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Rapid protein structure determination relies greatly on the availability of software
that can automatically build a protein model into an experimental electron den-
sity map. In favorable cases, the programsARP/wARP, RESOLVE, MAID, and
TEXTALare all capable of building over 90% of the final model. At medium-
low resolution (2.3Å ≤ d < 2.9Å), only about 2/3 completeness is typically
attained. Manual completion of these partial models is usually feasible, but is
time-consuming, and easily leads to inaccuracies. Except for the N- and C-termini
of the chain, the end points of each missing fragment are known from the initial
model. Hence, loop fitting reduces to aninverse kinematicsproblem.
We have combined a fast inverse kinematics algorithm with real space, torsion
angle refinement in a two stage approach to fit a poly-alanine chain to the electron
density between two anchor points. The first stage aims to sample a large number
of closing conformations, guided by the electron density. These candidate confor-
mations are ranked according to density fit. Top-ranking conformations are then
subjected to torsion angle, subchain refinement in the second stage. Optimiza-
tion steps are projected onto the null space of the subchain, thus preserving rigid
geometry and closure.
In a test set of 103 structurally diverse fragments, the algorithm closed gaps of
12 residues in length to within, on average, 0.52Å aaRMSD of the final, refined
structure at a resolution of 2.8Å. In an initial, 51%-complete model built at2.6Å,
it closed a14-residue gap to within0.9Å aaRMSD, thus extending automation of
model building towards lower resolution levels.

1. Introduction

The Protein Structure Initiative (PSI), a National Institute of
General Medical Sciences program in the US, aims to reduce
the time and associated costs of determining a three dimen-
sional protein structure. Stimulated in part by funding initia-
tives such as the PSI, the experimental and computational meth-
ods used for X-ray structure determination have been greatly
improved. Many of the sample preparation steps including pro-
tein expression, purification and crystallization have been auto-
mated and turned into large-scale production facilities (Lesley
et al., 2002). Various third generation synchrotrons now feature
fully automated protein crystallography beamlines, and allow
collection of a complete X-ray diffraction data set in a matter of
minutes (Walshet al., 1999; Cohenet al., 2002; van den Bedem
et al., 2003). Such developments require an ever increasing rate
at which macromolecular structures need to be solved. Fur-
ther automation of all computational aspects of structure deter-
mination is therefore highly desirable to avoid it becoming a
rate-limiting step in the process of structure solution (Burley
et al., 1999; Adamset al., 2003).

There have been tremendous advances in automated model
building methods. Various software systems are now capable of
building a protein model into an electron density map without

human intervention (Ioerger & Sacchettini, 2003; Levitt, 2001;
Perrakiset al., 1997; Terwilliger, 2002). ThePHENIX project
(Adamset al., 2002) aims to automate structure solution from
reduced intensity data to a refined model, even at medium to
low resolution. Indeed, in favorable cases it is now possible to
proceed to an initial model of a new protein structure in a few
weeks.

However, the degree of completeness of these initial mod-
els, i.e. the fraction of atoms or residues correctly placed,
varies widely depending on the quality of the experimental data
and rarely reaches 100%. Accurately determining the atomic
coordinates of mobile fragments in the molecule, for instance,
remains a challenge. Such fragments often lead to disorder in
the crystal, rendering interpretation of the resulting electron
density difficult. Manually completing a partial protein model,
i.e. building the missing residues, is a time-consuming and
labor-intensive process, which easily leads to inaccuracies. This
step alone can take a few weeks of work depending on the res-
olution and size of the structure. Thus, this step still presents
a substantial bottleneck to any high-throughput structure deter-
mination effort.

In practice, often a large portion of the molecule has been
resolved, andN- andC-termini of a missing fragment in the
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initial model are known. The missing main-chain fragment can
be modeled as a kinematic chain, with rigid groups of atoms as
links, and rotatable bonds as joints. Fitting a fragment can thus
be interpreted as aninverse kinematics(IK) problem (Manocha
& Zhu, 1994; Manochaet al., 1995): Given the position and
orientation of the end point of a kinematic chain, determine the
corresponding values of the joint angles.

Exploiting this observation, we have combined an inverse
kinematics algorithm with real space, torsion angle refinement
in a two stage approach to fit a poly-alanine chain to the electron
density between two anchor points. The first stage aims to sam-
ple a large number of closing conformations, guided by the elec-
tron density. These candidate conformations are ranked accord-
ing to density fit. Top-ranking conformations are then subjected
to torsion angle, real space subchain refinement in the second
stage. Optimization steps are projected onto the null space of
the subchain, thus preserving rigid geometry and closure.

In a test set of 103 structurally diverse fragments, the algo-
rithm closed gaps of 12 residues in length to within, on aver-
age, 0.52̊A all-atom Root Mean Square Deviation (aaRMSD1)
of the final, refined structure at a resolution of 2.8Å. The algo-
rithm has also been tested and used to aid protein model com-
pletion in areas of poor experimental electron density, where
the initial model was built using ARP/wARP or RESOLVE.
At a resolution of 2.4̊A, it closed a10-residue gap to within
0.43Å aaRMSD of the final, refined structure. In an initial,
51%-complete model built at2.6Å, it closed a14-residue gap
to within 0.9Å aaRMSD, thus extending automation of model
building towards lower resolution levels.

