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Rapid protein structure determination relies greatly on the availability of software
that can automatically build a protein model into an experimental electron den-
sity map. In favorable cases, the prograARP/WARP RESOLVE MAID, and
TEXTALare all capable of building over 90% of the final model. At medium-
low resolution 2.3,& <d< 2.9,&), only about 2/3 completeness is typically
attained. Manual completion of these partial models is usually feasible, but is
time-consuming, and easily leads to inaccuracies. Except for the N- and C-termini
of the chain, the end points of each missing fragment are known from the initial
model. Hence, loop fitting reduces to immerse kinematicproblem.
We have combined a fast inverse kinematics algorithm with real space, torsion
angle refinement in a two stage approach to fit a poly-alanine chain to the electron
density between two anchor points. The first stage aims to sample a large number
of closing conformations, guided by the electron density. These candidate confor-
mations are ranked according to density fit. Top-ranking conformations are then
subjected to torsion angle, subchain refinement in the second stage. Optimiza-
tion steps are projected onto the null space of the subchain, thus preserving rigid
geometry and closure.
In a test set of 103 structurally diverse fragments, the algorithm closed gaps of
12 residues in length to within, on average, REARMSD of the final, refined

© 2004 International Union of Crystallography _structure ata regolution of 208 In_ an ionitial, 51%-complete quel built atG_A,

Printed in Denmark — all rights reserved it closed al4-residue gap to withi.9A aaRMSD, thus extending automation of
model building towards lower resolution levels.

1. Introduction human intervention (loerger & Sacchettini, 2003; Levitt, 2001,

The Protein Struct Initiati PS| National Institut fPerrakiset al, 1997; Terwilliger, 2002). Th€HENIX project
€ Frotein structure fnitiative ( ) a National InStitute ot »qamset al, 2002) aims to automate structure solution from
General Medical Sciences program in the US, aims to reduc

. . - . duced intensity data to a refined model, even at medium to
the time anq associated costs of dgtermmlng a th_ree .d'.merlléw resolution. Indeed, in favorable cases it is now possible to
§|onal protein structure. St|mul_ated in part by fundlng Initia- roceed to an initial model of a new protein structure in a few
tives such as the PSI, the experimental and computational metp- ks
ods used for X-ray structure determination have been greatly
improved. Many of the sample preparation steps including pro- However, the degree of completeness of these initial mod-
tein expression, purification and crystallization have been autc?!S: i-e. the fraction of atoms or residues correctly placed,
mated and turned into large-scale production facilities (Lesleyaries widely depending on the quality of the experimental data
etal, 2002). Various third generation synchrotrons now featurétnd rarely reaches 100%. Accurately determining the atomic
fully automated protein crystallography beamlines, and allowcoordinates of mobile fragments in the molecule, for instance,
collection of a complete X-ray diffraction data set in a matter offémains a challenge. Such fragments often lead to disorder in
minutes (Walstet al, 1999; Coheret al., 2002; van den Bedem the crystal, rendering interpretation of the resulting electron
etal, 2003). Such developments require an ever increasing raéensity difficult. Manually completing a partial protein model,
at which macromolecular structures need to be solved. Fui-€- building the missing residues, is a time-consuming and
ther automation of all computational aspects of structure detef@bor-intensive process, which easily leads to inaccuracies. This
mination is therefore highly desirable to avoid it becoming asStep alone can take a few weeks of work depending on the res-
rate-limiting step in the process of structure solution (Bu”eyolution and size of the structure. Thus, this step still presents
etal, 1999; Adamst al, 2003). a substantial bottleneck to any high-throughput structure deter-

There have been tremendous advances in automated modgination effort.
building methods. Various software systems are now capable of In practice, often a large portion of the molecule has been
building a protein model into an electron density map withoutresolved, andN- and C-termini of a missing fragment in the

Acta Cryst. (2004). D60, 000-000 van den Bedem, Lotan et al - Automated Protein Model Completion 1

IUCr macros version 2615: 2004/05/19



research papers

initial model are known. The missing main-chain fragment cargrams may provide over 90% of the protein main chain of the
be modeled as a kinematic chain, with rigid groups of atoms afinal model (Badger, 2003). At medium to low resolution levels
links, and rotatable bonds as joints. Fitting a fragment can thu(§2.3A <d< 2.9,&), the initial model resulting from these pro-

be interpreted as dnverse kinematicK) problem (Manocha grams is typically a gapped polypeptide chain, and only about
& Zhu, 1994; Manochaet al, 1995): Given the position and 2/3completeness is attained. In the majority of cases, the amino
orientation of the end point of a kinematic chain, determine theacid sequence is correctly assigned, so gap lengths and the iden-
corresponding values of the joint angles. tity of their residues are known.

