
Smart Drill-Down: A New Data Exploration Operator

Manas Joglekar
Stanford University

manasrj@stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Aditya Parameswaran
University of Illinois (UIUC)

adityagp@illinois.edu

ABSTRACT
We present a data exploration system equipped with smart drill-
down, a novel operator for interactively exploring a relational table
to discover and summarize “interesting” groups of tuples. Each
such group of tuples is represented by a rule. For instance, the rule
(a, b, ?, 1000) tells us that there are a thousand tuples with value
a in the first column and b in the second column (and any value in
the third column). Smart drill-down presents an analyst with a list
of rules that together describe interesting aspects of the table. The
analyst can tailor the definition of interesting, and can interactively
apply smart drill-down on an existing rule to explore that part of the
table. In the demonstration, conference attendees will be able to use
the data exploration system equipped with smart drill-down, and
will be able to contrast smart drill-down to traditional drill-down,
for various interestingness measures, and resource constraints.

1. INTRODUCTION
Analysts often use OLAP (Online Analytical Processing) opera-

tions such as drill-down [6] to explore relational databases. These
operations are very useful for analytics and data exploration and
have stood the test of time; all commercial OLAP systems in exis-
tence support these operations.

But there are several cases where drill-down is ineffective; for
instance, when the column being drilled down on has a large num-
ber of distinct values, the results can easily overwhelm analysts by
presenting them with too many values. Furthermore, drill-down
only allows us to explore one column at a time, instead of allowing
simultaneous drill-downs on multiple columns—moreover, simul-
taneously drilling down on multiple columns is likely to again suf-
fer from the problem of having too many results, due to having too
many distinct combinations of column values.

In this demonstration, we present a new interaction operator called
smart drill-down, that is an extension to a traditional drill-down
operator, aimed at providing complementary functionality to drill-
down in cases where drill-down is ineffective. Smart drill-down
makes it possible for analysts to zoom into the more “interesting”
parts of a table or a database, with fewer operations, and without
having to examine as much data as traditional drill-down. Note that
our goal is not to replace traditional drill-down functionality, which
we believe is fundamental; instead, our goal is to provide auxiliary
functionality which analysts are free to use whenever they find tra-
ditional drill-downs ineffective.

In addition to this new operator called smart drill-down, our sys-
tem implements novel sampling techniques to compute the results
for this operator in an interactive fashion on increasingly larger
databases. Unlike the traditional OLAP setting, these computations
require no pre-materialization, and can be implemented within or
on top of any relational database system.

Store Product Region Count Weight
? ? ? 6000 0

Table 1: Initial summary

Store Product Region Count Weight
? ? ? 6000 0
. Target bicycles ? 200 2
. ? comforters MA-3 600 2
. Walmart ? ? 1000 1

Table 2: Result after first smart drill-down

The best way to explain smart drill-down is through a simple
example.

Example 1. Consider a table with columns ‘Department Store’,
‘Product’, ‘Region’ and ‘Sales’. Suppose an analyst queries for
tuples where Sales were higher than some threshold, in order to find
the best selling products. If the resulting table has many tuples, the
analyst can use traditional drill-down to explore it. For instance,
the system may initially tell the analyst there are 6000 tuples in
the answer, represented by the tuple (?, ?, ?, 6000, 0), as shown in
Table 1. The ? character is a wildcard that matches any value in the
database. The Count attribute can be replaced by a Sum aggregate
over some measure column, e.g., the total sales. The right-most
Weight attribute is the number of non-? attributes; its significance
will be discussed shortly. If the analyst drills down on the Store
attribute (first ?), then the operator displays all tuples of the form
(X , ?, ?, C, 1), where X is a Store in the answer table, and C is
the number of tuples for X (or the aggregate sales for X).

Instead, when the analyst uses smart drill-down on Table 1, he
obtains Table 2. The (?, ?, ?, 6000) tuple is expanded into 3 tuples
that display noteworthy or interesting drill-downs. The number 3
is a user specified parameter, which we call k.

For example, the tuple (Target, bicycles, ?, 200, 2) says that there
are 200 tuples (out of the 6000) with Target as the first column
value and bicycle as the second. This fact tells the analyst that
Target is selling a lot of bicycles. The next tuple tells the analyst
that comforters are selling well in the MA-3 region, across multiple
stores. The last tuple states that Walmart is doing well in general
over multiple products and regions. We call each tuple in Table 2
a rule to distinguish it from the tuples in the original table that is
being explored. Each rule summarizes the set of tuples that are
described by it. Again, instead of Count, the operator can display
a Sum aggregate, such as the total Sales.

