5 1572 (15.6%) 87 1485 1107 (11%) 136 971

Table 3.7: The total number of false positives (FP) and false negatives (FN).
.

given for both the STRUCTAL p-value cutoff of p ≤ 0.005 and a more stringent cutoff of

p ≤ 0.001. These numbers are computed by finding the value of the STRUCTAL score that

minimizes the amount of total misclassifications for each value of m. Less than 7% of the

pairs are misclassified when we use m-averaging with m = 3, less than 10% of the pairs are

misclassified when m = 4 and about about 15% misclassified when m = 5. The number

of false negatives clearly increases with m, since averaging may obfuscate the similarity.

Moreover, the scoring function that was optimized for protein structures becomes less and

less effective as the m-averaged structures grow less and less protein-like as m increases,

and as a result matching parts can be missed. For the more stringent cutoff of p ≤ 0.001 we

observe in Table 3.7 that there is a considerable drop in the number of misclassified pairs

compared to the first p-value used. This indicates that a large number of misclassifications

are borderline matches.

When precision is important, m-averaged structures can be used as a fast filter to quickly

separate a small set of potentially good matches from the significantly larger amount of bad

matches. Then the full structures can be used to weed out the false positives that snuck

in. In this scenario, the false negatives are the only true errors since the false positives can

be removed in the second stage. Their number can be significantly reduced by shifting the

cutoff score down. Thus the number of false negatives will be reduced at the cost of allowing

more false positives. For example, when m = 3, it is possible to reduce the number of false

negatives by 40% while increasing the total number of misclassified pairs by less than 40%.

Another indication that m-averaging introduces only a small error is the correlation

between the STRUCTAL score using the full structures and the score using the m-averaged

structures. It is 0.924 when m = 3, 0.908 when m = 4 and 0.85 when m = 5. This entails

that the m-averaged scores are a good predictor of the true score and could also be used

for classification into more than just 2 classes (good or bad matches).
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3.4.3 Discussion

The test results presented in the previous subsection show the effectiveness of m-averaging

for speeding up structural comparison using the STRUCTAL algorithm. It can be used

both as a fast method for structural classification with a small amount of error, or as a fast

filter that is able to remove most bad matches, leaving only a small subset of pairs to be

evaluated using full protein structures.

In this work, we treated STRUCTAL as a black box. However, a scoring function that

is better suited for m-averaged structures can be devised for STRUCTAL. Such a function

would take into account the fact that the distance between neighboring points along the

backbone chain in an m-averaged structure is different — in fact, larger — than the fixed

3.8Å between Cα atoms in real proteins.

We propose a hierarchical use of STRUCTAL with m-averaging, in which the value of m

is decreased gradually. At first a high value is used to quickly remove the very bad matches.

Then as m is decreased more and more bad matches are discovered and removed. In this

scheme, the alignment that is computed for a pair of structures, for some value of m, could

serve as an initial alignment for aligning the two structures at subsequent iterations with

smaller values of m, in addition to the other heuristics that are used. Indeed, in most good

matches that were detected using the m-averaged structures, the rotation and translation

that was used for the alignment (the transformation that superimposes the two structures)

was very similar to the one computed using the full structures.

Another good measure for structural alignment that can be used instead of the STRUC-

TAL score, is the ratio of the cRMS distance between the corresponding Cα atoms of the

two structures to the length of the correspondence. This ratio is highly correlated with the

STRUCTAL score and yields only a small increase in the number of misclassifications. It is

also independent of the comparison algorithm that is used, and can be obtained from other

alignment algorithms such as DALI or CE.

3.5 Conclusion

Two general properties of proteins, their chain topology and limited compactness, are ex-

ploited to uniformly reduce the number of features for structural similarity computations.

Substantial savings in terms of storage and running time are attained with small errors.

In applications in which no approximation error is tolerable, our approach can be used
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as a first step to filter a small subset of pairs that are within some tolerance band around

the desired similarity. More expensive exact similarity measures can then be used on the

reduced set of pairs.

Two possible applications were presented: finding k nearest neighbors in large sets of

conformations of the same protein and classification of different proteins using the STRUC-

TAL algorithm. For the first application the introduced error was low and the correlation

to the true similarity measure was very high. For the second application the number of

misclassified matches increased only slightly when using m-averaged structures. In both

applications, the running times were reduced from days to hours or even minutes.

In general, applications that input very large sets of proteins or that employ compu-

tationally intensive algorithms on large proteins stand to benefit from approximation of

structures as suggested in this work.



Chapter 4

Efficient Maintenance and

Self-Collision Testing for

Kinematic Chains∗

4.1 Introduction

A powerful and popular computational tool for the study of proteins is computer simula-

tion. The motion of a single protein molecule is simulated as it deforms in time, changing

its conformation. When the laws of physics guide the motion, the protein is undergoing

a molecular dynamics simulation. When special probabilistic criteria are used to accept

proposed motions, it is undergoing Monte Carlo simulation [119]. A key component of the

algorithms that perform these simulations is the efficient maintenance of proximity infor-

mation between the different particles of the system — atoms in the case of proteins. This

information is needed when simulating any physical system, not just proteins, in order to

detect steric clashes (collisions) between particles. In molecular simulation proximity in-

formation is also required to compute the energy of the simulated system, which largely

depends on short-range interactions between pairs of atoms.

During the simulation, the conformation of the protein changes, altering the proximity

relations between its atoms. It is essential to the computational performance of the sim-

ulation that updating the proximity information after each conformational change is done

∗This chapter describes work done jointly with Fabian Schwarzer and Dan Halperin and published in [128,
129]
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efficiently. The conformational variability of the protein backbone at physiological condi-

tions is well approximated using the torsion-angle model introduced in Subsection 1.3.2.

This model represents the protein backbone as a kinematic chain with many DOFs. This

property is exploited in developing an efficient algorithm for maintaining the proximity

information of a protein molecule undergoing Monte Carlo simulation. A novel data struc-

ture — the ChainTree — is designed for representing deforming kinematic chains. It takes

advantage of specific properties of kinematic chains and Monte Carlo simulation of pro-

teins in order to efficiently update proximity information as the protein deforms during the

simulation.

In this chapter the ChainTree is introduced in the context of general kinematic chains.

Its performance in detecting steric clashes (self-collision) in a deforming kinematic chain is

analyzed both theoretically and in practice. In Chapter 5, the ChainTree is extended and

used to compute all pairs of interacting atoms in a protein molecule undergoing a Monte

Carlo simulation. A novel scheme for efficient reuse of unchanged partial energy sums is

presented, which speeds up energy computation at each step of the simulation.

4.2 Related work

The problems described above are closely related to the detection of collision among moving

objects and checking a deforming object for self-collision. Collision detection has been

extensively studied in robotics [26, 55, 56, 62, 126, 163, 169], computer graphics [22, 34, 64,

72, 88, 92, 106, 115, 200] and computational geometry [6, 46, 75, 128], to only cite a few

works. Most research, however, has been conducted in environments made of rigid objects,

few of them moving.

4.2.1 Feature tracking

The collision-detection methods in [6, 126] rely on tracking object features (e.g., closest

features) to compute minimal separation distance. They require the identity of the tracked

features to change rarely, the so-called temporal/spatial coherence assumption. In particular,

this assumption implies that during any small time step the placements of the objects

undergo small changes. A long kinematic chain does not satisfy this assumption since a

small DOF change may cause relatively large displacements of parts of the chain.
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4.2.2 Space-partition methods

Other collision-detection methods partition the space in which an object moves, for example,

into an octree [55, 64], a regular 3-D grid [79], or a set of projections onto subspaces [34].

Usually, these approaches do not lend themselves to incremental updating to handle a

deformable object or many objects moving simultaneously. Exceptions include [34, 64],

but then the temporal/spatial coherence assumption must be satisfied. It is worthwhile

explaining in more detail one such method – referred to below as the grid algorithm. Used

under various forms [79, 84, 159, 162, 201, 213] this method reduces the complexity of finding

self-collision to asymptotically linear time in non-pathological cases by indexing the basic

fragments of the object in a regular grid. This approach assumes that all object fragments

have similar size and that the centers of their bounding sphere do not come within a small

fixed distance. In this case it is formally shown in [79] that the number of collisions of one

fragment is bounded by a constant. The 3-D space occupied by the object is divided into

cubes whose sides are set to the diameter of the largest bounding sphere. For each fragment,

the cube that contains the center of its bounding sphere is computed, and indexed using a

hash-table. This data structure is re-computed after each step in Θ(n) time. Determining

which fragments intersect any given fragment then takes O(1) time. Hence, finding all

collisions takes Θ(n) time.

4.2.3 Bounding volume hierarchies

The most popular approach to collision detection pre-computes a bounding-volume hier-

archy (BVH) for each object. This hierarchy captures spatial proximity between small

components of the object at successive resolutions. The hierarchies are then used to expe-

dite collision tests by quickly discarding pairs of components contained in non-overlapping

bounding volumes (BVs) [22, 56, 72, 88, 106, 115, 163, 200]). Various types of BVs have

been used, e.g., spheres and bounding boxes. The performance of a bounding box hierarchy

was analyzed theoretically in [221, 222]. These techniques have been extended in [22, 200] to

handle deformable objects by exploiting the facts that neighboring elements in the meshed

surface of an object always remain in proximity to each other when the object deforms.

For each deformable object, a balanced BV tree is pre-computed by successively grouping

topologically close features of the meshed surface and enclosing them in a BV. When the

object deforms, the topology of the tree stays unchanged; only the sizes and locations of
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the BVs are updated in a bottom-up fashion. However, in general, BV techniques lose effi-

ciency when applied to detecting self-collision in a deformable object, because they cannot

avoid detecting the trivial self-collision of each object component with itself. They also lose

efficiency when many objects (rigid or not) move independently. They were, nonetheless,

successfully applied to detecting self-collision in a rope during knot-tying simulation [21].

The method described below borrows from previous work on BVHs. It uses a BVH based

on the invariance of the chain topology. But it combines it with a transform hierarchy that

makes it possible to efficiently prune the search for self-collision, when few DOFs change

simultaneously.

4.2.4 Collision detection for kinematic chains

Only a limited amount of previous research has been dedicated to collision detection for

kinematic chains. A general scheme is proposed in [78] to efficiently update a representation

of a kinematic chain designed to efficiently detect collision with fixed obstacles. however,

this scheme does not support self-collision detection. The work in [75] addresses a similar

problem – testing self-collision in a deformable necklace made of spherical beads. Like the

method described here, it builds a BVH based on the chain topology. However, it assumes

that all DOFs change simultaneously at each step and does not attempt to take advantage

of rigid sub-chains. When all DOFs change simultaneously our algorithm does about the

same amount of work as the algorithm in [75] to detect self-collision.