Exploiting this observation, we have combined an inverse In practice, to complete a model, the crystallographer man-
kinematics algorithm with real space, torsion angle refinemengally builds the missing residues onto the partially completed
in a two stage approach to fit a poly-alanine chain to the electrostructure using an interactive graphics program. These pro-
density between two anchor points. The first stage aims to sangrams, such as thX-BUILD package inQUANTA Insight
ple alarge number of closing conformations, guided by the elecH (both Accelrys, Inc.), and (Jones & Kjeldgaard, 1997)
tron density. These candidate conformations are ranked accorgrovide a variety of semi-automated tools and techniques to
ing to density fit. Top-ranking conformations are then subjectedssist the model building and refinement stepO)matabase
to torsion angle, real space subchain refinement in the secorghgments straddling a gap can be refined against the den-
stage. Optimization steps are projected onto the null space @ity using torsion angle refinement based on grid summa-
the subchain, thus preserving rigid geometry and closure.  tion (Joneset al, 1991). Oldfield (Oldfield, 2001) developed

In a test set of 103 structurally diverse fragments, the algoa method combining a random search of conformation space
rithm closed gaps of 12 residues in length to within, on averwith grid- and gradient-based refinement techniques to close
age, 0.54 all-atom Root Mean Square Deviation (@aRM3D loops. Insight Il employs theandom tweakalgorithm (Fine
of the final, refined structure at a resolution of 2.8he algo-  etal, 1986; Shenkiret al., 1987) to build fragments.
rithm has also been tested and used to aid protein model com- The problem of fitting a protein backbone fragment between
pletion in areas of poor experimental electron density, wher@yo anchor points is closely related to the inverse kinematics
the initial model was built using ARP/WARP or RESOLVE. problem in robotics (Craig, 1989). It is known that for manipu-
At a resolution of 2.4, it closed alO-residue gap to within |ators in a 3-D workspace there are a finite number of solutions
0.43A aaRMSD of the final, refmed structure. In an initial, to the IK problem when the number of DoFs does not exceed
51%-complete model built a@6A, it closed al4-residue gap  six. In the case of a 6R manipulator, which is the most relevant
to within 0.9A aaRMSD, thus extending automation of model to protein fragments, an analytic solution exists and the number

building towards lower resolution levels. of unique solutions is at most sixteen (Raghavan & Roth, 1989).
Go and Scheraga were the first to study analytical loop clo-
2. Background sure, limited to5 DoFs, in the context of macromoleculesi&

A variety of techniques have found successful application anécheraga, 1970). Practical applications of their method and sub-
widespread use in automated interpretation of electron derfequentimprovements (Wedemeyer & Scheraga, 1999) are lim-
sity maps. The prograiRP/wARRPerrakiset al, 1997), for  ited: when restricting the DoFs o, /)-angles, the loop length
instance, iteratively adds pseudo-atoms to a partial model th&&n not exceed three residues. Recently, this limitation was
it subsequently refines in reciprocal space. The progfang-  overcome by extending the domain to any three, not neces-
TAL (loerger & Sacchettini, 2003) employs local pattern recog-sarily consecutive, residues with arbitrary geometry (Coutsias
nition techniques to select regions in a database of previous§t al, 2004).
determined structures similar to those in the unknown struc- In the general case dfi > 6 dihedral angles, the inverse
ture. Some automated systems targeting lower resolution levelsinematics system of equations is underdetermined. Rather than
notablyRESOLVHTerwilliger, 2002) andMAID (Levitt, 2001),  solving directly for the dihedral angles, numerical methods are
start by identifying larger secondary-structure elements usingmployed to sample conformational space.
sophisticated template matching technigues, and then connectSearch methods sample from a discrete set of conforma-
these ‘fits’ through loop regions. tional parameters, and include sampling biased by the database
Relying on unambiguous experimental data and elemendistribution of the@/y) angle pairs (Moult & James, 1986),
tary stereochemical constraints, areas of weak or ambiguousmiform conformational search (Bruccoleri & Karplus, 1987),
electron density remain a challenge for these approaches. Fsampling from a discrete set gfy pairs (Deane & Blundell,
instance, exposed, mobile loop regions typically have poori2000; DePristat al, 2003) or sampling from a small library of
resolved side chain density, or show discontinuous main-chaishort representative fragments (Kolodetyal, 2004). Extract-
density even at low contour levels. Patterns in the density maing candidate fragments from the PDB satisfying conditions
go unnoticed to template matching techniques for a variety obn length and geometry started with (Jones & Thirup, 1986),
reasons. The electron density may exhiitiitimodal disor- and was further developed in (Fideks al, 1994; van Vlij-
der, where the protein main chain adopts two or more distincmen & Karplus, 1997; Dt al, 2003). Various methods exist
conformations for a number of contiguous residues (Wilsorfor optimization of candidate loops, such as molecular dynam-
& Brunger, 2000). Nevertheless, at high resolution, these proics (Bruccoleri & Karplus, 1987; Fiseet al, 2000; Zheng

1 square root of the averaged squared distances between the correspondingNat@ns C3;, Gi, O; }. It is calculated after the loops are optimally aligned in 3-D.
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et al, 1992) and Monte Carlo (Abagyan & Totrov, 1994; Col- 3.1. Stage 1: Generation

luraetal, 1993) simulations. _ _ Residues flanking the gap in the partial model will be denoted
Another class of methods iteratively solves the inverse kinestationaryanchors. The algorithm starts by constructing a pro-

matics system of equations. The aforementioned random tweaKin chainC of length L in a random conformation, where

method closes a loop by iteratively changing all its DoFs ayesidued is a copy of theN-stationary anchor, and residue- 1

once until the desired distances between the two terminals ajg 5 copy of theC-stationary anchor. This chain is attached to

reached. It employs the Jacobian of these distances with respggtner theN-, or C- anchor, thus determining tieosing direc-

to torsional DoFs to calculate the DoF changes. Tgelic  tion, The remaining, terminal residue dhis called themobile

coordinate descenfccp) algorithm ((Canutescu & Dunbrack gnchor.