Say that after seeing the results of Table 2, the analyst wishes

Store Product Region Count Weight
? ? ? 6000 0
. Target bicycles ? 200 2
. ? comforters MA-3 600 2
. Walmart ? ? 1000 1
. . Walmart cookies ? 200 2
. . Walmart ? CA-1 150 2
. . Walmart ? WA-5 130 2

Table 3: Result after second smart drill-down

1

to dig deeper into the Walmart tuples represented by the last rule.
For instance, the analyst may want to know which states Walmart
has more sales in, or which products they sell the most. In this case,
the analyst clicks on the Walmart rule, obtaining the expanded sum-
mary in Table 3. The three new rules in this table provide additional
information about the 1000 Walmart tuples. In particular, one of
the new rules shows that Walmart sells a lot of cookies; the others
show it sells a lot of products in the regions CA-1 and WA-5.

When the analyst clicks on a rule r, smart drill-down expands r
into k sub-rules that as a set are deemed to be “interesting.” There
are three factors that make a rule set interesting. One is if it con-
tains rules with high Count (or total sales) fields, since the larger
the count, the more tuples are summarized. A second factor is if the
rules have high weight (number of non-? attributes). For instance,
the rule (Walmart, cookies, AK-1, 200, 3) seems more interesting
than (Walmart, cookies, ∗, 200, 2) since the former tells us the high
sales are concentrated in a single region. A third desirability factor
is diversity: For example, if we already have the rule (Walmart, ?,
?, 1000, 1) in our set, we would rather have the rule (Target, bicy-
cles, ?, 200, 2) than (Walmart, bicycles, ?, 200, 2) since the former
rule describes tuples that are not described by the first rule.

Our system combines these three factors in order to obtain a
single desirability score for a set of rules. Our score function can
actually be tuned by the analyst (by choosing how weights are com-
puted), providing significant flexibility in what is considered a good
set of rules. We also use an efficient optimization procedure to max-
imize score, invoked by smart drill-down to select the set of k rules
to display.

Compared to traditional drill-down, our smart drill-down has two
important advantages:
• Smart drill-down limits the information displayed to the most

interesting k facts (rules), where k can be set by the user.
With traditional drill-down, a column is expanded and all
attribute values are displayed in arbitrary order. In our ex-
ample, if we perform a traditional drill-down on the store at-
tribute, we would see all stores listed, which could be a very
large number.
• Smart drill-down explores several attributes to open up to-

gether, and automatically selects combinations that are inter-
esting. For example, in Table 2, the rule (Target, bicycles, ?,
200, 2) is obtained after a single drill-down; an analyst using
traditional drill-down would first have to drill-down on Store,
examine the results, drill-down on Product, look through all
the displayed rules and then find the interesting rule (Target,
bicycles, ?, 200, 2).

Our work on smart drill-down is related to table summarization
and anomaly detection [10, 9, 11, 7]. These works mostly focus
on giving the most “surprising” information to the user, i.e., infor-
mation that would minimize the Kullback-Liebler(KL) divergence
between the resulting maximum entropy distribution and the actual
value distribution. Thus if a certain set of values occur together
in an unexpectedly small number of tuples, that set of values may
be displayed to the user. In contrast, our algorithm focuses on dis-
playing a list of rules which together cover as much of the table as
possible. Furthermore, our summarization is couched in an interac-
tive environment, where the analyst directs the drill-down and can
tailor the optimization criteria.

To reiterate, our chief contribution in this system is the smart
drill-down interaction operator, an extension of traditional drill-
down, aimed at allowing analysts to zoom into the more “interest-
ing” parts of a dataset. Our system also uses novel sampling tech-
niques to support this operator on increasingly larger datasets:

• Basic Interaction: Finding the optimal list of rules to display
is NP-HARD [1], so we use an algorithm to find the approxi-
mately optimal list of rules to display when the user performs
a smart drill-down operation.
• Dynamic Sample Maintenance: To improve response time on

large tables, we build a framework for dynamically maintain-
ing samples in memory to support smart drill-down. Optimal
identification of samples is once again NP-HARD [1], so we
use an approximate scheme for dynamically maintaining and
using multiple samples of the table in memory.

The algorithms used for finding rules to display, and for sample
maintenance can be found in our companion technical report [1].

We formally describe our problem in Section 2. In Section 3,
we describe the components of our system. Finally in Section 4,
we outline the demonstration scenario and describe how users can
interact with our system.