The problem of deciding whether a torsion angle change causes a self-collision in a

3D polygonal chain has been studied in [184, 185]. It was shown in [185] that determin-

ing whether a rotation around a bond causes self-collision anywhere along its path takes

Ω(n log n) time, when n is the number of links in a chain. It is further conjectured in [184]

that no amount of preprocessing enables performing n such rotations in worst case sub-

linear time per rotation. However, in this work, we only care whether the conformation

at the end of the rotation is collision-free and not whether there is a collision during the

motion.
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Figure 4.1: Transform hierarchy: grey ovals depict links; Tαβ denote rigid-body transforms
between the reference frames α and β.

4.3 The ChainTree

In this section, the ChainTree, the data structure used to represent a protein, is described.

It is designed to take advantage of the open chain properties that were described in Sub-

section 1.3.2.1. First, the two hierarchies that make up the ChainTree are described. The

transform hierarchy that approximates the kinematics of the backbone is introduced in Sub-

section 4.3.1 and the bounding-volume hierarchy that approximates the geometry of the pro-

tein is presented in Subsection 4.3.2. Next, the ChainTree is presented as the combination

of the two aforementioned hierarchies into a single balanced binary tree (Subsection 4.3.3).

Finally, the update scheme of the ChainTree is describe(Subsection 4.3.4).

In the following the algorithm that updates the ChainTree is referred to as the updating

algorithm and the algorithm that tests self-collision or finds interacting pairs is referred to

as the testing algorithm.

4.3.1 Transform hierarchy

A reference frame is attached to each link of the protein’s backbone and each DOF is

mapped to the rigid-body transform between the frames of the two links it connects. The

transform hierarchy is a balanced binary tree of transforms. See Figure 4.1, where ovals

and labeled arrows depict links and transforms, respectively.

At the lowest level of the tree, each transform represents a DOF of the chain. Products

of pairs of consecutive transforms give the transform at the next level. For instance, in
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Figure 4.2: The BVH: each box (OBB) approximates the geometry of a chain-contiguous
sequence of links.

Figure 4.1, TAC is the product of TAB and TBC . Similarly, each transform at every level is

the product of two consecutive transforms at the level just below. The root of the tree is

the transform between the frames of the first and last links in the chain (TAI in the figure).

Each of the log n levels of the tree can be seen as a chain that has half the links and

DOFs of the chain at the level just below it. In total, O(n) transforms are cached in the

hierarchy. We say that each intermediate transform Tαβ shortcuts all the transforms that

are in the subtree rooted at Tαβ .

The transform hierarchy is used from the top down by the testing algorithm to propagate

transforms defining the relative positions of bounding boxes (from the other hierarchy) that

need to be tested for overlap. It also allows computing the relative position of any two links

or boxes in O(log n) time, but this property is not used by our algorithm.

A structure similar to our transform hierarchy was introduced in [184]. However, it was

only used for theoretical analysis and was not implemented.

4.3.2 Bounding-volume hierarchy

The bounding-volume (BV) hierarchy is similar to those used by prior collision checkers

(see Section 4.2.3). As spatial proximity in a deformable chain is not invariant, the BVH

used here is based on the proximity of links along the chain. See Figure 4.2. Here, for

simplicity, the BVH is introduced in the context of self-collision detection. In Section 5.3.2

the extensions that allow for self-collision detection and finding interacting pairs using a

single hierarchy are described.

Like the transform hierarchy, the BVH is a balanced binary tree. It is constructed

bottom up in a “chain-aligned” fashion. At the lowest level, one BV bounds each link.

Then, pairs of neighboring BVs at each level are bounded by new BVs to form the next
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level. The root BV encloses the entire chain and each level contains a chain with half the

BVs as the chain at the level below it. Each chain of BVs encloses the geometry of the

chains of BVs at all levels below.

The type of BV chosen in this work is the oriented bounding box (OBB) [72], a rectan-

gular bounding box at an arbitrary orientation. OBBs were selected because they bound

well both globular objects (single atoms, small groups of atoms) and elongated objects

(chain fragments). In addition, unlike simpler axis-aligned bounding boxes [22, 200], but

like spheres, OBBs are invariant to a rigid-body transform of the geometry they bound. In

the ChainTree, this property eliminates the need to re-compute the BV of a rigid sub-chain,

even when this sub-chain has moved. Finally, OBBs can be efficiently computed and tested

for intersection. Spheres are another frequently used BVs [75, 163] that would meet our

needs. However, in a chain-aligned hierarchy, they are expected to bound poorly elongated

sub-chains, which are likely to occur.

Each intermediate OBB is constructed to enclose its two children, thus creating a not-

so-tight hierarchy (in contrast to a tight hierarchy where each BV tightly bounds the links

of the sub-chain it encloses). In the Appendix (Lemma 2), it is proven that the size of these

OBBs does not deteriorate too much as one climbs up the hierarchy. The major advantage

of using this not-so-tight BVH is the efficiency with which each box can be updated. Indeed,

the shape of the OBB stored at each intermediate node depends only on the 16 vertices of

the two OBBs held by this node’s children.

4.3.3 Combined data structure

The ChainTree combines both the transform and the BV hierarchies into a single binary

tree as the one depicted in Figure 4.3. The leaves of the tree (labeled A through H in the

figure) correspond to the rigid atom-groups (links) of the protein’s backbone as described in

Subsection 1.3.1. Each leaf holds both the bounding box of the corresponding link and side-

chain and the transform (symbolized by a horizontal arrow in the figure) to the reference

frame of the next link.

Each internal node (nodes J through P ) is associated with the frame of the leftmost

link in its sub-tree. It holds both the bounding box of the boxes of its two children and the

transform to the frame of the next node at the same level, if any. Computing the relative

position of a box and its left child box requires no coordinate transform, while computing

the position of a box relative to its right child box requires one transform, which is stored
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Figure 4.3: A binary tree that combines the transform and BV hierarchies.

at the left child node. This mechanism is used by the testing algorithm to propagate down

the relative positions of pairs of boxes that are to be tested for overlap.

The ChainTree contains both pointers from children to parents, which are used by the

updating algorithm to propagate updates from the bottom up, as described below, as well

as pointers from parents to children, which are used by the testing algorithm (Section 4.4).

4.3.4 Updating the ChainTree

When a change is applied to a single arbitrary DOF in the backbone, the updating algorithm

re-computes all transforms that shortcut this DOF and all boxes that enclose the two links

connected by this DOF. It does this in a bottom-up fashion, by tracing the path from

the leaf node immediately to the left of the changed DOF up to the root. A single node

is affected at each level. If this node holds a transform, this transform is updated. If it

holds a box that contains the changed DOF, then the box is re-computed. For example, in

Figure 4.3, when the DOF between the links associated with nodes F and G is changed,

the transforms stored at F and L and the boxes at O and P are re-computed. Since the

shape of an OBB is invariant to a rigid-body transform of the objects it bounds, all other

boxes remain unchanged.
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Figure 4.4: The ChainTree after applying a 1-DOF perturbation. Highlighted nodes were
updated

When multiple DOFs are changed simultaneously, the ChainTree is updated one level

at a time, starting with the lowest level. Hence, all affected transforms and boxes at each

level are updated at most once before proceeding to the level above it.

The updating algorithm marks every node whose box and/or transform is re-computed.

This mark will be used later by the testing algorithm. Figure 4.4 shows the marked nodes

in the ChainTree of Figure 4.3, after a change in the DOF between the links associated

with nodes F and G. The nodes with bold contours (F and L) are those whose transforms

were updated. The nodes in yellow (O and P ) are those whose boxes were re-computed. In

general, however, marked nodes may have had both their transforms and boxes updated.

4.4 Self-collision detection

4.4.1 Using a BVH

BVHs have been widely used to detect collision between pairs of rigid objects, each described

by its own hierarchy [72, 88, 106, 163, 200]. Given the hierarchies of two objects, the

algorithm first checks whether the root boxes overlap. If they do not, it can safely return
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that the two objects do not collide. If they do overlap, then the algorithm descends one level

in both hierarchies and tests all four pairs of children. It continues this process iteratively.

When the lowest level of one hierarchy is reached, the algorithm continues its descent

through the other hierarchy, testing the leaf boxes of one hierarchy against boxes at the

newly reached level in the other hierarchy. When it reaches leaves in both hierarchies, it

tests the actual components of the objects for overlap and returns a collision when they

overlap. The algorithm may stop as soon it has found a collision, or it may run until it has

found all collisions. In the former case, it is best for the algorithm to search for a collision

in a depth-first manner to reach overlapping leaves as quickly as possible.

The algorithm terminates quickly when the two objects are well separated, because the

search then ends near the top of both hierarchies and avoids dealing with the possibly

complicated geometry of the actual objects. If one is only interested in detecting whether

a collision occurs, the algorithm also terminates quickly when the overlap is large, because

the depth-first search is then expeditious in finding a pair of overlapping leaf nodes. The

algorithm takes longer when the objects are close but do not collide, or when there are

many distinct collisions and one wants to find them all.

A simple variant of this algorithm detects self-collision by testing the BVH of the object

against itself. This variant skips the test of a box against itself and proceeds directly to

testing the box’s children. However, it takes Ω(n) time, since all leaves will inevitably be

visited (each leaf is trivially in collision with itself). The ChainTree avoids this lower bound

by exploiting the third property stated in Section 1.3.2.1— large sub-chains remain rigid

between steps.

4.4.2 Using the ChainTree

When only a small number k of DOFs are changed simultaneously, long sub-chains remain

rigid at each step. These sub-chains cannot contain new self-collision. So, when the BVH

contained in the ChainTree is tested against itself, the branches of the search that would

look for self-collision within rigid sub-chains are pruned.

There are two distinct situations where pruning occurs:

1. When the algorithm is about to test a box against itself and this box was not updated

after the last DOF changes, the test is pruned.

2. When the algorithm is about to test two different boxes, and neither box was updated
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after the last DOF changes, and no DOF between those two boxes was changed, the

test is pruned.

The last condition in this second situation – that no DOF between the two boxes was

changed – is slightly more delicate to recognize efficiently. Two nodes at the same level in

the ChainTree are dubbed separated if there exists another node in between at the same

level that holds a transform modified after the last DOF changes. This node will be named

a separator. They are also separated if the transform held by the leftmost of the two was

modified. Hence, if two nodes are separated, a DOF between them has changed. Note that:

• when two nodes at any level are separated, any pair consisting of a child of one and

a child of the other is also separated.

• When two nodes at any level are not separated, a child of one and a child of the other

are separated if and only if they are separated by another child of either parent.