2. Background

A variety of techniques have found successful application and
widespread use in automated interpretation of electron den-
sity maps. The programARP/wARP(Perrakiset al., 1997), for
instance, iteratively adds pseudo-atoms to a partial model that
it subsequently refines in reciprocal space. The programTEX-
TAL (Ioerger & Sacchettini, 2003) employs local pattern recog-
nition techniques to select regions in a database of previously
determined structures similar to those in the unknown struc-
ture. Some automated systems targeting lower resolution levels,
notablyRESOLVE(Terwilliger, 2002) andMAID (Levitt, 2001),
start by identifying larger secondary-structure elements using
sophisticated template matching techniques, and then connect
these ’fits’ through loop regions.

Relying on unambiguous experimental data and elemen-
tary stereochemical constraints, areas of weak or ambiguous
electron density remain a challenge for these approaches. For
instance, exposed, mobile loop regions typically have poorly
resolved side chain density, or show discontinuous main-chain
density even at low contour levels. Patterns in the density may
go unnoticed to template matching techniques for a variety of
reasons. The electron density may exhibitmultimodal disor-
der, where the protein main chain adopts two or more distinct
conformations for a number of contiguous residues (Wilson
& Brunger, 2000). Nevertheless, at high resolution, these pro-

grams may provide over 90% of the protein main chain of the
final model (Badger, 2003). At medium to low resolution levels
(2.3Å ≤ d < 2.9Å), the initial model resulting from these pro-
grams is typically a gapped polypeptide chain, and only about
2/3completeness is attained. In the majority of cases, the amino
acid sequence is correctly assigned, so gap lengths and the iden-
tity of their residues are known.

In practice, to complete a model, the crystallographer man-
ually builds the missing residues onto the partially completed
structure using an interactive graphics program. These pro-
grams, such as theX-BUILD package inQUANTA, Insight
II (both Accelrys, Inc.), andO (Jones & Kjeldgaard, 1997)
provide a variety of semi-automated tools and techniques to
assist the model building and refinement steps. InO, database
fragments straddling a gap can be refined against the den-
sity using torsion angle refinement based on grid summa-
tion (Joneset al., 1991). Oldfield (Oldfield, 2001) developed
a method combining a random search of conformation space
with grid- and gradient-based refinement techniques to close
loops. Insight II employs therandom tweakalgorithm (Fine
et al., 1986; Shenkinet al., 1987) to build fragments.

The problem of fitting a protein backbone fragment between
two anchor points is closely related to the inverse kinematics
problem in robotics (Craig, 1989). It is known that for manipu-
lators in a 3-D workspace there are a finite number of solutions
to the IK problem when the number of DoFs does not exceed
six. In the case of a 6R manipulator, which is the most relevant
to protein fragments, an analytic solution exists and the number
of unique solutions is at most sixteen (Raghavan & Roth, 1989).

Gō and Scheraga were the first to study analytical loop clo-
sure, limited to6 DoFs, in the context of macromolecules (Gō &
Scheraga, 1970). Practical applications of their method and sub-
sequent improvements (Wedemeyer & Scheraga, 1999) are lim-
ited: when restricting the DoFs toφ, ψ-angles, the loop length
can not exceed three residues. Recently, this limitation was
overcome by extending the domain to any three, not neces-
sarily consecutive, residues with arbitrary geometry (Coutsias
et al., 2004).

In the general case ofN > 6 dihedral angles, the inverse
kinematics system of equations is underdetermined. Rather than
solving directly for the dihedral angles, numerical methods are
employed to sample conformational space.

Search methods sample from a discrete set of conforma-
tional parameters, and include sampling biased by the database
distribution of theφ/ψ angle pairs (Moult & James, 1986),
uniform conformational search (Bruccoleri & Karplus, 1987),
sampling from a discrete set ofφ/ψ pairs (Deane & Blundell,
2000; DePristoet al., 2003) or sampling from a small library of
short representative fragments (Kolodnyet al., 2004). Extract-
ing candidate fragments from the PDB satisfying conditions
on length and geometry started with (Jones & Thirup, 1986),
and was further developed in (Fideliset al., 1994; van Vlij-
men & Karplus, 1997; Duet al., 2003). Various methods exist
for optimization of candidate loops, such as molecular dynam-
ics (Bruccoleri & Karplus, 1987; Fiseret al., 2000; Zheng

1 Square root of the averaged squared distances between the corresponding atoms{Ni ,Cαi ,Cβi ,Ci , Oi}. It is calculated after the loops are optimally aligned in 3-D.
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et al., 1992) and Monte Carlo (Abagyan & Totrov, 1994; Col-
luraet al., 1993) simulations.

Another class of methods iteratively solves the inverse kine-
matics system of equations. The aforementioned random tweak
method closes a loop by iteratively changing all its DoFs at
once until the desired distances between the two terminals are
reached. It employs the Jacobian of these distances with respect
to torsional DoFs to calculate the DoF changes. Thecyclic
coordinate descent(CCD) algorithm ((Canutescu & Dunbrack
Jr, 2003), (Wang & Chen, 1991)) adjusts one DoF at a time
along the chain to move the final segment of the loop toward
the target residue. It is free from singularities, and allows con-
straints on any of the DoFs.