Jr, 2003), (Wang & Chen, 1991)) adjusts one DoF at a timé non starting the procedure, the position of the mobile

along the chain to move the final segment of the loop towardynchor will not coincide with the position of the stationary
the target residue. It is free from singularities, and allows cong,.hor. The algorithm adjusts each backbone dihedral angle in
straints on any of the DoFs. turn such that the distance between the three backbone atoms of

This study combines thecp loop closure algorithm with e obile anchor and the corresponding atoms of the stationary
real space, torsion angle subchain refinement to aid model com,chor are minimized.

pletion. The objective is to automatically fit a poly-alanine chain
between two anchor residues, satisfying electron density con;

tstramt?. Rea:jspace, tlﬁaSt squares r_efmement oflfers the adV?QFminal residue of each half-chain alternates between acting as
rﬁSan(l)ikZIFi)ﬁgo dor\;efirngmigvgltseecr?:ipigzr _rreh(:F;rf%?itrs]&a;:'sl;nmaé'tationary anchor and mobile anchor in subsequent iterations.
ques. 9 A total of 1000starting conformations are calculated to start

rigid peptide geometry with residue-dependent values for bonghe procedure. Each is allowed 2000 iterations for closure up to
lenghts and bond angles taken from (Engh & Huber, 1991), preset tolerance distandg.se¢ Chains that did not close are

Final chains will need to be refined using standard refinemen iscarded. A cross-correlation density score is calculated for all
programs such as CNS (Brunget al, 1998) or REFMAC : : : iy ' u

conformations, and th@9-th percentile (with a maximum of 6

(Murshudovet al, 1997). chains) is passed on to stage two. Each of these is then subjected
to 6 SA refinement cycles, the 2 top-scoring fragments of which
3. Methods are written to disk. As most chains close within 2000 iterations,
The algorithm proceeds in two stages: candidate generation afiis gives a total of 12 fragments. The program also writes a log
refinement. In the first stage, candidate loops are built usingjle containing the full cross-correlation electron density score
the CCD algorithm, while putting additional constraints onfor each fragment.
the DoFs to take the electron density and collision avoidance
into account. Next, initial conformations are ranked accord- 3.1.1. Random Initial Conformations For each starting con-
ing to density fit. Top-ranking initial conformations are refined figuration, w; is considered to be a fixedy(180 5.8) ran-
by minimizing a standard real-space target function (Diamonddom variable for alli. Half of the starting configurations are
1971; Chapman, 1995; Korostelet al, 2002). An optimiza-  obtained by adjusting ea¢h, ¢); in turn to optimize agreement
tion protocol based on simulated annealing (SA) (Kirkpatrickwith the electon density while stereochemical constraints are
et al, 1983) and Monte Carlo Minimization (MCM) (Li & observed. The remaining five hundred starting conformations
Scheraga, 1987) searches for the global minimum of the tamare purely random, and obtained from sampl{@g);,i =
get function while maintaining loop closure. Each candidate i9...L — 1 angle pairs from PDB-derived distributions. A finite
optimized 6 times and the best scoring loops are returned.  mixture of bivariate normal distributions was thereto fitted

Deficient density information is compensated for by takingto frequencies calculated from the Top500 database (Lovell
advantage of the loop closure constraint to guide the loop to itet al,, 2003) of non-redundant protein structures, using the pro-
correct positioning in space. In the first stage, the closure corgram EMMIX (McLachlanet al,, 1999). We obtained distribu-
straint enables the generation of loops that lie witdfR®MSD  tions for each of the 20 amino acids, and an additional distri-
of the true solution. The approximate enforcement of the clobution for residues immediately preceding proline in the amino
sure constraint during loop refinement prevents the search fromcid sequence. The angleég and ) _1 remain fixed at their
diverging and limits the searched space to motions that preserisitial values.
loop closure.