Hence, by pushing separation information downward, the testing algorithm can know in

constant time whether a DOF has changed between any two boxes it is about to test. The

algorithm also propagates transforms from the transform tree downward to compute the

relative position of any two separated boxes in constant time before performing the overlap

test.

To illustrate how the testing algorithm works, consider the ChainTree of Figure 4.4

obtained after a change of the DOF between F and G. F and L are the only separators. The

algorithm first tests the box stored in the root P against itself. Since this box has changed,

the algorithm examines all pairs of its children, (N,N), (N,O) and (O,O). The box held

in N was not changed, so (N,N) is discarded (i.e., the search along this path is pruned).

(N,O) is not discarded since the box of O has changed, leading the algorithm to consider

the four pairs of children (J, L), (J,M), (K,L), and (K,M). Both (J, L) and (K,L) satisfy

the conditions in the second situation described above; thus, they are discarded. (J,M) is

not discarded because J and M are separated by L. The same is true for (K,M), and so

on.

4.5 Complexity analysis

Two fundamental tradeoffs must be made when using a BVH for self-collision detection:
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1. Between the number of box overlap tests needed to detect or rule out self-collision

and the cost of one such test: In general, the more complex the BVs, the tighter they

bound a given geometry and the fewer tests are required; but the more expensive each

test becomes.

2. Between the time needed to update the BVH and the time to detect or rule out

self-collision: In general, reducing updating time (e.g., by using not-so-tight boxes or

keeping the topology of the hierarchy fixed) impairs the performance of self-collision

detection.

The analysis below is aimed at clarifying the choices made in the ChainTree and comparing

the updating and testing algorithms to current state-of-the-art algorithms. It is based on

the worst-case asymptotic behavior of the algorithms when n grows arbitrarily large. But

this behavior is not always meaningful in practice, since for many proteins n is too small

and/or the worst case is unlikely. For this reason, Section 4.6 will complement this analysis

with experimental tests.

Throughout this section we ignore the side-chains. Since the size of each one is small

and bounded by a constant, the side chains only affect the asymptotic complexity bounds

by a constant factor.

4.5.1 Updating the ChainTree

Updating the ChainTree after a 1-DOF change requires re-computing transforms and boxes

held in nodes along the path from the leaf node immediately to the left of the changed DOF

up to the root of the tree. By doing the updates from the bottom up, each affected transform

is re-computed in O(1) time. By using not-so-tight OBBs — thus, trading tightness for

update-speed — re-computing each box is also done in O(1) time. Since the ChainTree has

dlog ne levels, and at each level at most one transform and one box are updated, the total

cost of the update process is O(log n).

When a k-DOF change is made, affected transforms and boxes are updated one level

at a time. This ensures that no transform or box is re-computed more than once when the

converging update paths merge. The total updating time is then O(k log (n/k)). When k

grows this bound never exceeds O(n).

The efficient updating time for small values of k derives from the fact that the topology

of the ChainTree is never modified. However, this topology is not always optimal to detect
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self-collision, as it only imperfectly represents spatial proximity among links.

4.5.2 Detecting self-collision

All known algorithms to detect self-collision in an n-link chain take Θ(n2) time in the worst

case, if no further assumption is made about the chain. Hence, they do not behave better

than a brute-force algorithm.

In this subsection, it is assumed that the chains are well-behaved. Each link of a chain

is associated with its minimal enclosing sphere. Given two positive constants γ and δ, a

chain is well-behaved if it verifies the following two properties:

1. The ratio of the radii of the largest and smallest enclosing spheres is smaller than γ.

2. The distance between the centers of any two enclosing spheres is greater than δ.

It is not hard to convince oneself that proteins for example form well-behaved chains for

some γ and δ. The first property follows from the fact that there are only 20 different types

of amino acids. The second property is verified if we exclude conformations where atoms

overlap almost completely. These conformations are physically impossible because of the

van der Waals repulsion. It is shown in [79] that in well-behaved chains of arbitrary length

n the number of links that overlap a given link is bounded by a constant. Thus, there are

at most O(n) overlaps between the links of a well-behaved chain.

The motion model assumed in this work, that of changing only a few DOFs at time,

cannot cause a well-behaved chain to degenerate as long as new configurations that violate

the second condition above are never accepted. For example, in Monte carlo simulation of

proteins, a step that causes a pair of atoms to interpenetrate, will be rejected because of

the huge energetic penalty incurred by a steric clash. Thus, no cumulative effect during

successive steps will degenerate the chain.

Our algorithm performs two tasks for every pair of nodes it examines. First, it must

decide whether to prune this search path. This requires testing if the nodes have been

updated after the last DOF change and, if not, whether they are separated. Second, if this

search path is not pruned, the two boxes are tested for overlap. Both tasks require constant

time. Thus, the complexity of the algorithm is governed by the number of pairs of nodes

that are examined, which is proportional to the number of overlapping boxes at all levels

of the ChainTree in the worst case.

In the Appendix the following theorem is proved:
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Update Detection
Brute force Θ(n) Θ(n2)
Grid Θ(n) Θ(n)
Spatially-adapted hierarchy O(n log n) Θ(n)
Chain-aligned hierarchy O(n) Θ(n

4
3 )

ChainTree O(k log n
k ) Θ(n

4
3 )

Table 4.1: Comparison of complexity measures for updating and detecting self-collision in
well-behaved chains.

Theorem 1 The maximum total number of overlapping boxes at all levels of the ChainTree

of a well-behaved chain of n links is Θ(n
4
3 ).

Therefore, the testing algorithm runs in worst-case Θ(n
4
3 ) time. This bound, which is

similar to the one established in [75], holds whether the algorithm stops after detecting the

first collision or keeps running to detect all self-collisions. Indeed, the fact that two boxes

overlap does not imply that they contain colliding links. So, to detect self-collision or its

absence, the algorithm may have to eventually consider all pairs of overlapping boxes.

Note also that the bound is not affected by the pruning of search paths. So, when

all DOFs change at each simulation step, and as long as the chain remains well-behaved,

self-collision detection still takes Θ(n
4
3 ) time in the worst case, after O(n) updating.

The experimental results of Section 4.6 show however that when few DOFs change at

each step, the algorithm behaves much better in practice than the above bound suggests.

4.5.3 Comparison with other methods

There exist several methods applicable to the problem of detecting self-collision in a chain.

The asymptotic worst-case complexity of the most important ones is given in Table 4.1.

At each step, the brute-force algorithm first re-computes the position of every link that

has moved, which is done in worst-case linear time. It then detects self-collision by testing

all pairs of links for overlap, resulting in Θ(n2) tests in the worst case (e.g., when there are

no collisions).

Under the assumption that the chain is well-behaved, the grid algorithm described

in Section 4.2 reduces the worst-case complexity of both updating and testing to linear

time [79].

Although the grid algorithm is optimal in the worst case, BVH methods are intended

to do better on average. For a chain, two types of BVHs may be used:
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Spatially-adapted hierarchy: A BVH as described in [72, 106] which is based on a spatial

partitioning of each chain conformation to optimally encode spatial proximity between

links.

Chain-Aligned hierarchy: A BVH as the one in the ChainTree (see [75] for another

example) that encodes the chain-wise proximity of links along the chain. Links are

said to be in chain-wise proximity if they are not separated by more than a few links

along the chain.

Ideally, a BVH should be such that the depth of any box in the tree is a good indicator

of the spatial proximity of the links bounded by this box. This is precisely what a spatially-

adapted hierarchy is intended to achieve. Instead, a chain-aligned hierarchy only encodes

chain-wise proximity. If two links are chain-wise close, they are also spatially close. But

the reverse is not true: in a given chain conformation, pairs of links that are chain-wise

far apart may be spatially very close (e.g., this happens in folded protein conformations).

Consequently, testing self-collision with a spatially-adapted hierarchy is more efficient than

with a chain-aligned one. But, because spatial proximity varies as the chain deforms, while

chain-wise proximity does not, updating a spatially-adapted hierarchy is more expensive.

A spatially-adapted hierarchy of a chain can be tested for self-collision in Θ(n) time in the

worst case. This bound is a special case of a theorem proven in [222]. However, it is expected

to do better in practice. Building a new hierarchy at each step takes O(n log n) time [72].

One could attempt to reduce updating time to Θ(n) by not changing the topology of the

hierarchy and only updating the size and location of the BVs. But a single DOF change may

then corrupt the hierarchy so as to raise the number of BV overlap tests required to detect

self-collision to Θ(n2). Figure 4.5 illustrates such a scenario. In 4.5(a), the hierarchy is

spatially-adapted with no overlap between boxes. A change in the middle DOF creates the

conformation in 4.5(b). The boxes were updated to bound the new conformation without

changing the topology of the hierarchy. All pairs of boxes at the displayed level now overlap.

In contrast, despite its fixed topology, a chain-aligned BVH guarantees an O(n
4
3 ) self-

collision test, with an O(n) update when not-so-tight OBBs are used and an O(n log n)

update when tight spheres are used [75]. Thanks to its transform hierarchy, the ChainTree

reduces further the updating cost after a k-DOF change to O(k log (n/k)).

The worst-case bound on self-collision detection with the ChainTree hides the practical

speed-up allowed by search pruning. To evaluate this speed-up, we need to perform empirical
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(a) (b)

Figure 4.5: A 1-DOF change corrupting a spatially-adapted hierarchy. (a) Before change.
(b) After 1-DOF change. Only second level from bottom is shown (n2 boxes).

tests.

4.6 Test results for self-collision detection

We conducted various tests with our implementation of our method – called here Chain-

Tree – and the following three methods:

Grid - This is the grid method as described in Section 4.2.2. The length of a side of each

grid cell is the diameter of the largest atom. Both updating and testing take Θ(n)

time.

1-OBBTree - Here, a tight spatially-adapted OBB hierarchy is re-computed at each step,

and then tested against itself for self-collision. Updating and testing take O(n log n)

and O(n) worst-case time, respectively.

K-OBBTree - At each step, this algorithm computes a tight spatially-adapted OBB hi-

erarchy for each rigid sub-chain. It then tests each pair of hierarchies for collision.

Updating and testing take O(n log n) and O(n) worst-case time, respectively.

Both 1-OBBTree and K-OBBTree are based on the PQP library [72, 115] from UNC. The

function of ChainTree testing pairs of OBBs for overlap is also from this library. Our

experiments were run on a single 400 MHz UltraSPARC-II CPU of a Sun Ultra Enterprise

5500 machine with 4.0 GB of RAM.