This study combines theCCD loop closure algorithm with
real space, torsion angle subchain refinement to aid model com-
pletion. The objective is to automatically fit a poly-alanine chain
between two anchor residues, satisfying electron density con-
straints. Real space, least squares refinement offers the advan-
tage of speed over otherwise superior reciprocal space, maxi-
mum likelihood refinement techniques. The algorithm assumes
rigid peptide geometry with residue-dependent values for bond
lenghts and bond angles taken from (Engh & Huber, 1991).
Final chains will need to be refined using standard refinement
programs such as CNS (Brungeret al., 1998) or REFMAC
(Murshudovet al., 1997).

3. Methods

The algorithm proceeds in two stages: candidate generation and
refinement. In the first stage, candidate loops are built using
the CCD algorithm, while putting additional constraints on
the DoFs to take the electron density and collision avoidance
into account. Next, initial conformations are ranked accord-
ing to density fit. Top-ranking initial conformations are refined
by minimizing a standard real-space target function (Diamond,
1971; Chapman, 1995; Korostelevet al., 2002). An optimiza-
tion protocol based on simulated annealing (SA) (Kirkpatrick
et al., 1983) and Monte Carlo Minimization (MCM) (Li &
Scheraga, 1987) searches for the global minimum of the tar-
get function while maintaining loop closure. Each candidate is
optimized 6 times and the best scoring loops are returned.

Deficient density information is compensated for by taking
advantage of the loop closure constraint to guide the loop to its
correct positioning in space. In the first stage, the closure con-
straint enables the generation of loops that lie within 2Å RMSD
of the true solution. The approximate enforcement of the clo-
sure constraint during loop refinement prevents the search from
diverging and limits the searched space to motions that preserve
loop closure.

The input to the algorithm is given by the electron density,
in most cases a2mFo − DFc map, the partial model, and the
amino acid sequence. The latter is needed to identify the miss-
ing residues.

The implementation of the algorithm uses the following soft-
ware packages:Clipper (Cowtan, 2004), theCCP4 Coordinate
Library (Krissinel, 2004) and the exact IK solver of (Coutsias
et al., 2004).

3.1. Stage 1: Generation

Residues flanking the gap in the partial model will be denoted
stationaryanchors. The algorithm starts by constructing a pro-
tein chainC of length L in a random conformation, where
residue0 is a copy of theN-stationary anchor, and residueL−1
is a copy of theC-stationary anchor. This chain is attached to
either theN-, or C- anchor, thus determining theclosing direc-
tion. The remaining, terminal residue inC is called themobile
anchor.

Upon starting the procedure, the position of the mobile
anchor will not coincide with the position of the stationary
anchor. The algorithm adjusts each backbone dihedral angle in
turn such that the distance between the three backbone atoms of
the mobile anchor and the corresponding atoms of the stationary
anchor are minimized.

For longer loops (9 or more residues),C is split in the middle,
and each half-chain is attached to its corresponding anchor. The
terminal residue of each half-chain alternates between acting as
stationary anchor and mobile anchor in subsequent iterations.

A total of 1000starting conformations are calculated to start
the procedure. Each is allowed 2000 iterations for closure up to
a preset tolerance distancedclosed. Chains that did not close are
discarded. A cross-correlation density score is calculated for all
conformations, and the99-th percentile (with a maximum of 6
chains) is passed on to stage two. Each of these is then subjected
to 6 SA refinement cycles, the 2 top-scoring fragments of which
are written to disk. As most chains close within 2000 iterations,
this gives a total of 12 fragments. The program also writes a log
file containing the full cross-correlation electron density score
for each fragment.

3.1.1. Random Initial Conformations For each starting con-
figuration, ωi is considered to be a fixed,N(180, 5.8) ran-
dom variable for alli. Half of the starting configurations are
obtained by adjusting each(φ, ψ)i in turn to optimize agreement
with the electon density while stereochemical constraints are
observed. The remaining five hundred starting conformations
are purely random, and obtained from sampling(φ, ψ)i , i =
0 . . . L− 1 angle pairs from PDB-derived distributions. A finite
mixture of bivariate normal distributions was thereto fitted
to frequencies calculated from the Top500 database (Lovell
et al., 2003) of non-redundant protein structures, using the pro-
gram EMMIX (McLachlanet al., 1999). We obtained distribu-
tions for each of the 20 amino acids, and an additional distri-
bution for residues immediately preceding proline in the amino
acid sequence. The anglesφ0 andψL−1 remain fixed at their
initial values.