The input to the algorithm is given by the electron density, 3.1.2. Electron Density Constraints A change to the DoFs
in most cases @mk, — DF. map, the partial model, and the of a residue is calculated as follows: The CCD step proposes
amino acid sequence. The latter is needed to identify the misg distance minimizing dihedral anglg for residuei, and
ing residues. based ony;, it proposes a minimizing);. (In our implemen-

The implementation of the algorithm uses the following soft-tation, we change each DoF in turn, although this is not strictly
ware package<lipper (Cowtan, 2004), th€CP4 Coordinate necessary.) Thus, a proposed angle pair))P is obtained.
Library (Krissinel, 2004) and the exact IK solver of (Coutsias To guide the loop, a heuristic electron density constraint has
et al, 2004). been added to the CCD algorithm. For each paitonsider

For longer loopsq or more residuesy; is split in the middle,
d each half-chain is attached to its corresponding anchor. The
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the set of atoms4; that is subject to change by angle pair a desired small change in end-point position is calculated by
i, and not affected by changes in angle pair 1. Hence, inverting Equation 2. We get:

A = {CGi, G, O, Niy1,Caiy1}, whereCg; is excluded when- .

ever residuei is a Glycine. Electron density scores corre- q=J"(a)x+ N(@N'(q)y, 3)
sponding to trial positions in a square neighborhadg ,» ) ) ) )
about (¢, )P in conformation space are calculated. A sim-WhereJ' is the pseudo-inverse of the Jacobian &fd) is an

ple local scoring function is adopted; the sum of the electrorPrthonormal basis for the null-space. The null space can now be
density values at atom center positions.4f The angle pair used to optimize the target function without affecting the posi-
(6,4)i is set to the trial position with maximum density score, fion of the end-point. The instantaneous change in position and

ie (6,9) = argma 6,1b), where S(¢,1p) =  orientation of the end-poink, is set to zero anylis taken to be
@ ¥) >5¢,w)eu(¢_w)ip S ¥) S 9) the gradient vector of the target function. Projectynonto the

e P(A(C)), andp(Aj(c)) denotes the value of the elec- | space of the Jacobian produces a motion that minimizes the
tron density at the center of atosy. At this point, overlaps target function without disturbing closure.
of van der Waals surfaces of atoms.f and the rest of the

protein structure are determined. If no overlaps occur, the new 3.2.2. Implementation details The null space of the Jacobian

(¢, )i .p.air.is accepted, otherwise the pair is accepted With % obtained from a singular value decomposition of the Jacobian
probablhty inversely rglated tq the amount of overlap. Thef SIZ€ atrix. The null-space basi(q) is the set of right singular vec-
0f Uyy,)» is reduced linearly in the number of CCD iterations y,.5 ¢orresponding to vanishing singular values. We derived an
to allow closure of the chain. analytical expression for the gradient of the target function with
3.2. Stage 2: Refi ; respect to the torsional DoFs of the loop. It is calculated using

o Stage N ehmemen ) _ o a recursive method (Abet al,, 1984), linear in the number of

A candidate fragment is refined by minimizing the leastpgrs of the fragment.
squares residuals between the observed depisiyd the den- A gradient descent search for the minimum of the target func-
sity calculgted from the modeF. The target functlo'n sums the ionis prone to get stuck in local minima. The MCM approach
squared differences between the observed density and the cfl-yell-known for its ability to overcome this problem. At each
culated d.ensny at each grid pointin some volwharound the  gten 4 large random move in conformation space is proposed,
fragment: the new conformation is then minimized by gradient descent
_ 0/ 2 and the resulting local minimum is accepted or rejected using
T(@) =2 gev [S9°(G) + k= p*(@)]"- (1) the Metropolis criterion (Metropolist al., 1953). Minimization

The calculated density at each grid point is a sum of contribuincreases the acceptance probability of the trial move, enabling

tions of all atoms whose center lies within a cutoff distance fromf"€ Séarch to make more progress. This comes at the cost of
this point. The calculated density contribution of an atom is 4"¢réasing the time of each simulation step.

sum of isotropic 3-D Gaussians (Waasmaier & Kirfel, 1995). W0 methods are used for generating random moves for
The factorsS andk scalep® to o° and are computed once at MCM. The first is to take a step in a random direction in the
initialization using the partial model. null-space (Yakeet al,, 2001). Before performing minimiza-

tion, we make sure the closure tolerance has not been exceeded.
3.2.1. Optimization with closure constraints Our method A second method for generating random steps is an exact IK

uses the redundant DoFs of the fragment to minimize the targ&P!Ver (Coutsiaet al, 2004). One of the solutions is chosen
function without breaking closure. The redundant DoFs definét random as the proposed move. The use of an exact solver
a subspace of conformation space termedsgiemotionmani- aIIovys jumping between unconnepted parts of t_he self-mo_tmn
fold. Motions on this manifold do not influence the position andManifold. The closure constraint is relaxed during the refine-
orientation of the end-point and thus can be used to move th@€Nt stage and a maximum RMSD of A.& allowed at both
fragment towards a minimum of the target function (Burdick,ends of the loop. By relaxing closure, larger steps can be taken