In a first series of tests, chains of n spheres of radius 1 unit, spaced 4 units apart by

a torsion joint were constructed, with n = 1000, 2500, 5000 and 10000 spheres in initial

compact cube-like conformations. Each simulation consisted of 100,000 steps, each chang-

ing a single DOF picked uniformly at random. The magnitude of the change was chosen

uniformly at random between 0◦ and 30◦. If a collision was detected, the step was rejected,
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Figure 4.6: Average time per step for detecting self-collision in (a) a compact pseudo-protein
chain and (b) backbones of different proteins.

i.e., the change was undone before proceeding to the next step. This requires keeping two

copies of the ChainTree. For each chain, the four runs (one with each method) started at

the same initial configuration and used the same seed of the random number generator.

Hence, they generated the same sequence of configurations.

The average times per step are shown in Figure 4.6(a), when the algorithms stop after

finding the first collision. The plots show both updating times (black) and testing times

(grey). Some times are too small to be discernable. ChainTree is 5 times faster than

Grid for 1000 spheres and about 60 times faster for 10000 spheres. When finding all self-

collisions, ChainTree is 4 times faster than Grid for 1000 spheres and 53 times faster for

10000 spheres. In all cases, 1-OBBTree and K-OBBTree are the slowest methods because

of their high updating time, although K-OBBTree has the fastest testing time of all four

methods.

In a second series of tests four proteins from the Protein Data Bank1 [15] were used. We

selected these proteins – named 1CTF, 1LE2, 1HTB, and 1JB0 – to span different sizes.

See Table 4.2. For each protein, we ran the same simulation as in the first series of tests,

starting at the folded (native) state of the protein. However, only the protein’s backbone

was considered and the side-chains were ignored. At each step the four algorithms stopped

after finding the first collision. The results are summarized in Figure 4.6(b). ChainTree is

1http://www.rcsb.org/pdb
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Protein #amino acids #Atoms # Backbone atoms #Links
1CTF 68 487 204 137
1LE2 144 1167 432 289
1HTB 374 2776 1112 749
1JB0 755 5878 2265 1511

Table 4.2: Proteins used in experiments.

twice as fast as Grid for the smallest protein (1CTF) and 5 times faster for the largest one

(1JB0). Note that the chains in this benchmark are significantly shorter than those in the

first benchmark.

The effect of the number k of simultaneous DOF changes at each step on the performance

of the algorithms was also examined. We let k vary from 1 to 121 and, for each value,

measured the average time per step to update and find all collisions. In order to eliminate

the effect of compactness on the results, 11 conformations of 1HTB were chosen, each having

a different radius of gyration distributed uniformly between 20Å (the radius of the native

conformation) and 85Å. For each such conformation and each value of k, we ran a simulation

of 10,000 steps starting at that conformation. Each simulation was constrained to stay at

its starting conformation so its compactness would not change. Since more simultaneous

changes cause more collisions, on average it takes less time to find one collision when k

is large. Therefore we measured the time to find all collisions which is less affected by k.

Figure 4.7 shows the results. The time results are averaged over all 11 conformations. In

this case, ChainTree is the fastest algorithm until k = 50, thanks to both its logarithmic

updating time and its fast self-collision detection due to search pruning. When k increases,

the updating time of ChainTree deteriorates and search pruning becomes less effective as

rigid sub-chains are shorter. For k > 50, Grid, whose performance is independent of k,

becomes faster.

Figure 4.8 reveals more explicitly the effectiveness of search pruning in ChainTree. It

shows the average number of box overlap tests performed by ChainTree with and without

search pruning in the previous experiment (averaged over 11 conformations of 1HTB, as

explained above), for increasing values of k. The numbers are significantly smaller with

pruning than without when k is small. As expected, they converge as k increases.
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Chapter 5

Efficient Energy Computation for

Monte Carlo Simulation of

Proteins∗

5.1 Introduction

5.1.1 Monte Carlo simulation

The study of the conformations adopted by proteins is an important topic in structural

biology. Monte Carlo simulation (MCS) [17] is one common methodology for this study.

In this context, it has been used for two purposes: (1) estimating thermodynamic quan-

tities over a protein’s conformation space [83, 121, 218] and, in some cases, even kinetic

properties [171, 172]; and (2) searching for low-energy conformations of a protein, including

its native structure [2, 3, 219]. The approach was originally proposed in [140], but many

variants and improvements have later been suggested [82].

MCS is a series of randomly generated trial steps in the conformation space of the stud-

ied molecule. Each such step consists of perturbing some degrees of freedom (DOFs) of

the molecule [125, 171, 172, 218, 219], in general torsion (dihedral) angles around bonds.

Classically, a trial step is accepted – i.e., the simulation actually moves to the new conforma-

tion – with probability min{1, e−∆E/kbT } (the so-called Metropolis criterion [140]), where

∗This chapter describes work done jointly with Fabian Schwarzer and Dan Halperin and published in [129,
130]

91
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E is an energy function defined over the conformation space, ∆E is the difference in energy

between the new and previous conformations, kb is the Boltzmann constant, and T is the

temperature of the system. So, a downhill step to a lower-energy conformation is always

accepted, while an uphill step is accepted with a probability that goes to zero as the en-

ergy barrier grows large. It has been shown that a long MCS with the Metropolis criterion

and an appropriate step generator produces a distribution of accepted conformations that

converges to the Boltzmann distribution.

Molecular dynamics simulation (MDS) is another common approach for studying protein

conformations. The forces on the atoms are computed at each step, and used to calculate

the atom positions at the next step. To be physically accurate, MDS proceeds by small

time steps (usually on the order of a few femto-seconds), resulting in slow progress through

conformation space. Most MDS techniques update the Cartesian coordinates of the atoms

at each step, but recently there has been growing interest in directly updating torsion

angles [76, 186], as this allows for both a more compact representation of the conformation

space and for larger time steps. In general, MCS makes larger conformational changes than

MDS and thus tends to explore subsets of the conformation space faster. But unlike MDS,

pathways produced by MCS may not be physically valid, hence may not always provide

useful kinetic information.

The need for general algorithms to speed-up MCS has often been mentioned in the

biology literature, most recently in [218]. In this chapter, the algorithm and data structure

introduced in Chapter 4 are extended to achieve this goal, independent of the specific

energy function, step generator, and acceptance criterion. More precisely, the new algorithm

reduces the average time needed to decide whether a trial step is accepted, or not, without

affecting which steps are attempted, nor the outcome of the test. It achieves this result by

incorporating efficient techniques to incrementally update the value of the energy function

during simulation. Although this algorithm is presented in the context of classic MCS, it

could also be used to speed up other kinds of MCS methods, as well as other optimization

and sampling techniques. Several such applications will be discussed in Section 5.6.

5.1.2 The protein model

This algorithm uses the protein model described in Section 1.3.1. The DOFs of the protein

are its torsion angles. A link, which designates a rigid part of a kinematic chain, is a group

of atoms with no DOFs between them. This model has two types of links, the peptide
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atom-group and the side-chain atom-group (See Figure 1.4). Each side-chain may have

between 0 and 4 torsion DOFs (known as the χ angles), however these DOFs do not affect

the conformation of the backbone.

It is also possible to apply this algorithm to models that include additional DOFs, such

as: ω angles, bond lengths, and bond angles. At the limit, one can make each link a single

atom and each joint a rigid body-transform. However, while it is theoretically possible to

perform MCS in the Cartesian coordinate space, where each atom has 3 DOFs, it is more

efficient to run it in the torsion-DOF space [149]. Hence, the vast majority of MCS are run

in this space [125, 171, 172, 218, 219].

Due to the chain kinematics of the protein, the properties of open chains listed in

Subsection 1.3.2.1 are applicable. E.g., a small change in one DOF of the backbone may

cause large displacements of some atoms. Thus, in an MCS, a high percentage of steps

are rejected because they lead to high-energy conformations, in particular conformations

with steric clashes (self-collisions). In fact, the rejection rate tends to grow quickly with the

number k of DOFs changed in a single step. This behavior has been observed before [1, 125].

Figure 5.1 illustrates this point with data gathered during an actual MCS run of 100,000

steps on an unfolded conformation of 1HTB (378 residues). The top plot shows the rejection

rate as a function of k, while the bottom plot gives the total number of DOF changes in

accepted steps during a run of 100,000 trial steps, also as a function of k. Note that the

largest total number of DOF changes is obtained for k = 1. Hence, it is common practice

in MCS to change few DOFs (picked at random) at each trial step [103, 113, 125, 171, 172,

218, 219].

5.1.3 Computing the energy

Various energy functions have been proposed for proteins (e.g., [68, 103, 118, 120, 190]).

For all of them, the dominant computation is the evaluation of non-bonded terms, namely

energy terms that depend on distances between pairs of non-bonded atoms. These may

be physical terms (e.g., van der Waals and electrostatic potentials [120]), heuristic terms

(e.g., potentials between atoms that should end up in proximity to each other [68]) and/or

statistical potentials derived from a structural database (e.g. [103]).

To avoid the quadratic cost of computing and summing up the contributions from all

pairs, cutoff distances are usually introduced, exploiting the fact that physical and heuristic

potentials drop off quickly to 0 as the distance between atoms increases. The pairs of
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.

atoms that are close enough to contribute to the energy function will be referred to as the

interacting pairs. Because van der Waals prevent atom centers from getting very close, the

number of interacting pairs in a protein is often less than quadratic [79].

Hence, one may try to reduce computation by finding the interacting pairs without

enumerating all atom pairs. A classical method to do this is the grid algorithm (see Sub-

section 4.2.2), which indexes the position of each atom in a regular three-dimensional grid.

This method takes time linear in the number of atoms, which is asymptotically optimal in

the worst case. However, it does not exploit an important property of proteins, namely that

they form long kinematic chains. It also does not take advantage of the common practice

in MCS to change only a few DOFs at each time-step, which entails that at every step



5.2. RELATED WORK 95

of the simulation large fragments of the protein remain rigid, leaving many partial energy

sums unaffected. The grid method re-computes all interacting pairs at each step and cannot

directly identify partial sums that have remained constant. Thus it fails to efficiently sum

up the contributions of the interacting pairs.

5.2 Related work

The earliest method for computing interactions is called neighbor lists (NLs). For each

atom, a list of atoms within a distance d somewhat larger than the cutoff distance dc is

maintained by updating it every s steps [195, 203]. The idea is that atoms further apart

than d will not come closer than dc in less than s steps. There is a tradeoff between s and

d− dc since the larger this difference, the larger the value of s that can be used. However,

choosing d big causes the NLs to become too large to be efficient. Updating the NLs, which

is required every s steps is näıvely quadratic in the number of atoms. A constant factor

speed-up is achieved by first generating NLs for bonded atom groups (chemical groups) of

size at most 10. The atomic NLs are then generated based on the group lists [20]. A method

for updating NLs based on monitoring the displacement of each atom is described in [141].

It is important to note that all NLs methods require spatial-temporal coherence in order to

be efficient.