3.1.2. Electron Density Constraints A change to the DoFs
of a residue is calculated as follows: The CCD step proposes
a distance minimizing dihedral angleφi for residue i, and
based onφi , it proposes a minimizingψi . (In our implemen-
tation, we change each DoF in turn, although this is not strictly
necessary.) Thus, a proposed angle pair(φ, ψ)p

i is obtained.
To guide the loop, a heuristic electron density constraint has
been added to the CCD algorithm. For each pairi, consider
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the set of atomsAi that is subject to change by angle pair
i, and not affected by changes in angle pairi + 1. Hence,
Ai = {Cβi ,Ci , Oi , Ni+1,Cαi+1}, whereCβi is excluded when-
ever residuei is a Glycine. Electron density scores corre-
sponding to trial positions in a square neighborhoodU(φ,ψ)p

about (φ, ψ)p in conformation space are calculated. A sim-
ple local scoring function is adopted; the sum of the electron
density values at atom center positions ofAi . The angle pair
(φ, ψ)i is set to the trial position with maximum density score,
i.e (φ, ψ)i = arg max(φ,ψ)∈U(φ,ψ)p

i

S(φ, ψ), where S(φ, ψ) =
∑

A j∈Ai
ρ(A j(c)), andρ(A j(c)) denotes the value of the elec-

tron density at the center of atomA j . At this point, overlaps
of van der Waals surfaces of atoms inAi and the rest of the
protein structure are determined. If no overlaps occur, the new
(φ, ψ)i pair is accepted, otherwise the pair is accepted with a
probability inversely related to the amount of overlap. The size
of U(φ,ψ)p is reduced linearly in the number of CCD iterations
to allow closure of the chain.

3.2. Stage 2: Refinement

A candidate fragment is refined by minimizing the least
squares residuals between the observed densityρo and the den-
sity calculated from the modelρc. The target function sums the
squared differences between the observed density and the cal-
culated density at each grid point in some volumeV around the
fragment:

T(q) =
∑

gi∈V [Sρo(gi) + k− ρc(gi)]
2
. (1)

The calculated density at each grid point is a sum of contribu-
tions of all atoms whose center lies within a cutoff distance from
this point. The calculated density contribution of an atom is a
sum of isotropic 3-D Gaussians (Waasmaier & Kirfel, 1995).
The factorsS and k scaleρo to ρc and are computed once at
initialization using the partial model.

3.2.1. Optimization with closure constraints Our method
uses the redundant DoFs of the fragment to minimize the target
function without breaking closure. The redundant DoFs define
a subspace of conformation space termed theself-motionmani-
fold. Motions on this manifold do not influence the position and
orientation of the end-point and thus can be used to move the
fragment towards a minimum of the target function (Burdick,
1989; Khatib, 1987). Since this manifold may be very complex
these motions are in general difficult to calculate. We therefore
use a local, linear approximation of the self-motion manifold;
the null-space of the Jacobian matrix (Craig, 1989) of the frag-
ment. For ann-DoF fragment inR3 at conformationq, the Jaco-
bianJ(q) is a6× n matrix satisfying the equation:

ẋ = J(q)q̇. (2)

Thus,J(q) = d f(q)/d(q) where f (q) is the fragment’s forward
kinematics function mapping DoF parameters to end-point posi-
tion and orientation. The rank of the Jacobian inR3 is at most
6 and thus the dimensionality of its null space is at leastn− 6.
An instantaneous change in the conformation corresponding to

a desired small change in end-point position is calculated by
inverting Equation 2. We get:

q̇ = J†(q)ẋ + N(q)NT(q)y, (3)

whereJ† is the pseudo-inverse of the Jacobian andN(q) is an
orthonormal basis for the null-space. The null space can now be
used to optimize the target function without affecting the posi-
tion of the end-point. The instantaneous change in position and
orientation of the end-point,̇x, is set to zero andy is taken to be
the gradient vector of the target function. Projectingy onto the
null space of the Jacobian produces a motion that minimizes the
target function without disturbing closure.

3.2.2. Implementation details The null space of the Jacobian
is obtained from a singular value decomposition of the Jacobian
matrix. The null-space basisN(q) is the set of right singular vec-
tors corresponding to vanishing singular values. We derived an
analytical expression for the gradient of the target function with
respect to the torsional DoFs of the loop. It is calculated using
a recursive method (Abeet al., 1984), linear in the number of
DoFs of the fragment.

A gradient descent search for the minimum of the target func-
tion is prone to get stuck in local minima. The MCM approach
is well-known for its ability to overcome this problem. At each
step, a large random move in conformation space is proposed,
the new conformation is then minimized by gradient descent
and the resulting local minimum is accepted or rejected using
the Metropolis criterion (Metropoliset al., 1953). Minimization
increases the acceptance probability of the trial move, enabling
the search to make more progress. This comes at the cost of
increasing the time of each simulation step.

Two methods are used for generating random moves for
MCM. The first is to take a step in a random direction in the
null-space (Yakeyet al., 2001). Before performing minimiza-
tion, we make sure the closure tolerance has not been exceeded.
A second method for generating random steps is an exact IK
solver (Coutsiaset al., 2004). One of the solutions is chosen
at random as the proposed move. The use of an exact solver
allows jumping between unconnected parts of the self-motion
manifold. The closure constraint is relaxed during the refine-
ment stage and a maximum RMSD of 0.5Å is allowed at both
ends of the loop. By relaxing closure, larger steps can be taken
in the null space of the Jacobian.