1989: Khatib, 1987). Since this manifold may be very complex the null space of the Jacobian.
these motions are in general difficult to calculate. We therefore 1N€ refinement protocol is composed of three nested loops,

use a local, linear approximation of the self-motion manifold;S€€ Figure 1. The inner loop performs MCM search by using

the null-space of the Jacobian matrix (Craig, 1989) of the fragIhe two methods described above for generating random trial

ment. For am-DoF fragment irR3 at conformatiorg, the Jaco- ~ MOVes. The middle loop performs SA by gradually reducing
bianJ(q) is a6 x n matrix satisfying the equation: the pseudo-temperature of the MCM search. The outer loop

enhances the SA protocol by simulating restarts each time at a

x=J(9)g. (2) lower starting pseudo-temperature. The magnitude of attempted

random null-space moves is reduced together with the current

Thus,J(q) = d f(g)/d(q) wheref(q) is the fragment’s forward pseudo-temperature of the simulation to increase the chance

kinematics function mapping DoF parameters to end-point posithat the random moves will be accepted. Decreasing levels of

tion and orientation. The rank of the JacobiarRihis at most ~ smoothing are applied to the density after each restart. The den-
6 and thus the dimensionality of its null space is at l@ast6. sity map is smoothed by convolving it with an isotropic 3-D

An instantaneous change in the conformation corresponding t@aussian kernel. Since the convolution of a Gaussian with a

4 van den Bedem, Lotan et al - Automated Protein Model Completion Acta Cryst. (2004). D60, 000-000

IUCr macros version 2615: 2004/05/19



research papers

Gaussian can be computed analytically by summing the means length 4 length 8
and variances of the two functions, the computatiop®afoes ®

30

not require any convolution. The variance of the Gaussian func- 2
tion used to represent the density contribution of atoms is sim-,
ply augmented by the variance of the desired kernel. 1

10
5

length 12 length 15
35

30

25

20
B

15

for start_temp = high_start TEMP downto low_start TEMP {
temp = start_temp;
SmoothDensity(start_temp);
for SA_steps = 1 to 8 {

for MCM_steps = 1 to NUM_ITERS { 10
M = ProposeRandomMove(temp); 5|
MinimizeMove(M);
AcceptMove(M)' 0.2 0.4 0.6 0.8 >1.0 0.2 0.4 0.6 0.8 >1.0

} ! aaRMSD (A) aaRMSD (A)

temp *= TEMP_dec_factor;

} Figure 2
} The aaRMSD-distribution of 103 fragments with lengths 4, 8, 12, and 15

residues of TM1621 at a resolution of A.0A total of 9% of 12-residue and

. 9% of 15-residue fragments have an aaRMSD.0A.
Figure 1

Pseudo-code for refinement search protocol

4. Results and Discussion

The performance of the algorithm was evaluated on a test set
of 103 structurally diverse fragments at various resolution lev-
els. Additionally, we tested its ability to close gaps at various
lengths using experimental data and initial models provided by
the JCSG. We furtermore evaluated the algorithm’s ability to

identify alternative conformations in a disordered region. To evaluate the effect of secondary structure on aaRMSD, all

12- and 15-residue fragments were classified as helix, strand
4.1. Performance at various resolutions, fragment lengths and or 'other’. A fragment is considered a helix or strand only if

their secondary structure at least 2/3 of its residues are classified as such. A total of
411. TM1621. A set of 103 structurally diverse fragments fourteen 12-residue fragments and eight 15-residue fragments
was obtained by creating gaps of length 4, 8, 12, and 15 at eadpet our criteria for helices. Threg ;Z—re5|due fragments aqd no
even numbered residue of a test structure, the protein TM162115—reS|due fragments were classified as strands. The maximum
(PDB code 1017, SCOP classification a/b). TM1621 consist§aRMSD for the 12-residue strands over all resolutions was
of one chain, with 34% of the residues in 10 alpha helices?-3A- Four percent of non-helical, 12-residue fragments were

and 19% in 9 beta sheets. Diffraction data for this 234-residud®und to have an aaRMSD 1.0A, compared to 36% of helical
protein structure had been collected at a resolution oh1.6 Tagments. For 15-residue fragments, these numbers are 4% and

To evaluate the performance at various resolution levels, thre@3% respectively.
2mk, — DF. electron density maps were calculated 2.0, 2.5, and
2.84, using structure factors obtained from the PDB. Since the
low resolution electron density was obtained by truncating a
high resolution data set, the RMSDs in this section are not typt—0
ical for their resolution levels.

At a resolution of 2.8, all gaps of length 4 and 8 were closed
within 1.04 aaRMSD and 0.8% aaRMSD resp., whereas
four 12-residue fragments and twelf 15-residue fragments devi-