A method for finding interaction based on a 3-D grid was first introduced in the early

70’s. In [84] the side-length of each cubic grid cell is set to at least dc. Each atom is placed

in the cell where its center falls, and all atoms found in the immediate neighboring cells (27

cells altogether) are considered as interactions. It is possible to filter these interactions to

find only those that are truly within dc. In [162] the side-length of a grid cell is set to the van

der Waals radius of the smallest atom. Thus each cell contains at most one atom. For each

atom, all neighboring cells within a volume approximating dc are scanned for interactions.

A combined technique that uses a cell size smaller than dc but larger than the smallest van

der Waals radius was proposed in [201].

In [79] the use of a hash table to index the occupied grid cells was proposed. In the

rest of this chapter this method will be referred to as the grid algorithm. That work also

presented a formal proof that the grid-based methods have linear complexity. It is shown

that in a collection B of n possibly overlapping balls of similar radii, such that no two

sphere centers are closer than a small fixed distance, the number of balls that intersect any
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given ball of B is bounded by a constant. The physics of atoms (i.e. the van der Waals

potential) guarantees that these assumptions will hold for all molecules. This bound can

be trivially extended to hold for interactions with any fixed cutoff distance by setting the

radius of each sphere to dc/2. Since in any interesting simulation each atom has at least

one interaction, the grid-based methods are thus asymptotically optimal in the worst case.

Finally, a combination of the grid method and the NLs method was proposed in [213].

There the grid is used to efficiently update the NLs every s steps. A similar combination

of grid and group-based NLs was recently proposed [159].

Linear complexity seems to be the best one can achieve in practice when all DOFs change

at each step, as is the case in Molecular Dynamics simulation. All the above methods lose

efficiency when used in simulations based on internal coordinates, which change only a few

DOFs at each step, such as most MCSs. We are not aware of any principled attempt to

exploit the chain kinematics of proteins and the small number of changing DOFs at each

step to speed up MCS.

5.3 Incremental energy updates in MCS

The method described here is an extension of the testing algorithm presented in Subsec-

tion 4.4.2, which allows for incremental updating of the energy of a protein undergoing

MCS. A typical energy function is of the form E = E1 + E2, where E1 sums terms de-

pending on a single parameter commonly referred to as bonded terms (e.g., torsion-angle

and bond-stretching potentials) and E2 sums terms commonly known as non-bonded terms,

which account for interactions between pairs of atoms or atom groups closer than a cut-

off distance [103, 113, 118, 125, 171, 172]. Updating E1 after a conformational change is

straightforward. This is done by computing the sum of the differences in energy in the

terms affected by the change and adding it to the previous value of E1. After a k-DOF

change, there are only O(k) affected single-parameter terms. So, in what follows we focus

on the update of E2.

5.3.1 Overview

At each simulation step we must find the interacting pairs of atoms and change E2 accord-

ingly. Finding these pairs is similar to finding all self-collisions. One may use the same

algorithm, after having grown every atom by half the cutoff distance.
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However, when k is small, many interacting pairs are unaffected by a k-DOF change.

The number of affected interacting pairs, though still O(n) in the worst case, is usually much

smaller than the total number of interacting pairs at the new conformation. Therefore, an

algorithm like the grid algorithm that computes all interacting pairs at each step is not

optimal in practice. Moreover, after having computed the new set of interacting pairs, we

still have to update E2, either by re-computing all pairwise contributions from scratch, or

by scanning the old and new sets of interacting pairs to determine which terms should be

subtracted from the old value of E2 and which terms should be added to get the new value.

In either case, we perform again a computation at least proportional to the total number

of interacting pairs.

Instead, this method directly finds all new interacting pairs, including the previous

pairs whose distances have changed. It also detects partial energy sums unaffected by the

DOF change (these sums correspond to interacting pairs where both atoms belong to the

same rigid sub-chains). The energy terms contributed by the new pairs are then added

to the unaffected partial sums to obtain the new value of E2. In practice, the total cost

of this computation is roughly proportional to the number of changing interacting pairs.

The algorithm makes use of a new data structure, which is called the EnergyTree, in which

partial sums computed at previous steps have been cached.

5.3.2 Finding the new interacting pairs

At each step of the simulation all new interacting pairs of atoms need to be found. These

include all interacting pairs that were not interacting at the previous conformation, as well

as pairs that were previously interacting but whose distances have changed. They do not

include, however, previous interacting pairs that are no longer interacting.

This can be done using the ChainTree described in Section 4.3, after having grown

all atom radii by half the cutoff distance. The testing algorithm of Subsection 4.4.2 finds

exactly the new interacting pairs. However, changing the cutoff distance for the same

molecule requires re-computing all OBBs in the ChainTree. Changing this distance can be

useful, e.g., to detect all very close pairs of atoms in a first pass and thus quickly discard

conformations that are very unfavorable energetically. See Subsection 5.4.3.

This drawback leads to the replacement of OBBs by RSSs (for rectangle swept sphere)

and overlap tests of BVs by distance computation. An RSS is a type of BV introduced

in [115] that is defined as the Minkowski sum of a sphere and a rectangle. The RSS
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bounding a set of points in 3-D is created very much like an OBB. The two principal

directions spanned by the points are computed and a rectangle is constructed along these

directions to enclose the projection of all points onto the plane defined by these directions.

The RSS is the Minkowski sum of this rectangle and the sphere whose radius is half the

length of the interval spanned by the point set along the dimension perpendicular to the

rectangle. In comparison, the OBB of this set of points is the cross-product of the rectangle

by this interval.

The RSS hierarchy is created in the way described in Subsection 4.3.2. The algorithm

of Section 4.4.2 is slightly modified to test whether pairs of RSSs are closer apart than

the cutoff distance, instead of testing pairs of OBBs for overlap. The search pruning rules

for rigid sub-chains are unchanged, so that interacting pairs inside rigid sub-chains are not

re-computed. These have already been identified at previous steps of the MCS. The partial

energy sums corresponding to these pairs are unchanged and can be retrieved from the

EnergyTree as described in the next subsection. To compute the distance between two

RSSs, one simply computes the distance between the two underlying rectangles minus the

radii of the swept spheres. This is faster than computing the distance between two OBBs,

and the BVH is independent of the cutoff distance.

The asymptotic bounds for updating and testing stated in Section 4.5 hold unchanged.

For the bound on testing, this derives from the observation that an RSS may be larger than

an OBB only by a constant factor. More precisely, the RSS of a set of points is larger than

the OBB along its two principal directions by no more than the length of the smallest side

of the OBB (the diameter of the swept sphere). Thus, the RSS could easily fit inside an

OBB twice as large as the optimal OBB along each dimension. Moreover, computing the

distance between two RSSs takes constant time, just like testing two OBBs for overlap.

However, the fact that the asymptotic bound for testing — Θ(n
4
3 ) — is unchanged

can be misleading. This bound relies on the fact that protein backbones are well-behaved

chains, and as such, the number of atoms that may interact with any given atom is bounded

by a constant as the protein grows arbitrary large. This constant is likely to be much larger

than the constant bounding the number of atoms that may overlap any given atom. The

situation might even be worse for small proteins, in which almost all pairs of atoms could

be interacting. Hence, we may expect the testing algorithm to take significantly more time

when it is used to find all new interacting pairs than when it is used to find all steric clashes.

This remark will be exploited in Subsection 5.4.3 to propose a two-pass testing algorithm.
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Figure 5.2: EnergyTree for the ChainTree of Figure 4.3
.

5.3.3 Updating the energy value

Recall that when the testing algorithm examines a pair of sub-chains (including the case

of two copies of the same sub-chain), it first tests whether these sub-chains have not been

affected by the DOF change and are contained in the same rigid sub-chain. If this is the

case, the two sub-chains cannot contribute new interacting pairs, and the algorithm prunes

this search path. But, for this same reason, the sum of energy terms contributed by the

interacting pairs from these sub-chains is also unchanged. We would like to be able to

retrieve it. To this end, we introduce another data structure, the EnergyTree, in which we

cache the partial sums corresponding to all pairs of sub-chains that the testing algorithm

may possibly examine. Figure 5.2 shows the EnergyTree for the ChainTree of Figure 4.3.

Let α and β be any two nodes (not necessarily distinct) from the same level of the

ChainTree. If they are not leaf nodes, let αl and αr (resp., βl and βr) be the left and right

children of α (β). Let E(α, β) denote the total energy contributed by all interacting pairs

in which one atom belongs to the sub-chain corresponding to α and the other atom belongs

to the sub-chain corresponding to β. If α 6= β, we have:

E(α, β) = E(αl, βl) + E(αr, βr) + E(αl, βr) + E(αr, βl). (5.1)

Similarly, the partial energy sum E(α, α) contributed by the interacting pairs inside the
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sub-chain corresponding to α can be decomposed as follows:

E(α, α) = E(αl, αl) + E(αr, αr) + E(αl, αr). (5.2)

These two recursive equations yield the EnergyTree.

The EnergyTree has as many levels as the ChainTree. Its nodes at any level are all

the pairs (α, β), where α and β are nodes from the same level of the ChainTree. If

α 6= β and they are not leaves of the ChainTree, then the node (α, β) of the EnergyTree

has four children (αl, βl), (αr, βr), (αl, βr), and (αr, βl). A node (α, α) has three children

(αl, αl), (αr, αr), and (αl, αr). The leaves of the EnergyTree are all pairs of leaves of the

ChainTree (hence, correspond to pairs of links of the protein chain). Each node (α, β) of the

EnergyTree holds the partial energy sum E(α, β) for the current conformation in the simu-

lation. The root holds the total sum. In the EnergyTree of Figure 5.2, we have E(P, P ) =

E(N,N) + E(N,O) + E(O,O), E(N,O) = E(J, L) + E(J,M) + E(K,L) + E(K,M), and

so on.

At each step, the testing algorithm is called to find new interacting pairs. During this

process, whenever the algorithm prunes a search path, it marks the corresponding node

of the EnergyTree to indicate that the energy sum stored at this node is unaffected. The

energy sums stored in the EnergyTree are updated next. This is done by performing a

recursive traversal of the tree. The recursion along each path ends when it reaches a

marked node or when it reaches an un-marked leaf. In the second case, the sum held by the

leaf is re-computed by adding all the energy terms corresponding to the interacting pairs

previously found by the testing algorithm. When the recursion unwinds, the intermediate

sums are updated using Equations (5.1) and (5.2). In practice, the testing algorithm and

the updating of the EnergyTree are run concurrently, rather than sequentially.

To illustrate, assume that a 1-DOF change has been applied to the chain of Figure 4.3

between F and G. In that case, the testing algorithm marks nodes (N,N), (J, L), (K,L),

(L,L) and (M,M) in the EnergyTree. The above recursion re-computes from scratch the

partial sums at all the unmarked leaves it encounters and updates the partial sums of all

other un-marked nodes it visits as the recursion unwinds using Equations (5.1) and (5.2).