2. FORMAL DESCRIPTION
Tables and Rules. Our system first takes as input a relational table,
which we call D. We let T denote the set of tuples in D, and C
denote the set of columns in D. Our objective is to enable smart
drill-downs on this table or on portions of it: the result of our drill-
downs are lists of rules. A rule is a tuple with a value for each
column of the table. In addition, a rule has other attributes, such as
count and weight associated with it. The value in each column of
the rule can either be one of the values in the corresponding column
of the table, or ?, representing a wild-card character representing
all values in the column. A rule r is said to cover a tuple t from
the table if all non-? values for all columns of the rule match the
corresponding values in the tuple. Rule r is a super-rule of r′ if for
every non-? value in r′, r has the same value in the same column.
The Count of a rule is the number of tuples covered by that rule.

Rule Lists. A rule-list is an ordered list of rules returned by our
system in response to a smart drill-down operation. When a user
drills down on a rule r to know more about the part of the table
covered by r, we display a new rule-list below r. For instance, the
second, third and fourth rule from Table 2 form a rule-list, which
is displayed when the user clicks on the first rule. Similarly, the
second, third and fourth rules in Table 3 form a rule-list, as do
the fifth, sixth and seventh rules. We now define some additional
properties of rules; these properties help us “score” individual rules
as part of a rule-list.

Scoring. There are two portions that constitute our scores for a
rule as part of a rule list. The first portion dictates how much the
rule r “covers” the tuples in D; the second portion dictates how
“good” the rule r is (independent of how many tuples it covers).
The reason why we separate the scoring into these two portions is
that they allow us to separate the inherent “goodness” of a rule from
how much it captures the data in D.

We now describe the first portion: We define MCount(r,R) (which
stands for ‘Marginal Count’) as the number of tuples covered by r
but not by any rule before r in the rule-list R. A high value of
MCount indicates that the rule not only covers a lot of tuples, but
also covers parts of the table not covered by previous rules.

Now, onto the second portion: we let W denote a function that
assigns a non-negative weight to a rule based on how good the rule
is, with higher weights assigned to better rules. As we will see, the
weighting function does not depend on the specific tuples inD, but
could depend on the number of ?s in r, the schema of D, as well
as the number of distinct values in each column of D. The full de-
scription of the weighting functions can be found in [1] — we will

2

Rule FinderSample Handler User Interface

Disk
Memory

Control Flow
Data Flow

Figure 1: The architecture our system

allow conference attendees to see the impact of various weighting
functions in the demonstration. A weighting function is said to
be monotonic if for all rules r1, r2 such that r2 is a super-rule of
r1, we have W (r1) ≤ W (r2); we focus on monotonic weighting
functions because we prefer rules that are more “specific” rather
than those that are more “general” (thereby conveying less infor-
mation).

Thus, the total score for our list of rules is given by

Score(R) =
∑
r∈R

MCount(r,R)︸ ︷︷ ︸
coverage of r in D

× W (r)︸ ︷︷ ︸
weight of r

Overall, our goal is to choose the rule-list maximizing total score.
Our smart drill-downs still display the Count of each rule rather
than the MCount. This is because while MCount is useful in the
rule selection process, Count is easier for a user to interpret. In any
case, it would be a simple extension to display MCount in another
column.

Formal Problem: We now formally define our problem:

Problem 1. Given a table T , a monotonic weighting function W ,
and a number k, find the list R of k rules maximizing Score(R)
such that each rule r ∈ R is a super-rule of the user-clicked rule.

3. SYSTEM OVERVIEW
Our system consists of three main components (shown in Fig-

ure 1): the ‘Rule Finder’, the ‘Sample Handler’ and the ‘User In-
terface’. At a high level, the User Interface is a web application that
allows users to explore a dataset using smart drill-down. The User
Interface invokes the Rule Finder component based on interactions.
The Rule Finder determines what rules to display to a user based on
the user’s latest interaction, the values of parameters such as num-
ber k of rules to display, weighting function W to use, and so on.
In order to do this, the Rule Finder has to make a pass through the
table data several times. This can be expensive for big tables, so
we dynamically maintain multiple samples of different parts of the
table in memory instead. The Sample Handler is responsible for
maintaining samples in memory and updating them when required.
We now describe the components one by one.