At a resolution of 2.8, the algorithm successfully closed all ated by more than 10aaRMSD. The results are depicted in
103 gaps of length 4 to within 149 and all length 8 gaps to Figure 3. One percent of non-helical, 12-residue fragments were
within 0.854, as shown in Figure 2. Wider gaps are more dif- found to have an aaRMSB 1.0A, compared to 21% of helical
ficult to close; a total of nine 12-residue and nine 15-residudragments. For 15-residue fragments, these numbers are 7% and
fragments were found to have an aaRMSD greater thak. 1.0  63% respectively.
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length 4 length 8 Table 1
35 Median §) and meanx) aaRMSD of fitted fragments to corresponding regions
30 in TM1621 at resolutions 2.0, 2.5, and &,8nd percentage of fragments devi-
2 ating by more than 18 (p).
2] 2.08 25A 288
ol length X X p X X p X X p
L 1 L ] 4 013 014 0 018 019 O 031 032 0
8 016 018 0 023 023 0 033 036 O
gt 12 ongth 15 12 028 051 9 034 041 4 041 052 4
- 15 033 053 9 043 063 12 049 076 17
30
2 4.1.2. Run times The run time of the algorithm depends on
fg the length of the fragment to be fitted, as well as on the res-
1 olution of the diffraction data. Run times vary from about 30
st minutes for short fragments to just under 3 hours for the longest
52 04 o6 o8 10 02 04 06 o8 10 fragments at high resolution. Table 2 summarizes average run
3aRMSD (A) 3aRMSD (A) times calculated while generating the 103 fragments used in this
section. All tests were performed on a 2.66GHz Intel P4 Xeon
Figure 3

o ] running RedHat 9. The source code was compiled using gcc 3.2.
The aaRMSD-distribution of 103 fragments with lengths 4, 8, 12, and 15

residues of TM1621 at a resolution of A5A total of 4% of fragments of ~ Table 2
length 12, and 12% of fragments of length 15 have an aaRMSID0A. Average run times (in minutes) on a 2.66GHz Intel P4 Xeon at various fragment
lengths and resolution levels. Average is calculated over 103 fragments.

length 2.\ 25A 28A
4 40 29 28

At a resolution of 2.8, all gaps of length 4 and 8 closed 8 92 63 58

to within 1.0%A aaRMSD and 0.7A aaRMSD resp.. Four 12- AR A

residue fragmergts and eighteen 15-residue fragments deviated

by more than 1.8 aaRMSD. The results are depicted in Figure  An equivalent analysis on TM0423 (376 residues, PDB code

4. Two percent of non-helical, 12-residue fragments were foundKQ3, SCOP classification multi-domain a/b, multi-helical), a

to have an aaRMSB 1.0A, compared to 14% of helical frag- protein with a helical domain, gives similar results, see Table 3.

ments. For 15-residue fragments, these numbers are 12% am®10423 consists of one chain, with 46% of the residues in 16

88% respectively. helices, and 11% in 8 beta-sheets. The longest helix has length
17, and if a single Glycine classified as a hydrogen bonded turn
is included, its length is 26.

Table 3
- fongn 4 fengn ® Median (%) and meanx) aaRMSD of 174 fitted fragments to corresponding
20 regions in TM0423 at resolutions 2.0, 2.5, andA.&nd percentage of frag-
25 ments deviating by more than AQp).
22 2.08 2.5A 2.8A
5 length X X p b4 X p b4 X p
10 4 018 019 0 024 025 0 032 032 O
°T 1 8 020 022 0 028 029 0 035 038 0
12 029 055 26 033 050 19 040 056 19
. fenatn 12 fenatn 19 15 034 096 38 043 092 29 052 119 29
30 . .
2 Clearly, the algorithm performs more modestly when fit-
L2 ting longer fragments. In addition to an increasing median
12 aaRMSD, a larger proportion of fragments deviates by more
L than 1.\ as fragment length increases, particularly when a
large number of residues are in alpha-helical conformation. It
0.2 0.4 0.6 0.8 >1.0 0.2 0.4 0.6 0.8 >1.0 . . R
aaRMSD (A) aaRMSD (A) has been observed in previous studies that accurately model-
ing secondary-structure elements may require specialized sam-
Figure 4 pling algorithms (Jacobsaat al., 2004). Our current implemen-

The aaRMSD-distribution of 103 fragments at lengths 4, 8, 12, and 15 residueggtion lacks such targeted approaches yet g|ves acceptab|e per-
of TM1621 at a resolution of 2& A total of 4% of fragments of length 12, formance for fragments up to length 12 across all resolutions.
and 17% of fragments of length 15 have an aaRMSD. 0A. . . . .
Interestingly, lowering the resolution of the data only mildly
affects performance. We believe that this is the true strength of
the algorithm; lack of structured, well-defined electron density
Table 1 summarizes the performance at three resolution levaformation is compensated by maintaining a closed conforma-
els. tion.
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4.2. Missing Fragments slightly after phases obtained from SHELXD (Schneider &

In this section, we present three examples of protein modepheldrick, 2002) and autoSHARP were used. At this point, the
completion by inserting poly-alanine fragments into a gappedi€maining missing fragments were generated, which served as
initial model at high and medium-to-low resolution. Rather than? Starting point for subsequent manual refinement. The result-
closing a few selected gaps, we aim to fully complete eactd Structure was subsequently refined with REFMACS. Table
model. Thus, we calculate all missing fragments in a model af shows the aaRMSD of fragments to this final, refined model.
15 or less residues in length. Table 4

In one instance, the protein TM1586, the algorithm wasRMSD of fitted fragments in TM1586 and corresponding regions in the final,
actively used to complete the model, and detailed results willefined structure.