The size of the EnergyTree grows quadratically with the number n of links. For most

proteins this is not a critical issue. For example, in our experiments, the memory used by

the EnergyTree ranges from 0.4 MB for 1CTF (n = 137) to 50 MB for 1JB0 (n = 1511). If
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needed, however, memory could be saved by representing only those nodes of the EnergyTree

which correspond to pairs of RSSs closer than the cutoff distance.

5.4 Experimental results for MCS

5.4.1 Experimental setup

We extended ChainTree as described in the previous section. Since each step of an MCS may

be rejected, we keep two copies of the ChainTree and the EnergyTree. RSS and distance

computation routines were borrowed from the PQP library [72, 115].

We similarly extended Grid to find interacting pairs by setting the side length of the grid

cubes to the cutoff distance. As we mentioned in Subsection 5.3.1, Grid finds all interacting

pairs at each step, not just the new ones, and does not cache partial energy sums. So, it

computes the new energy value by summing the terms contributed by all the interacting

pairs.

Tests were run on a 400 MHz UltraSPARC-II CPU of a Sun Ultra Enterprise 5500

machine with 4.0 GB of RAM.

MCS was performed with the new ChainTree and Grid on the four proteins of Table 4.2.

Unlike in the self-collision tests presented earlier, the side-chains were included in the mod-

els, as rigid groups of atoms (no internal DOF). So, if two leaf RSSs are within the cutoff

distance, ChainTree finds the interacting pairs from the two corresponding links by exam-

ining all pairs of atoms. The energy function used for these tests includes a van der Waals

potential with a cutoff distance of 6Å, an electrostatic potential with a cutoff of 10Å, and

a native-contact attractive quadratic-well potential with a cutoff of 12Å. Hence, the cutoff

distance for both ChainTree and Grid was set to 12Å.

Each simulation run consisted of 300,000 trial steps. The number k of DOFs changed at

each step was constant throughout a run. We performed runs with k = 1, 5 and 10. Each

change was generated by picking k backbone DOFs at random and changing each DOF

independently with a magnitude picked uniformly at random between 0◦ and 12◦. Each

run started with a random, partially extended conformation of the protein. Since the van

der Waals term for a pair of atoms grows as O(d−12) where d is the distance between the

atom centers, it quickly approaches infinity as d becomes small (steric clash). When a van

der Waals term was detected to cross a very large threshold, the energy computation was

halted (in both ChainTree and Grid), and the step was rejected.
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k = 1 k = 5 k = 10
ChainTree Grid ChainTree Grid ChainTree Grid

1CTF 7.82 27.7 8.34 18.22 12.57 15.07
1LE2 11.16 65.05 14.31 48.84 14.29 27.12
1HTB 16.72 130.9 18.2 81.86 21.75 60.33
1JB0 21.71 271.4 22.18 130.5 29.88 133.8

Table 5.1: MCS results: average time per simulation step (in milliseconds)

k = 1 k = 5 k = 10
ChainTree Grid ChainTree Grid ChainTree Grid

1CTF 5,100 25,100 7,400 16,900 8,000 13,500
1LE2 5,100 48,500 6,000 36,600 7,700 23,400
1HTB 5,400 100,000 7,000 56,800 8,200 43,100
1JB0 5,900 200,000 7,000 95,600 10,300 102,000

Table 5.2: MCS results: number of interacting pairs for which energy terms were evaluated,
per step.

We ran the same MCS with both methods on each protein, by starting at the same

initial conformation and using the same seed of the random-number generator. Note that

for any given protein conformation ChainTree and Grid compute the exact same energy

value.

5.4.2 Results

The results for all the experiments are found in Tables 5.1 and 5.2. Illustrations of the

average time results for k = 1 and k = 5 are presented in Figures 5.3(a) and 5.3(b) respec-

tively. As expected, ChainTree gave its best results for k = 1, requiring on average one

quarter of the time of Grid per step for the smallest protein (1CTF) and one twelfth of

the time for the largest protein (1JB0). The average number of interacting pairs for which

energy terms were evaluated at each step was almost 5 times smaller with ChainTree than

with Grid for 1CTF and 30 times smaller for 1JB0.

Similar results are obtained when k = 5. In this case, ChainTree was only twice as fast

as Grid for 1CTF and 6 times faster for 1JB0. The average number of interacting pairs

for which energy terms were evaluated was twice smaller with ChainTree for 1CTF and 14

times smaller for 1JB0.

When k = 10, the relative effectiveness of ChainTree declined further, being only 1.2
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Figure 5.3: Comparing the average time per MCS step of ChainTree and Grid when (a)
k = 1 and (b) k = 5.

times faster than Grid for 1CTF and 4 times faster for 1JB0. The average number of

interacting pairs for which energy terms were evaluated using ChainTree was 60% of the

number evaluated using Grid for 1CTF and 10 times smaller for 1JB0.

These results are consistent with those obtained for self-collision detection (Section 4.6).

The larger k, the less effective our algorithm compared with Grid. When k is small, there

are few new interacting pairs at each step, and ChainTree is very effective in exploiting this

fact. For both ChainTree and Grid the average time per step decreases when k increases.

This stems from the fact that a larger k is more likely to yield over-threshold van der Waals

terms and so to terminate energy computation sooner.

In order to examine the full effect of reusing partial energy sums, the simulations are

re-run for the four proteins without the van der Waals threshold for k = 1 and 5. The

results are presented in Tables 5.3 and 5.4. Removing the van der Waals threshold does not

significantly alter the behavior of the algorithms. The average time per step is of course

larger, since no energy computation is cut short by a threshold crossing. The relative

speed-up of ChainTree over Grid is only slightly smaller without the threshold.

5.4.3 Two-pass ChainTree

In the previous MCS the percentage of steps that were rejected before energy computation

completed, due to an above-threshold van der Waals term for 1CTF, for example, rose from

60% when k = 1 to 98% when k = 10. This observation not only motivates choosing a
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k = 1 k = 5
ChainTree Grid ChainTree Grid

1CTF 12.8 37.2 29.6 37.7
1LE2 20.9 86.5 24.6 65.4
1HTB 26.6 185 51.8 173
1JB0 40.0 401 89.1 348

Table 5.3: MCS results without threshold on the van der Waals terms: average time (in
milliseconds) per step.

k = 1 k = 5
ChainTree Grid ChainTree Grid

1CTF 8,600 33,300 21,000 34,700
1LE2 9,900 61,900 11,400 47,500
1HTB 9,900 134,000 21,500 129,000
1JB0 12,000 280,000 30,300 248,000

Table 5.4: MCS results without a threshold on the van der Waals terms: average number
of interacting pairs for which energy terms were evaluated, per step.

small k. It also suggests the following two-pass approach. In the first pass, ChainTree

uses a very small cutoff distance chosen such that atom pairs closer than this cutoff yield

above-threshold van der Waals terms. In this pass, the algorithm stops as soon as it finds an

interacting pair, and then the step is rejected. In the second pass the cutoff distance is set

to the largest cutoff over all energy terms and ChainTree computes the new energy value.

We refer to the implementation of this two-pass approach as ChainTree+. Since ChainTree

is much faster with a small cutoff and the first pass will often result in step rejection, we can

expect ChainTree+ to be significantly faster than ChainTree. Thanks to the modifications

described in Subsection 5.3.2, both passes use the same ChainTree data structure.

ChainTree and ChainTree+ are compared by running an MCS of 300,000 trial steps

with k = 5 and measuring the average time per step. The results for the four proteins are

given in Table 5.5. We ran two different simulations for each protein. One that started

at a partially extended conformation and another that started at the folded state of the

protein. Hence, the conformations reached in the first case were less compact than in the

second case. Consequently, the rejection rate due to self-collision was higher in the second

case. While ChainTree+ is faster in both cases, speed-up factors are greater (as much as

5) when starting from the folded state.

It is not clear whether a similar improvement could be obtained with Grid. Indeed,
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unfolded folded
ChainTree ChainTree+ ChainTree ChainTree+

1CTF 8.34 2.6 15.74 6.2
1LE2 14.31 6.4 32.37 9.06
1HTB 18.2 9.23 68.92 11.35
1JB0 22.18 6.33 81.15 15.51

Table 5.5: Average running times (in mSec.) of ChainTree and ChainTree+ per step.

the resolution of the indexing grid depends on the cutoff distance. Indexing atoms in two

different grids — one with small cells for detecting steric clashes and another with larger cells

for computing the energy — may then considerably reduce the advantage of the two-pass

approach.

5.5 MCS software

The implementation of the ChainTree algorithm was extended to include a physical, full-

atomic energy function. The force-field that was chosen is EEF1 [118]. This force field

is based on the CHARMM19 potential energy function [20] with an added implicit sol-

vent term. EEF1 was chosen because it has been shown to discriminate well between

folded and misfolded structures [117]. It is well suited for ChainTree because its im-

plicit solvent term is pairwise and thus our algorithm can compute it efficiently. We have

packaged our software into a program that runs fast MCS. It can be downloaded from

http://robotics.stanford.edu/∼itayl/mcs.

This software loads an initial structure that is described in terms of its amino acid

sequence and the corresponding backbone angles of each residue. It then performs a classical

MCS. The user can control some parameters of the simulation (e.g. the number of angles

to change, the length of the simulation, the temperature . . . ) by specifying them on the

command line.

Our protein model uses fixed rotamers for each amino acid, and thus a given side-chain

is limited to a fixed number of conformations during the simulation. The advantage of

using fixed rotamers is that the atom positions and internal energy of each rotamer can be

pre-computed. Hence switching between rotamers during the simulation is done extremely

fast. We used the backbone-independent rotamer library of the Dunbrack lab [50].
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5.6 Other applications

Although we have presented the application of our algorithm to classical Metropolis MCS,

it can also be used to speed up other MCS methods as well as other optimization and

simulation methodologies.

For example, MCS methods that use a different acceptance criterion can benefit from the

same kind of speed-up as reported in Section 5.4, since the speed-up only derives from the

faster maintenance of the energy function when relatively few DOFs are changed simultane-

ously, and is independent of the actual acceptance criterion. Such methods include Entropic

Sampling MC [121], Parallel Hyperbolic MC [218], and Parallel-hat Tempering MC [219].

MCS methods that use Parallel Tempering [83] (also known as Replica Exchange) such

as [218, 219], which require running a number of replicas in parallel, could also benefit by

using a separate ChainTree and EnergyTree for each replica.