Rule Finder. The problem addressed by the Rule Finder, i.e., that
of choosing the optimal rule list of a given size, is NP-Hard. How-
ever, we find an approximately optimal solution as follows: We first
notice that given a set of rules, a rule-list consisting of those rules
has the highest score if the rules are sorted in decreasing order by
weight. So we can define the score of a rule set to be the score of
the rule-list obtained by ordering rules of the set in decreasing order
by weight. Thus our problem reduces to that of finding the highest
scoring rule set. As long as the weight function is monotonic, the
score of a rule-set can be shown to be submodular. Then we use the
fact that a submodular function can be optimized using a greedy
algorithm to choose rules one at a time in a greedy manner until we
have k rules. We call the above algorithm BRS (which stands for
Best Rule Set). Additional details on our approximation algorithm
can be found in our technical report [1].

Sample Handler. The second component of our system, the ‘Sam-
ple Handler’, takes two user-specified input parameters to begin

with: the memory capacity M , and a parameter called minSS.
minSS determines the sample size required to run the BRS algo-
rithm. Higher values of minSS increase processing time (since the
algorithm has to process a larger amount of data) but also increase
the accuracy of the resulting displayed rule-list and rule counts.
Then, the Sample Handler maintains a set of samples in memory,
such that the sum of sizes of the samples never exceeds M . Each
sample is a uniformly random subset of tuples that are covered by
some rule r′. When the user attempts to drill-down on a rule r, the
Sample Handler appropriately combines tuples from various exist-
ing samples to produce a set of at least minSS tuples covered by r
to run BRS on. If the Sample Handler cannot create such a set us-
ing existing in-memory samples, then it needs to make a pass over
the table to generate new samples. In that case, it determines a new
set of samples to create, to maximize the probability that the next
user click can be responded using those samples. Then it makes a
pass through the table to create the new samples.

Figure 2: The web interface of our system: specification of parameters

Figure 3: The web interface of our system: interactive results pane

User Interface. The third component is the User Interface, shown
in Figure 2, with the results displayed in Figure 3. At the top of
the interface in Figure 2, users can set the number of new rules to
display in response to every smart drill-down.

The second and third parameters manage weights, which as dis-
cussed in Section 2 allow a user to modify the interpretation of
“interesting tuples”. The weighting function (set by the third pa-
rameter) is used to specify the importance of a rule, e.g., based on
the number of distinct values or the value of particular attributes.
In general, our approximation algorithm works for any monotonic
weighting function. But for ease of use of the web interface, we
have hard-coded a few different weighting functions, that can be
selected using the drop-down list in the interface.

The second setting, a parameter called max weight, lets the sys-
tem ignore rules that have high weight (above max weight). The
idea behind this is that rules with high weight have a high number
of non-? values, and hence a much smaller Count, making them un-
likely to appear in an optimal rule-list. As max weight decreases,

3

rule selection becomes more efficient. As long as the weight of all
rules in the optimal rule-list is less than this parameter, our sys-
tem displays the optimal rule-list, so there is no impact on the user.
However, if max weight is smaller than the weight of some optimal
rules, then the user sees a non-optimal set of rules.

Below the drop down menu, the interface displays the set of
columns of the database table being explored. Each column has
three options: ‘Default’, ‘Ignore’, and ‘Force’. Choosing the Ig-
nore option causes the column to be ignored, (so the weight given
to a rule with a value in that column is set to that of a rule with a ?
value in that column). Choosing the Force option forces every dis-
played rule to have a non-? value in that column. This is especially
useful for tables with a large number of columns, where the user
may only be interested in some of the columns.

Finally, the actual interactive table summary is displayed in Fig-
ure 3. The plus and minus buttons before the rules can be used to
drill-down and reverse previous drill-downs. For instance, in the
figure, the user has performed a single drill-down using the Size
weighting function (which sets weight to the number of non-? val-
ues of a rule), and choosing the Force option for the Occupation
column, and Ignore for Gender and Time in Bay Area columns. As
a result, the displayed rule-list (the three rules below the first one)
all have a non-? value in the Occupation column, and only ? values
in the Gender and Time in Bay Area columns. Notice how the rules
also have non-? values in some columns other than occupation, in
contrast to traditional drill-down.

4. DEMONSTRATION OVERVIEW
In our demonstration, we will show our prototype implementa-

tion of a system equipped with smart drill-down. We first describe
the prototype implementation, the datasets, and then describe the
demonstration scenarios.

Prototype Details. Our system is built as a web-application using
NodeJS [2], with ExpressJS for the back-end, and AngularJS [3] for
the front-end. The Rule Finder and Sample Handler components
(displayed in Figure 1) are coded in Java, and converted into an
executable .jar that gets called by the web server backend.