The refinement protocol is composed of three nested loops,
see Figure 1. The inner loop performs MCM search by using
the two methods described above for generating random trial
moves. The middle loop performs SA by gradually reducing
the pseudo-temperature of the MCM search. The outer loop
enhances the SA protocol by simulating restarts each time at a
lower starting pseudo-temperature. The magnitude of attempted
random null-space moves is reduced together with the current
pseudo-temperature of the simulation to increase the chance
that the random moves will be accepted. Decreasing levels of
smoothing are applied to the density after each restart. The den-
sity map is smoothed by convolving it with an isotropic 3-D
Gaussian kernel. Since the convolution of a Gaussian with a
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Gaussian can be computed analytically by summing the means
and variances of the two functions, the computation ofρc does
not require any convolution. The variance of the Gaussian func-
tion used to represent the density contribution of atoms is sim-
ply augmented by the variance of the desired kernel.

for start_temp = high_start_TEMP downto low_start_TEMP {
temp = start_temp;
SmoothDensity(start_temp);
for SA_steps = 1 to 8 {

for MCM_steps = 1 to NUM_ITERS {
M = ProposeRandomMove(temp);
MinimizeMove(M);
AcceptMove(M);

}
temp *= TEMP_dec_factor;

}
}

Figure 1
Pseudo-code for refinement search protocol

4. Results and Discussion

The performance of the algorithm was evaluated on a test set
of 103 structurally diverse fragments at various resolution lev-
els. Additionally, we tested its ability to close gaps at various
lengths using experimental data and initial models provided by
the JCSG. We furtermore evaluated the algorithm’s ability to
identify alternative conformations in a disordered region.

4.1. Performance at various resolutions, fragment lengths and
their secondary structure

4.1.1. TM1621. A set of 103 structurally diverse fragments
was obtained by creating gaps of length 4, 8, 12, and 15 at each
even numbered residue of a test structure, the protein TM1621
(PDB code 1O1Z, SCOP classification a/b). TM1621 consists
of one chain, with 34% of the residues in 10 alpha helices,
and 19% in 9 beta sheets. Diffraction data for this 234-residue
protein structure had been collected at a resolution of 1.6Å.
To evaluate the performance at various resolution levels, three
2mFo−DFc electron density maps were calculated 2.0, 2.5, and
2.8Å, using structure factors obtained from the PDB. Since the
low resolution electron density was obtained by truncating a
high resolution data set, the RMSDs in this section are not typ-
ical for their resolution levels.

At a resolution of 2.0̊A, the algorithm successfully closed all
103 gaps of length 4 to within 1.0̊A, and all length 8 gaps to
within 0.85Å, as shown in Figure 2. Wider gaps are more dif-
ficult to close; a total of nine 12-residue and nine 15-residue
fragments were found to have an aaRMSD greater than 1.0Å.
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Figure 2
The aaRMSD-distribution of 103 fragments with lengths 4, 8, 12, and 15
residues of TM1621 at a resolution of 2.0Å. A total of 9% of 12-residue and
9% of 15-residue fragments have an aaRMSD> 1.0Å.

To evaluate the effect of secondary structure on aaRMSD, all
12- and 15-residue fragments were classified as helix, strand
or ’other’. A fragment is considered a helix or strand only if
at least 2/3 of its residues are classified as such. A total of
fourteen 12-residue fragments and eight 15-residue fragments
met our criteria for helices. Three 12-residue fragments and no
15-residue fragments were classified as strands. The maximum
aaRMSD for the 12-residue strands over all resolutions was
0.3Å. Four percent of non-helical, 12-residue fragments were
found to have an aaRMSD> 1.0Å, compared to 36% of helical
fragments. For 15-residue fragments, these numbers are 4% and
63% respectively.

At a resolution of 2.5̊A, all gaps of length 4 and 8 were closed
to within 1.0Å aaRMSD and 0.85̊A aaRMSD resp., whereas
four 12-residue fragments and twelf 15-residue fragments devi-
ated by more than 1.0̊A aaRMSD. The results are depicted in
Figure 3. One percent of non-helical, 12-residue fragments were
found to have an aaRMSD> 1.0Å, compared to 21% of helical
fragments. For 15-residue fragments, these numbers are 7% and
63% respectively.
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Figure 3
The aaRMSD-distribution of 103 fragments with lengths 4, 8, 12, and 15
residues of TM1621 at a resolution of 2.5Å. A total of 4% of fragments of
length 12, and 12% of fragments of length 15 have an aaRMSD> 1.0Å.

At a resolution of 2.8̊A, all gaps of length 4 and 8 closed
to within 1.05Å aaRMSD and 0.75̊A aaRMSD resp.. Four 12-
residue fragments and eighteen 15-residue fragments deviated
by more than 1.0̊A aaRMSD. The results are depicted in Figure
4. Two percent of non-helical, 12-residue fragments were found
to have an aaRMSD> 1.0Å, compared to 14% of helical frag-
ments. For 15-residue fragments, these numbers are 12% and
88% respectively.
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Figure 4
The aaRMSD-distribution of 103 fragments at lengths 4, 8, 12, and 15 residues
of TM1621 at a resolution of 2.8̊A. A total of 4% of fragments of length 12,
and 17% of fragments of length 15 have an aaRMSD> 1.0Å.