Some MCS methods use more sophisticated move sets (trial step generators). Again, our

algorithm can be applied when the move sets do not change many DOFs simultaneously,

which is in particular the case of the moves sets proposed in [2, 3] (biasing the random

torsion changes), and in [51] and [179] (moves based on fragment replacement). More

computationally intensive step generators use the internal forces (the gradient of the energy

function) to bias the choice of the next conformation (e.g., Force-Biased MC [154], Smart

MC [102] and MC plus minimization [125]). For such step generators, the advantage of

using our algorithm is questionable, since they may change all DOFs at each step. Similarly,

the so-called Hybrid MC methods [19, 215] that combine MCS and Molecular Dynamics

Simulation would benefit from our algorithm only when relatively few DOFs are changed

at each step. The same is true for pure MDS in torsion-angle space [76, 186].

Some optimization approaches could also benefit from this algorithm. For instance,

a popular one uses genetic algorithms with crossover and mutation operators [157, 189,

198]. The crossover operator generates a new conformation by combining two halves, each

extracted from a previously created conformation. Most mutation operators also reuse

long fragments from one or several previous conformations. For both types of operators,

our algorithm would allow partial sums of energy terms computed in each fragment to be

re-used, hence saving considerable amounts of computation.
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Conclusion

In this thesis three novel algorithms were presented that target some of the key problems

in computational structural biology. These methods exploit the long chain structure of

proteins as well as some application-specific properties to perform the desired computation

efficiently.

1. The first algorithm, presented in Chapter 2, exploits properties of closed chains to

offer an automatic procedure for completing missing fragments in protein structures

resolved using X-ray crystallography. The problem of searching for a conformation of

a protein fragment that bridges a gap in a protein structure is posed as an inverse kine-

matics problem, limiting the search space to the self-motion manifold of the fragment.

A two-step algorithm is proposed that first rapidly generates a large set of candidate

closed conformations, from which a small subset is chosen for refinement against the

electron density map. In a test set of 103 structurally diverse fragments, the algorithm

closed gaps of 12 residues in length to within, on average, 0.52Å all-atom cRMS of

the final, refined structure at a resolution of 2.8Å. In an initial, 51%-complete model

built at 2.6Å, it closed a 14-residue gap to within 0.9Å all-atom cRMS, thus extend-

ing automation of model building towards lower resolution levels. Preliminary results

indicate that the method can also be useful in determining alternative backbone con-

formations in areas of ambiguous electron density.

2. The second algorithm, presented in Chapter 3, takes advantage of properties of dis-

tances between the links of a chain. These properties motivate an averaging method,

which speeds up the computation of similarity between protein structures. The Cα
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representation of the backbone is compressed by averaging the coordinates of short

sub-chains, letting each sub-chain be represented by a single 3-D coordinate. This

shorter representation is then used to approximately compute the structural similar-

ity between two proteins. The method offers a tradeoff between the error that is

introduced and the speed-up that is gained. It is applicable to tasks that require the

computation of similarity for all pairs of structures in a large data set, both sets of

conformations of the same protein and native folds of different proteins. It can also

be used as a fast filter in cases where exact similarity computation is required. Com-

putational tests were conducted in the context of two applications, nearest neighbor

search and automatic structural classification, yielding good results.

3. The third algorithm, presented in Chapters 4 and 5, exploits properties of open chains

together with properties of Monte Carlo simulation of proteins. A protein backbone

undergoing a Monte Carlo simulation is a kinematic chain, free-floating in a force-field

and deforming through changes applied to a few of its DOFs at each simulation step.

The deforming chain is represented using the ChainTree data structure, which makes

updates and self-collision queries efficient to compute. This data structure represents

the chain geometry and kinematics at successively decreasing levels of resolution.

The ChainTree is further extended to efficiently update the energy of a protein dur-

ing Monte Carlo simulations. It is augmented to efficiently find all pairs of atoms

closer than a specified cutoff distance, which is needed for calculating the energy of

protein conformations, a computation dominated by pairwise atomic interactions. A

companion data structure — the EnergyTree — is introduced to efficiently reuse par-

tial energy sums, which remain unaffected between simulation steps. Computational

tests on four proteins of sizes ranging from 68 to 755 amino acids show that Monte

Carlo simulation with the ChainTree method is significantly faster (as much as 12

times faster for the largest protein) than with the widely used grid method. They

also indicate that speed-up increases with the size of the simulated protein.

In this work existing protein representations such as the torsion angle model or the

Cα representation are used and the improved efficiency and novel methods are a result of

exploiting specific properties of these models. The use of concepts and techniques from

robotics and computational geometry to exploit the long chain kinematics of proteins that

is implicit in these models is the common thread of these algorithms and what makes
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them efficient. The development of new protein models that lend themselves better to

efficient computational methods would bring about even faster algorithms. In the long run,

I believe, this will require a scientist that is not only proficient in the chemistry and physics

of proteins, but is also an expert in physical computing, well-versed in the techniques of

computational geometry and robotics. Such a scientist would be in the ideal position to

suggest novel simplified protein models that allow efficient computation beyond what is

currently possible without compromising physical accuracy and biological relevance.
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Appendix A

Proof of Theorem 1

In this appendix we give a proof of Theorem 1 stated in Section 4.5.2. Along the way we

establish successive useful lemmas.

In order to simplify our proof, we first “regularize” a well-behaved kinematic chain as

follows:

1. We replace each link by an enclosing sphere whose radius is equal to that of the largest

minimal enclosing sphere of any link in the chain.

2. We grow all these spheres equally until no two consecutive spheres in the chain are

disjoint (of course some or many of the spheres may already be intersecting).

So, the links of the new chain are spheres of equal radius r. The new chain is also

well-behaved since the regularization only change the size of the enclosing spheres by a

constant factor, when the distance between the centers of the enclosing spheres of any two

successive links of the original chain is lower bounded by a constant (which is the case for

proteins). Therefore, the maximal number of links of the new chain that can overlap a

single link is still bounded by a constant, though this constant may be greater than the one

for the original chain. None of the asymptotic bounds below are affected by this change of

constant.

From now on, we only consider the regularized chain. We distinguish between two types

of BVH for this chain. In the tight hierarchy, each BV tightly bounds the links it encloses.

In the not-so-tight one, each non-leaf BV bounds tightly the two BVs just below it. In a

tight sphere hierarchy, each bounding sphere is the minimum enclosing sphere of the links

it encloses.
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Proposition 1 and Lemmas 1 through 3 establish the upper bound of Theorem 1. Propo-

sition 2 then presents a chain conformation for which this bound is actually attained, hence

showing that the bound is tight.

Proposition 1 In the tight, chain-aligned sphere hierarchy of a well-behaved n-link chain,

the maximum total number of overlapping bounding spheres at all levels is O(n
4
3 ).

Proof: At level i of the hierarchy, where i = 0, 1, . . . , log n, with i = 0 being the lowest

level, each consecutive sub-chain of gi = 2i links is bounded by a single sphere of radius at

most gir. This radius occurs when the links are arranged on a straight line. Take any such

sub-chain of gi links and let Bi denote its bounding sphere. Let Ci be the sphere concentric

with Bi and having radius 3gir. Any bounding sphere at level i intersecting Bi is fully

contained in Ci.

Now let us bound the number of sub-chains of gi links whose bounding spheres at level

i can be contained in Ci. Since we aim for an upper bound we assume that each such

sub-chain is as tightly packed as possible. Because each link can overlap at most a constant

number of other links the volume occupied by a sub-chain of length gi is bounded from

below by qgi 43πr
3, where 0 < q ≤ 1 is a constant. Hence, the number of bounding spheres

at level i contained in Ci is at most:

Mi =
4
3π27g3

i r
3

4
3qgiπr

3
=

27g2
i

q
(A.1)

Mi is therefore an upper bound on the number of bounding spheres at level i that overlap

Bi. Since there are exactly n/gi bounding spheres at level i, Mi cannot grow larger than
n
gi

. The level imax where this bound is reached is the smallest i defined by:

n

gi
≥ 27g2

i

q
.

Since gi = 2i, we get:

imax =
⌈

1
3

log n+ log
1
3
q

1
3

⌉
. (A.2)

For every i < imax, Ti = n
gi
Mi is an upper bound on the number of overlapping bounding

spheres at level i. For every i ≥ imax, Ti = (Ngi )
2 is an upper bound on this number. In
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what follows, we ignore the constant term on the right-hand side of Equation (A.2) as it

has no effect on the asymptotic bound we prove. The total number of overlapping bounding

spheres at all levels is therefore:

T =
logn∑
i=0

Ti

=

1
3

logn∑
i=0

(
27g2

i

q

)(
n

gi

)
+

logn∑
i= 1

3
logn

(
n

gi

)2

=
27n
q

1
3

logn∑
i=0

2i + n2
logn∑

1
3

logn

(
2−i
)2

=
27n
q

(
2n

1
3 − 1

)
+

4
3

(
n

4
3 − 1

)
= O

(
n

4
3

)
(A.3)

2

As a side note, this proof extends with minor changes to spaces of any dimension d ≥ 3.

We then get an upper bound of O
(
n

2(d−1)
d

)
.

One should note that the upper bound of Proposition 1 holds for any chain-aligned BVH

(tight or not) as long as each BV at level i can be enclosed in a sphere of radius c 2ir, for

an absolute constant c. We now use this remark to show that the upper bound holds for

the OBB hierarchy of the ChainTree.

Lemma 1 Given two OBBs contained in a sphere D of radius R, the OBB bounding both

of them is contained in a sphere of radius
√

3R concentric with D.

Proof: We let b1 and b2 denote the two OBBs contained in D and B12 denote their OBB.

Construct the bounding cube Q of D whose faces are parallel to those of B12. Q contains

B12 since along any of the main axes that define B12, the faces of Q are farther out (or

touching). So, the bounding sphere E of Q, which is concentric with D, also contains B12.

Since each side of Q has length 2R, its diagonal has length 2
√

3R and the radius of E is
√

3R. 2
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Lemma 2 At level i of the not-so-tight, chain-aligned OBB hierarchy of a well-behaved

n-link chain, each OBB is contained in a sphere of radius c 2ir, where c is an absolute

constant.

Proof: Let us choose c1 such that each OBB at levels i = 0, 1, . . . , 4 of the hierarchy is

contained in a sphere of radius c1 2ir. We know c1 exists since there are at most 16 spherical

links enclosed by each OBB at these levels. We will take the constant c to be at least c1.

We now proceed by induction, by assuming that the lemma is correct up to some level

i−1 (i ≥ 5). Consider 32 consecutive OBBs bj , j = 0, . . . , 31, at level i−5 that are bounded

together in an OBB of level i. The induction hypothesis implies that the bounding sphere

of each bj has radius at most c 2i−5r. We take a sphere S of radius 2ir that contains the

sub-chain bounded by the 32bj boxes. Now each sphere bounding one of the bj boxes must

intersect S since at least one link is contained in both spheres. So, no point of box bj is

further away than 2ir(1 + c
16) from the center of S.