Dataset Description. In our demonstration, we will use two datasets.
The first is an example of a dataset that attendees are not likely to
be very familiar with, and the second is an example of a dataset that
attendees are likely to be familiar with:

The first dataset, denoted ‘Marketing’, contains demographic in-
formation about potential customers [4]. A total of 9409 question-
naires containing 502 questions were filled out by shopping mall
customers in the San Fransisco Bay Area; the dataset is a summary
of their responses. Each tuple in the dataset describes a single per-
son, with attributes such as gender, marital status, age, and so on.

The second dataset is a US 1990 Census dataset from the UCI
Machine Learning Repository [5]. It has 2.5 million tuples, with
each tuple corresponding to a person.

Demonstration Scenarios. The goal of demonstration is to (a) il-
lustrate the utility of smart drill-down, along with the various pos-
sible interactions, in comparison with traditional drill-down; (b)
demonstrate the effect on performance and utility on varying pa-
rameters of the Rule Finder, as controlled by the user interface;
here the attendees will select different settings and examine the re-
sponse; and (c) demonstrate the effect on performance and accu-
racy on varying sampling parameters of the Sample Handler, in-
built in the system.

During the demo, we will set up instances of the system with
the two previously described datasets pre-loaded. We will also
have the web user interface open in a browser window. Then for

each demonstration, we will go though three scenarios one after
the other:
• Scenario 1: Comparison to drill-down: To begin with,

we will have some canned exploration scenarios in order to
familiarize attendees with the system interface and its ad-
justable parameters. Through the scenarios, we will demon-
strate how smart drill-down lets one discover interesting in-
formation about a table efficiently, and how the table explo-
ration can be tailored to fit a user’s interests. These scenarios
will highlight the advantage of smart drill-down compared
with traditional drill-down.
• Scenario 2: Rule Finder Parameters: We will allow the

attendees to vary parameters shown in the user interface and
observe their effects on the rules displayed, as well as re-
sponse time and accuracy. Increasing the ‘Number of Rules’
parameter will result in a longer rule list being displayed, but
will cause an increase in response time. Reducing the ‘Max
Weight’ parameter, which allows the system to ignore rules
having weight higher than the Max Weight, will speed up the
response time of the system, but reducing it too much will
result in a suboptimal rule-list being displayed. The third pa-
rameter, the weighting function, determines which rules the
user finds ‘interesting’. Using a different weighting function,
such as the ‘Bits’ (which gives higher weight to rules con-
taining non-? values in columns that have a large number of
distinct values) will prioritize columns such as ‘Education’
over columns such as ‘Gender’ (since the latter has only two
distinct values). The user will also be able to ignore certain
columns, or force certain columns to be instantiated in the
displayed rules.
• Scenario 3: Sample Handler Parameters: We will allow

attendees to try out multiple instances of the system initial-
ized with different values of the minSS parameter (recall
that minSS is the minimum sample size used by the system
when determining which rules to display). This will allow
attendees to observe how decreasing minSS decreases run-
ning time but also potentially reduces accuracy of the dis-
played rules and their counts.

With our demonstration, we hope to convince attendees that smart
drill-down offers a valuable alternative to traditional drill-down in
quickly “zooming into” the interesting portions of a dataset.

5. REFERENCES
[1] https://www.stanford.edu/~manasrj/Papers/SmartDrillDown.pdf.
[2] https://nodejs.org/.
[3] https://angularjs.org/.
[4] Marketing Dataset

http://statweb.stanford.edu/ tibs/ElemStatLearn/datasets/marketing.info.txt.
[5] K. Bache and M. Lichman. UCI machine learning repository, 2013.
[6] A. Bosworth, J. Gray, A. Layman, and H. Pirahesh. Data cube: A

relational aggregation operator generalizing group-by, cross-tab, and
sub-totals. Technical report, Microsoft Research, 1995.

[7] K. E. Gebaly, P. Agrawal, L. Golab, F. Korn, and D. Srivastava.
Interpretable and informative explanations of outcomes. PVLDB,
pages 61–72, 2014.

[8] R. Kalakota. Gartner: Bi and analytics a $12.2 billion market, july
2013 (retrieved october 30, 2014).

[9] S. Sarawagi. User-adaptive exploration of multidimensional data. In
VLDB, pages 307–316, 2000.

[10] S. Sarawagi. User-cognizant multidimensional analysis. The VLDB
Journal, pages 224–239, 2001.

[11] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of olap data cubes. In EDBT, pages 168–182, 1998.

4