appear in a separate publicqtion. The remain.ing two strugtures Gap Length Sstfﬁgtrl‘f::ry (izsl\S/ICSﬁ)e() aaR(“fiv?eQ)
had been completed and refined prior to testing the algorithm.
Allinitial models were obtained from common crystallographic  13-27 13 HHHHHHHHHB- - -B 2.43 2.39
model building programs. 47-53 5 -SS - - 1.08 0.86

It was found that residues anchoring a gap in partial models 1%%‘_32 4 98 H'.*BHS%.T.T.'.E'.EEE 11629 017'21
do not always fit the density correctly. In these cases, the gap; 41151 9 HTGGGGG 0.46 0.43

was widened by trimming back one or more residues at\the
and/orC end of the gap until the new anchors fit the density The density score and the aaRMSD are poorly correlated,
satisfactorily. reflecting the weak density in the area of the missing fragments.
Furthermore, missing fragments of length4 are extended Even though the first fragment has a fairly high aaRMSD, it still
to length4 in this section, again by trimming back residues atprovided a good starting point for manual refinement. Figure
both ends of the gap. 5 shows residues 89-99 of the final, refined structure, together
The electron density score of generated fragments anwith the best fragment that was generated. Note that the main-
RMSD to the final, refined structure can not expected to be pechain density is discontinuous at the displayed contour level of
fectly correlated in areas of poor density. In an extreme case .8, and that side-chain density is poorly defined.
may happen that conformations attain a higher score by jump
ing over to a neighboring, empty stretch of density (a beta-shee
for instance) for a few residues. In this section, in addition tc
the aaRMSD of the best scoring fragment we therefore repol
the lowest achieved aaRMSD among the 12 fragments outpi
by the program.

4.2.1. TM1586 at 2.0A. An initial model for the 206-residue
hypothetical protein TM1586 was obtained from Xsolve, a
fully automated crystallographic data processing and struc
ture solution software suite under development at the JCSt
(Wolf, 2004). At the time of processing this data, Xsolve only
supported RESOLVE v2.06 for model building.

The model was obtained from MAD data collected at’2.0
and showed gaps in between residues 86-98, 107-117, and 14
150. Furthermore, 66 residues were missing at the N termi
nus of the molecule. Overall completeness was reported to be
51%. After widening gap 142-152 by one residue at each end,
this gap was easily closed to within %aRMSD using an  Figure 5 . _ .
experimertal map obtained with SOLVE v203 (Tervliger & 85412 ™55 f 06, e e et o e e v
Berendzen, 1999). The 9""?5 in between residues 86-98 and 1QJZ_tv>\llee’n the two fragmgnts isglfo.lThe electron %ensity mgap is shown con-
117 proved to be more difficult. The extended RESOLVE modeloyred at 0.87, and is discontinuous around the Alanine 90.
was combined with an ARP/WARP model, and a more complete
model was obtained after various rounds of phase improve- 4.2.2. TM1742 at 2.4A. MAD data for the 271-residue, puta-
ments. TheN-terminus was now largely complete, with gaps tive Nagd protein TM1742 (PDB code 1VJR) was collected at a
remaining in between residues 13-23, 49-52, 89-99, and 10%esolution of 2.4. An initial electron density map of good qual-
113. Three residues at tii@terminus of the first gap did not ity was obtained using the program SOLVE v2.03 (Terwilliger
adequately fit the density, and the gap was widened to spat Berendzen, 1999), at a resolution of A Slterative model
residues 13-27. Gap 49-52 was widened to 47-53, and gap 10bwuilding using Terwilliger'sresolve _build  script resulted
113 was also trimmed back one residue at@aerminus. The in an 88% complete model, with gaps in between residues 17-
missing fragments were all located on one face of the molecul&5, 56-62, 129-132, 146-148, 229-231. Furthermore, the region
and the density remained weak in this area. The map improveid between residues 191-202 had been built incorrectly. The
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RESOLVE model was independently completed and refined
Table 5 summarizes the aaRMSD of top-scoring fragments bui
with our algorithm to the final, refined structure.

Table 5 §A2167
RMSD of fitted fragments in TM1742 and corresponding regions in the final, 5,501 ol
refined structure obtained from the PDB. Ser
Gap Length Secondary aaRMSRB)( aaRMSD Q)
Structure (Top Score) (Lowest)
17-25 7 ETTEET 0.72 0.66
56-62 5 HHHHT 0.78 0.78
126-132 5 HHHHH 0.36 0.36
146-148 1 . 0.44 0.40 >
191-202 10 HHHHHT-GG 0.43 0.43 >
228233 4 Sss 0.22 0.22 A2%6