Let S0 be the sphere of radius 2ir(1 + c
16) concentric with S. All boxes bj are contained

in S0. Consider pairs which will be bounded together at the next level (i − 4). We apply

Lemma 1 to those pairs and realize that a sphere S1 of radius
√

3 times the radius of S0

and concentric with S0 bounds all OBBs at level i − 4. Continuing this line of reasoning

up to level i we get that a sphere S5 of radius
√

3
5
2ir(1 + c

16) contains the OBB at level i

that encloses all of the boxes bj . We must set c such that this radius is smaller than c 2ir.

Thus, c must be such that:

2ir
(
1 +

c

16

)√
3
5 ≤ c 2ir

c

(
1

√
3
5 −

1
16

)
≥ 1 (A.4)

So we choose:

c = max


(

1
√

3
5 −

1
16

)−1

, c1

 .

2

Lemma 2 assures us that the OBBs in the OBB hierarchy of the ChainTree do not

become too big as we climb up the hierarchy, so that the upper bound of Proposition 1

applies to the ChainTree.
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Lemma 3 In the not-so-tight, chain-aligned OBB hierarchy of a well-behaved n-link chain,

the maximum number of overlapping bounding boxes at all levels is O(n
4
3 ).

Proof: We have noted previously that the proof given for Proposition 1 holds for any

chain-aligned BVH (tight or not) of a well-behaved n-link chain, as long as each BV at level

i can be enclosed in a sphere of radius c 2ir, for an absolute constant c. Lemma 2 establishes

that this is verified by the not-so-tight, chain-aligned OBB hierarchy of the chain. 2

This completes the proof of Proposition 1, thus establishing the upper bound of Theo-

rem 1. We now show that this bound can be attained.

Proposition 2 There exists a well-behaved chain of n links such that the number of BV

overlap tests needed to detect self-collision in certain conformations is Ω(n
4
3 ) for any chain-

aligned BVH of convex BVs.

Proof: We prove the lemma by presenting a chain conformation that requires this much

work no matter what the BVs are as long as they are convex. Given some coordinate frame,

we take the first d links of the chain and place them along the X axis starting at the origin

and proceeding in the positive direction. The spheres are osculating and the center of the

first sphere is at the origin. The center of the dth link is therefore at x0 = 2(d−1)r. We now

place the next d links of the chain parallel to the Y axis, starting at (x0, 2r, 0) and going in

the positive direction. Next, we place the next d links parallel to the Z axis starting just

above where the previous d-link sub-chain ended. We call this sub-chain of 3d links a unit.

With the next additional links of the chain we create d
8 −1 more units, each in reverse order

of the previous one and translated by (2r,−2r, 0) relative to the previous one. We call these
d
8 units a layer. Figure A.1 shows one such layer. Finally, with the rest of the chain, we

create d
8 − 1 layers, each in reverse order of the previous one and translated by (0,−2r, 2r)

relative to the previous one. See Figure A.2.

We noticed that the convex hull of each unit contains the point (2(d−1)r, (d−1)r, 1
4(d−

1)r). So, all these convex hulls are pairwise intersecting and any hierarchy of convex BVs

will therefore contain that many intersecting pairs of BVs at the level where all the links

of each unit are enclosed together in one BV. Since we created d2

64 units in total, each with

3d links, so have 3d3

64 = n. Hence, d is a small constant times n
1
3 . The d2

64 units yield Ω(n
2
3 )

convex hulls and therefore Ω(n
4
3 ) intersecting pairs of convex hulls. 2
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Together, Lemma 3 and Proposition 2 prove Theorem 1.
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Figure A.1: One layer of the chain construction.
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Figure A.2: The entire chain construction.



Glossary

A

amino acid The family of small molecules, which constitute the building blocks of all

proteins. There are 20 naturally ocurring amino acids, which vary in size and

chemical properties.

B

backbone The main chain of the protein. It is a concatrnation of atom triplets (N, Cα

and C′), each belonging to a residue of the protein.

BVH Bounding volume hierarchy.

C

CASP Critical Assessment of Techniques for Protein Structure Prediction.

conformation The chemical equivalent term for a configuration in robotics.

cRMS Coordinate root mean squares. The RMS distances between corresponding

atoms aftr the two structures are optimally aligned using a rigid-body transform.

D

DOF Degree of freedom.

dRMS Distance root mean squares. The RMS between the intra-molecular distance

matrices of the two structures.
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M

MCS Monte Carlo simulation.

MDS Molecular dynamics simulation.

N

NMR Nuclear magnetic resonance.

O

OBB Oriented bounding box.

P

PDB Protein data bank.

R

residue An amino acid when it is part of a polypeptide (protein) chain.

RMS Root mean squares.

RMSD RMS distance (deviation).

RSS Rectangle swept sphere.

S

self-motion manifold A lower-dimensional manifold of all closed configurations of a chain.

embedded in the configration space of the chain.

side-chain A small group of atoms stemming from the Cα atom of each residue. May have

between 0 and 10 heavy atoms.

V

van der Waals The repulsion between non-bonded atoms, it is very positive (replusive) at

small distances, but has a slightly negative (attractive) minimum at a distance
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at which the two atoms touch electron clouds. At large distances the energy

goes to zero. Ususally described using a Lennard-Jones potential.
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[210] K. Wüthrich. NMR of proteins and nucleic acids. Wiley-Interscience, New York,

1986.



BIBLIOGRAPHY 141

[211] D. Xie and N.M. Amato. Kinematics-based probabilistic roadmap method for high dof

closed chain systems. In IEEE Int. Conf. Robot. Autom. (ICRA), 2004. To appear.

[212] J. Yakey, LaValle S.M., and L.E. Kavraki. Randomized path planning for linkages

with closed kinematics chains. IEEE Trans. Robot. Autom., 17(6):951–959, 2001.

[213] V. Yip and R. Elber. Calculations of a list of neighbors in molecular dynamics simu-

lations. J. Comput. Chem., 10(7):921–927, 1989.

[214] B. Zagrovic, E. Sorin, and V. Pande. β-hairpin folding simulations in atomistic detail

using an implicit solvent model. J. Mol. Biol., 313:151–169, 2001.

[215] H. Zhang. A new hybrid Monte Carlo algorithm for protein potential function test

and structure refinement. Proteins, 34:464–471, 1999.

[216] M. Zhang and L.E. Kavraki. Finding solutions of the inverse kinematics problems in

computer-aided drug design. Technical Report TR02-385, Rice University, 2002.

[217] M. Zhang and L.E. Kavraki. A new method for fast and accurate derivation of

molecular conformations. J. Chem. Info. Comp. Sci., 42(1):64–70, 2002.

[218] Y. Zhang, D. Kihara, and J. Skolnick. Local energy landscape flattening: Parallel

hyperbolic Monte Carlo sampling of protein folding. Proteins, 48:192–201, 2002.

[219] Y. Zhang and J. Skolnick. Parallel-hat tempering: A Monte Carlo search scheme for

the identification of low-energy structures. J. Chem. Phys., 115(11):5027–5032, 2001.

[220] Q. Zheng, R. Rosenfeld, S. Vajda, and C. DeLisi. Loop closure via bond closure and

relaxation. J. Comput. Chem, 14:556–565, 1992.

[221] Y. Zhou and S. Suri. Analysis of a bounding vox heuristic for object intersection. J.

of the ACM, 46(6):833–857, 1999.

[222] Y. Zhou and S. Suri. Collision detection using bounding boxes: Convexity helps. In

8th Annual European Symposium on Algorithms (ESA 2000), pages 437–448, 2000.


	Preface
	Acknowledgements
	Introduction
	Representations of protein structure
	Cartesian coordinates representation
	Internal coordinates representation
	Torsion angles representation
	C representation and common metrics
	Coordinate root mean square deviation
	Distance root mean square deviation


	Key computational problems in structural biology
	Structure determination and prediction
	Structure determination
	Structure prediction

	Structural similarity and classification
	Computing structural similarity
	Classifying protein structures

	Conformational sampling and dynamic simulation
	Monte Carlo simulation
	Molecular dynamics simulation

	Molecular docking
	Protein -- protein interactions
	Small ligand docking


	Exploiting the chain-structure of proteins
	The protein ` =9 backbone as a kinematic chain
	Properties of chains
	Properties of an open chain
	Properties of a closed chain
	Properties of inter-link distances


	Summary of contributions

	Model Completion in X-ray Crystallography
	Introduction
	Description of problem
	Related Work
	Exact inverse kinematics solvers
	inverse kinematics solutions by optimization
	Motion planning for closed loops
	Methods for redundant manipulators
	The loop closure problem in biology
	Ab initio methods
	Database search methods
	Crystallography


	Methods
	Stage 1: Generating loop candidates
	Random Initial ` =9 [Word]conformations
	Electron Density Constraints

	Stage 2: Refining loop candidates
	Optimization with closure constraints
	Implementation details


	Experimental results
	Completing artificial gaps
	Tests on TM1621.
	Tests on TM0423.
	Discussion of results
	Run times

	Completing true gaps
	Completing TM1586 at 2.0Å
	Completing TM1742 at 2.4Å.
	Completing TM0542 at 2.6Å.

	Identifying alternative main-chain ` =9 conformations


	Fast Similarity Measures
	Introduction
	Shape similarity and approximation of chains
	Approximate similarity measures
	Random chains and Haar wavelets
	Application to proteins
	Correlation of approximate and exact similarity measures

	Application 1: Nearest-neighbor search
	Further reduction of distance matrices
	Evaluation of approximation errors for nearest-neighbor search
	Running time

	Application 2: structural classification
	STRUCTAL and m-averaging
	Experimental results
	Discussion

	Conclusion

	Self-Collision for Kinematic Chains
	Introduction
	Related work
	Feature tracking
	Space-partition methods
	Bounding volume hierarchies
	Collision detection for kinematic chains

	The ChainTree
	Transform hierarchy
	Bounding-volume hierarchy
	Combined data structure
	Updating the ChainTree

	Self-collision detection
	Using a ` =9 BVH
	Using the ChainTree

	Complexity analysis
	Updating the ChainTree
	Detecting self-collision
	Comparison with other methods

	Test results for self-collision detection

	Energy Computation for ` =9 MCS
	Introduction
	Monte Carlo simulation
	The protein model
	Computing the energy

	Related work
	Incremental energy updates in ` =9 MCS
	Overview
	Finding the new interacting pairs
	Updating the energy value

	Experimental results for ` =9 MCS
	Experimental setup
	Results
	Two-pass ChainTree

	` =9 MCS software
	Other applications

	Conclusion
	Proof of Theorem 1
	Glossary
	Bibliography