Table 1 summarizes the performance at three resolution lev-
els.

Table 1
Median (̃x) and mean (̄x) aaRMSD of fitted fragments to corresponding regions
in TM1621 at resolutions 2.0, 2.5, and 2.8Å, and percentage of fragments devi-
ating by more than 1.0̊A (p).

2.0Å 2.5Å 2.8Å
length x̃ x̄ p x̃ x̄ p x̃ x̄ p

4 0.13 0.14 0 0.18 0.19 0 0.31 0.32 0
8 0.16 0.18 0 0.23 0.23 0 0.33 0.36 0

12 0.28 0.51 9 0.34 0.41 4 0.41 0.52 4
15 0.33 0.53 9 0.43 0.63 12 0.49 0.76 17

4.1.2. Run times The run time of the algorithm depends on
the length of the fragment to be fitted, as well as on the res-
olution of the diffraction data. Run times vary from about 30
minutes for short fragments to just under 3 hours for the longest
fragments at high resolution. Table 2 summarizes average run
times calculated while generating the 103 fragments used in this
section. All tests were performed on a 2.66GHz Intel P4 Xeon
running RedHat 9. The source code was compiled using gcc 3.2.

Table 2
Average run times (in minutes) on a 2.66GHz Intel P4 Xeon at various fragment
lengths and resolution levels. Average is calculated over 103 fragments.

length 2.0̊A 2.5Å 2.8Å
4 40 29 28
8 92 63 58

12 134 82 73
15 178 105 95

An equivalent analysis on TM0423 (376 residues, PDB code
1KQ3, SCOP classification multi-domain a/b, multi-helical), a
protein with a helical domain, gives similar results, see Table 3.
TM0423 consists of one chain, with 46% of the residues in 16
helices, and 11% in 8 beta-sheets. The longest helix has length
17, and if a single Glycine classified as a hydrogen bonded turn
is included, its length is 26.

Table 3
Median (x̃) and mean(x̄) aaRMSD of 174 fitted fragments to corresponding
regions in TM0423 at resolutions 2.0, 2.5, and 2.8Å, and percentage of frag-
ments deviating by more than 1.0Å (p).

2.0Å 2.5Å 2.8Å
length x̃ x̄ p x̃ x̄ p x̃ x̄ p

4 0.18 0.19 0 0.24 0.25 0 0.32 0.32 0
8 0.20 0.22 0 0.28 0.29 0 0.35 0.38 0

12 0.29 0.55 26 0.33 0.50 19 0.40 0.56 19
15 0.34 0.96 38 0.43 0.92 29 0.52 1.19 29

Clearly, the algorithm performs more modestly when fit-
ting longer fragments. In addition to an increasing median
aaRMSD, a larger proportion of fragments deviates by more
than 1.0̊A as fragment length increases, particularly when a
large number of residues are in alpha-helical conformation. It
has been observed in previous studies that accurately model-
ing secondary-structure elements may require specialized sam-
pling algorithms (Jacobsonet al., 2004). Our current implemen-
tation lacks such targeted approaches, yet gives acceptable per-
formance for fragments up to length 12 across all resolutions.

Interestingly, lowering the resolution of the data only mildly
affects performance. We believe that this is the true strength of
the algorithm; lack of structured, well-defined electron density
information is compensated by maintaining a closed conforma-
tion.
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4.2. Missing Fragments

In this section, we present three examples of protein model
completion by inserting poly-alanine fragments into a gapped,
initial model at high and medium-to-low resolution. Rather than
closing a few selected gaps, we aim to fully complete each
model. Thus, we calculate all missing fragments in a model at
15 or less residues in length.

In one instance, the protein TM1586, the algorithm was
actively used to complete the model, and detailed results will
appear in a separate publication. The remaining two structures
had been completed and refined prior to testing the algorithm.
All initial models were obtained from common crystallographic
model building programs.

It was found that residues anchoring a gap in partial models
do not always fit the density correctly. In these cases, the gap
was widened by trimming back one or more residues at theN
and/orC end of the gap until the new anchors fit the density
satisfactorily.

Furthermore, missing fragments of length< 4 are extended
to length4 in this section, again by trimming back residues at
both ends of the gap.

The electron density score of generated fragments and
RMSD to the final, refined structure can not expected to be per-
fectly correlated in areas of poor density. In an extreme case it
may happen that conformations attain a higher score by jump-
ing over to a neighboring, empty stretch of density (a beta-sheet,
for instance) for a few residues. In this section, in addition to
the aaRMSD of the best scoring fragment we therefore report
the lowest achieved aaRMSD among the 12 fragments output
by the program.

4.2.1. TM1586 at 2.0Å. An initial model for the 206-residue
hypothetical protein TM1586 was obtained from Xsolve, a
fully automated crystallographic data processing and struc-
ture solution software suite under development at the JCSG
(Wolf, 2004). At the time of processing this data, Xsolve only
supported RESOLVE v2.06 for model building.