Figure 6
4.2.3. TM0542 at 2.6A. MAD data for the 376-residue pro- RedSit‘iueS A256'A2d§7 of TMOE’ITZ- The ltotp';cogng ff_ragcﬂem is 3*19""” in CyaT”r’]
fein ThIOS42 (Malate Oxidoreductase) was collected at a resdi S1e=honns ey conpiecs encefnes fagmentn ren. T
lution of 3.0A, and a native data set was obtained a#2.8n apart from residues A259 (Serine) and A260 (Arginine) being flipped. The elec-
electron density map was calculated with phase extension usin@n density map is shown contoured at &.0
the program SOLVE. Iterative model building using RESOLVE
revealed that the unit cell contains four NCS related molecule#.3. Identifying alternative main-chain conformations
Molecule A was the most complete of this set of four with  Binding of ligands to a protein or protein-protein interac-
56% of residues placed, and gaps in between residues 18ons are typically facilitated by mobile regions in the macro-
89, 134-142, 212-227, 256-266, 272-285, and 318-324. Thimolecule. Such flexible fragments sometimes crystallize in
RESOLVE starting model was independently manually com-multimodal disordered substates, where the main chain adopts
pleted and refined. The refined model was used to calculatgo or more distinct conformations for a number of contigu-
RMSDs for our automatically generated fragments. ous residues. It is generally difficult to recognize features in the
The algorithm successfully closed all gaps, but for the ﬁrst[elslultmghareel\j of overlﬁppmr? density, er:/eg for %tralneddcr)(;s—
76-residue one. Table 6 summarizes the results. allographer. Fere we show that our method can be extended to
support identification and refinement of multiple, distinct con-
formations at sub-atomic resolution.
A model for the 398-residue hypothetical protein TM0755
Table 6 was determined from a 1A8MAD data set using ARP/WARP.
RMSD of fitted fragments in molecule A of TM0542 and corresponding regions-l—he structure was completed manually, apart form a short frag-
in the manually buit structure. ment around residue A320. The electron density from residue

O w317 to A323 indicated that this fragment had crystallized in
two distinct conformations. Furthermore, a structurally similar
134-142 7 HHHHHHH 0.93 0.78 dioxygen reduction enzyme, Rubredoxin Oxygen: Oxidoreduc-
géé'éég 194 BSSEsggéﬁf*H %-9817 %-%(; tase (pdb code 1e5d), binds a Flavin Mononucleotide at the cor-
75985 12 ‘SSEEREEESS 115 115 responding r_e5|dues, prow_dlng addlpon_al evidence for the pres-
318-324 5 HHHHH 0.72 0.72 ence of multiple conformations at this site.

While one conformation was clearly visible in the electron
density, the main-chain trace of the alternative conformation
was much less obvious. From residue A320 to A323 the den-

Fitting a poly-alanine fragment into the density is rather sensity was particularly ambiguous; the alternative conformation
sitive to residues being flipped along the chain. This problenwas difficult to identify and initially not modelled. To model
is exacerbated by the fact that exposed loop regions typicallthe fragment from residue A317 to A323 with our algorithm,
have poorly resolved side chains in the electron density. Figit was decided to build two conformations at half occupancy
ure 6 shows an example of a fragment where two consecutiveach. The algorithm was slightly modified; half occupancy was
residues are flipped. While the aaRMSD is relatively high athard-coded, and density-smoothing was disabled to narrow the
0.9A for this fragment, the€€a-trace is in excellent agreement radius of convergence of the refinement stage. Runs at four dif-
with the manually built fragment. The flipped residues are easyerent lengths were attempted. TReanchor was kept fixed at
to identify and correct for a trained crystallographer. Serine A316, and th€-anchor ranged from Alanine A320 to
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Histidine A323. In the final run, four out of the final twelf frag- our approach yields fragments in good agreement with the final,
ments adopted configuration ‘A, another three adopted conforrefined structure, even at medium to low resolution, at lengths
mation 'B’, and the remaining five fragments did not fit the den-up to 12-15 residues.

sity meaningfully. Figure 7(a) shows the two alternative con- Fitting a poly-alanine fragment into areas of poor density is
formations for residues A316-A323. Side chains were addedensitive to residues being flipped along the chain. An impor-
manually to the poly-alanine chains. Figure 7(b) and (c) showant extension to the current algorithm is therefore the ability
residues A316 to A320 of both conformations in the electrono identify flipped residues. Although easy to detect and correct
density. The fit of Tyrosine A318 is particularly telling in each manually once the fragment is built, it requires an additional
case. step of human intervention before the model can be submitted to
refinement. Itis anticipated that elementary heuristic techniques
will greatly reduce the occurrence of flipped residues. Similarly,
incorporation of specialized algorithms to identify and model
secondary-structure elements will enhance the performance in
building long alpha-helices.

Advances in all aspects of X-ray crystallography—from pro-
tein expression to data processing and instrumentation—are lead-
ing to data sets of sufficiently high quality to distinguish alterna-
tive main-chain conformations in mobile regions. Our methods
can easily be extended to model alternative conformations, even
at subatomic resolution, as was shown in Section 4.3. Inducing a
probability measure on conformation space from targeted sam-
pling of self-motion manifolds is another interesting and excit-
ing direction for future research.

6. Software

The algorithm is actively being used in the structure determina-
tion at the JCSG, and work is under way to fully integrate it into
Xsolve, JCSG’s automated data processing and structure solu-
tion software suite. A software package based on the algorithm,
Xpleo, is currently under development. It will be available for
download at http://smb.slac.stanford.edu/vdbedem.
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