The model was obtained from MAD data collected at 2.0Å,
and showed gaps in between residues 86-98, 107-117, and 142-
150. Furthermore, 66 residues were missing at the N termi-
nus of the molecule. Overall completeness was reported to be
51%. After widening gap 142-152 by one residue at each end,
this gap was easily closed to within 0.5Å aaRMSD using an
experimental map obtained with SOLVE v2.03 (Terwilliger &
Berendzen, 1999). The gaps in between residues 86-98 and 107-
117 proved to be more difficult. The extended RESOLVE model
was combined with an ARP/wARP model, and a more complete
model was obtained after various rounds of phase improve-
ments. TheN-terminus was now largely complete, with gaps
remaining in between residues 13-23, 49-52, 89-99, and 105-
113. Three residues at theC-terminus of the first gap did not
adequately fit the density, and the gap was widened to span
residues 13-27. Gap 49-52 was widened to 47-53, and gap 105-
113 was also trimmed back one residue at theC-terminus. The
missing fragments were all located on one face of the molecule,
and the density remained weak in this area. The map improved

slightly after phases obtained from SHELXD (Schneider &
Sheldrick, 2002) and autoSHARP were used. At this point, the
remaining missing fragments were generated, which served as
a starting point for subsequent manual refinement. The result-
ing structure was subsequently refined with REFMAC5. Table
4 shows the aaRMSD of fragments to this final, refined model.

Table 4
RMSD of fitted fragments in TM1586 and corresponding regions in the final,
refined structure.

Gap Length Secondary aaRMSD (Å) aaRMSD (̊A)
Structure (Top Score) (Lowest)

13-27 13 HHHHHHHHH·B· · ·B 2.43 2.39
47-53 5 ·SS· · ·· 1.08 0.86
89-99 9 HHHHHTTEEEE 1.39 1.01

105-114 8 ·BS· · · · · · · 1.03 0.75
141-151 9 HT·GGGGG· 0.46 0.43

The density score and the aaRMSD are poorly correlated,
reflecting the weak density in the area of the missing fragments.
Even though the first fragment has a fairly high aaRMSD, it still
provided a good starting point for manual refinement. Figure
5 shows residues 89-99 of the final, refined structure, together
with the best fragment that was generated. Note that the main-
chain density is discontinuous at the displayed contour level of
0.8σ, and that side-chain density is poorly defined.

Figure 5
Residues 89-99 of TM1586. The fragment inserted into the model is shown
in cyan, and the corresponding final, refined fragment in green. The aaRMSD
between the two fragments is 1.01Å. The electron density map is shown con-
toured at 0.8σ, and is discontinuous around the Alanine 90.

4.2.2. TM1742 at 2.4Å. MAD data for the 271-residue, puta-
tive Nagd protein TM1742 (PDB code 1VJR) was collected at a
resolution of 2.4̊A. An initial electron density map of good qual-
ity was obtained using the program SOLVE v2.03 (Terwilliger
& Berendzen, 1999), at a resolution of 2.5Å. Iterative model
building using Terwilliger’sresolve build script resulted
in an 88% complete model, with gaps in between residues 17-
25, 56-62, 129-132, 146-148, 229-231. Furthermore, the region
in between residues 191-202 had been built incorrectly. The
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RESOLVE model was independently completed and refined.
Table 5 summarizes the aaRMSD of top-scoring fragments built
with our algorithm to the final, refined structure.

Table 5
RMSD of fitted fragments in TM1742 and corresponding regions in the final,
refined structure obtained from the PDB.

Gap Length Secondary aaRMSD (Å) aaRMSD (̊A)
Structure (Top Score) (Lowest)

17-25 7 ETTEE·T 0.72 0.66
56-62 5 HHHHT 0.78 0.78

126-132 5 HHHHH 0.36 0.36
146-148 1 · 0.44 0.40
191-202 10 HHHHHT··GG 0.43 0.43
228-233 4 SSS· 0.22 0.22

4.2.3. TM0542 at 2.6Å. MAD data for the 376-residue pro-
tein TM0542 (Malate Oxidoreductase) was collected at a reso-
lution of 3.0Å, and a native data set was obtained at 2.6Å. An
electron density map was calculated with phase extension using
the program SOLVE. Iterative model building using RESOLVE
revealed that the unit cell contains four NCS related molecules.
Molecule A was the most complete of this set of four with
56% of residues placed, and gaps in between residues 12-
89, 134-142, 212-227, 256-266, 272-285, and 318-324. This
RESOLVE starting model was independently manually com-
pleted and refined. The refined model was used to calculate
RMSDs for our automatically generated fragments.

The algorithm successfully closed all gaps, but for the first
76-residue one. Table 6 summarizes the results.

Table 6
RMSD of fitted fragments in molecule A of TM0542 and corresponding regions
in the manually built structure.

Gap Length Secondary aaRMSD (Å) aaRMSD (̊A)
Structure (Top Score) (Lowest)

134-142 7 HHHHHHH 0.93 0.78
212-227 14 BS··SSGGGGG·HH 0.91 0.90
256-266 9 ES·SS·SHH 0.87 0.87
272-285 12 ·SSEEEEEE·SS 1.15 1.15
318-324 5 HHHHH 0.72 0.72

Fitting a poly-alanine fragment into the density is rather sen-
sitive to residues being flipped along the chain. This problem
is exacerbated by the fact that exposed loop regions typically
have poorly resolved side chains in the electron density. Fig-
ure 6 shows an example of a fragment where two consecutive
residues are flipped. While the aaRMSD is relatively high at
0.9Å for this fragment, theCα-trace is in excellent agreement
with the manually built fragment. The flipped residues are easy
to identify and correct for a trained crystallographer.

Figure 6
Residues A256-A267 of TM0542. The top-scoring fragment is shown in cyan,
and the corresponding manually completed and refined fragment in green. The
aaRMSD between the two fragments is 0.87Å. The fragment is largely correct,
apart from residues A259 (Serine) and A260 (Arginine) being flipped. The elec-
tron density map is shown contoured at 1.0σ.

4.3. Identifying alternative main-chain conformations

Binding of ligands to a protein or protein-protein interac-
tions are typically facilitated by mobile regions in the macro-
molecule. Such flexible fragments sometimes crystallize in
multimodal disordered substates, where the main chain adopts
two or more distinct conformations for a number of contigu-
ous residues. It is generally difficult to recognize features in the
resulting areas of overlapping density, even for a trained crys-
tallographer. Here we show that our method can be extended to
support identification and refinement of multiple, distinct con-
formations at sub-atomic resolution.

A model for the 398-residue hypothetical protein TM0755
was determined from a 1.8Å MAD data set using ARP/wARP.
The structure was completed manually, apart form a short frag-
ment around residue A320. The electron density from residue
A317 to A323 indicated that this fragment had crystallized in
two distinct conformations. Furthermore, a structurally similar
dioxygen reduction enzyme, Rubredoxin Oxygen: Oxidoreduc-
tase (pdb code 1e5d), binds a Flavin Mononucleotide at the cor-
responding residues, providing additional evidence for the pres-
ence of multiple conformations at this site.

While one conformation was clearly visible in the electron
density, the main-chain trace of the alternative conformation
was much less obvious. From residue A320 to A323 the den-
sity was particularly ambiguous; the alternative conformation
was difficult to identify and initially not modelled. To model
the fragment from residue A317 to A323 with our algorithm,
it was decided to build two conformations at half occupancy
each. The algorithm was slightly modified; half occupancy was
hard-coded, and density-smoothing was disabled to narrow the
radius of convergence of the refinement stage. Runs at four dif-
ferent lengths were attempted. TheN-anchor was kept fixed at
Serine A316, and theC-anchor ranged from Alanine A320 to
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Histidine A323. In the final run, four out of the final twelf frag-
ments adopted configuration ’A’, another three adopted confor-
mation ’B’, and the remaining five fragments did not fit the den-
sity meaningfully. Figure 7(a) shows the two alternative con-
formations for residues A316-A323. Side chains were added
manually to the poly-alanine chains. Figure 7(b) and (c) show
residues A316 to A320 of both conformations in the electron
density. The fit of Tyrosine A318 is particularly telling in each
case.

Figure 7
(a) The two alternative conformations for residues A316-A323 in the hypotheti-
cal protein TM0755. A total of 33% the final fragments output by the algorithm
converged to conformation ’A’, while another 25% assumed conformation ’B’.
Side chains were added manually. (b) Residues A316-A320 of conformation
’A’. (c) Residues A316-A320 of conformation ’B’. For clarity, residues A321-
A323 are omitted in figures (b) and (c).

5. Conclusion

Existing model building software sometimes fails to resolve
parts of a protein, resulting in an initial structure with gaps. In
this study we presented a two stage approach to model missing
main-chain fragments, given the anchor points and an electron
density map. IK techniques allowed us to enforce a closure con-
straint, thus augmenting reduced information available in areas
of poor electron density. Experimental results demonstrate that

our approach yields fragments in good agreement with the final,
refined structure, even at medium to low resolution, at lengths
up to 12-15 residues.

Fitting a poly-alanine fragment into areas of poor density is
sensitive to residues being flipped along the chain. An impor-
tant extension to the current algorithm is therefore the ability
to identify flipped residues. Although easy to detect and correct
manually once the fragment is built, it requires an additional
step of human intervention before the model can be submitted to
refinement. It is anticipated that elementary heuristic techniques
will greatly reduce the occurrence of flipped residues. Similarly,
incorporation of specialized algorithms to identify and model
secondary-structure elements will enhance the performance in
building long alpha-helices.

Advances in all aspects of X-ray crystallography–from pro-
tein expression to data processing and instrumentation–are lead-
ing to data sets of sufficiently high quality to distinguish alterna-
tive main-chain conformations in mobile regions. Our methods
can easily be extended to model alternative conformations, even
at subatomic resolution, as was shown in Section 4.3. Inducing a
probability measure on conformation space from targeted sam-
pling of self-motion manifolds is another interesting and excit-
ing direction for future research.

6. Software
The algorithm is actively being used in the structure determina-
tion at the JCSG, and work is under way to fully integrate it into
Xsolve, JCSG’s automated data processing and structure solu-
tion software suite. A software package based on the algorithm,
Xpleo, is currently under development. It will be available for
download at http://smb.slac.stanford.edu/vdbedem.
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